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Abstract

Carriers of premutation CGG expansions in the fragile X mental retardation 1 (FMR1) gene are at 

higher risk of developing a late-onset neurodegenerative disorder named Fragile X-tremor ataxia 

syndrome (FXTAS). Given that mitochondrial dysfunction has been identified in fibroblasts, 

PBMC and brain samples from carriers as well as in animal models of the premutation and that 

mitochondria are at the center of intermediary metabolism, the aim of this study was to provide a 

complete view of the metabolic pattern by uncovering plasma metabolic perturbations in 

premutation carriers. To this end, metabolic profiles were evaluated in plasma from 23 premutation 

individuals and 16 age- and sex-matched controls. Among the affected pathways, mitochondrial 

dysfunction was associated with a Warburg-like shift with increases in lactate levels and altered 

Krebs’ intermediates, neurotransmitters, markers of neurodegeneration, and increases in oxidative 

stress-mediated damage to biomolecules. The number of CGG repeats correlated with a subset of 

plasma metabolites, which are implicated in mitochondrial disorders but also in other neurological 

diseases such as Parkinson’s, Alzheimer’s and Huntington’s diseases. For the first time, the 

identified pathways shed light on disease mechanisms contributing to morbidity of the 
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premutation, with the potential of assessing metabolites in longitudinal studies as indicators of 

morbidity or disease progression, especially at the early pre-clinical stages.

Summary statement

Our study defines the potential use of plasma metabolic profiling to monitor brain 

pathophysiology in carriers of a 50–200 CGG expansion (premutation) in the 5’UTR fragile X 

mental retardation 1 (FMR1) gene before the onset of the neurodegenerative disorder FXTAS.

Keywords

Fragile X; metabolomics; mitochondrial dysfunction; neurodegeneration; trinucleotide repeat 
disease

Introduction

A modestly expanded CGG nucleotide repeats (55–200) in the 5’-UTR of the fragile X 

mental retardation gene 1 (FMR1 [1–3]) represents the genetic hallmark of premutation 

carriers. Originally, premutation carriers were thought to be free of phenotypic traits; 

however, reports regarding fragile X-associated primary ovarian insufficiency (FXPOI; [4]), 

followed by the discovery of fragile X-associated tremor ataxia syndrome (FXTAS; OMIM:

300623) identified in adult carriers [5] discredited this notion. Premutation carriers may also 

suffer from psychological problems, visuospatial deficits, and immune dysregulation [2, 3, 

6–8] and affected children are often diagnosed with ADHD, autism, anxiety and other 

psychopathologies [9, 10], At the cellular level, fibroblasts from premutation carriers 

(humans or animal models of the premutation) are generally accompanied by high FMR1 
gene expression, normal or lower levels of FMRP and mitochondrial dysfunction [11–14].

Currently, premutation carriers include 1 million women and 320,000 men in the United 

States [15]. It is currently unknown which carriers of the premutation will develop FXTAS. 

Clinical diagnosis fails to identify those carriers before significant neurological symptoms 

are evident, thus there is an immediate need for early detection and effective drugs for the 

cure or the prevention of FXTAS development. An understanding of the molecular 

characteristics underlying the disease processes of the premutation is a prerequisite for 

providing therapeutic strategies.

To fulfill this immediate need, metabolic profiling performed on readily accessible body 

fluids, such as cerebrospinal fluid, serum, urine or saliva is one of the most important 

techniques that provides a complete view of the metabolic status and uncovering metabolic 

perturbations in pathways [16–18] for diagnosis of many diseases [19] including metabolic 

disorders [20], motor neuron disease [21], Parkinson’s [22] and Alzheimer’s [23] as well as 

chemical toxicity and aging [24–27]. To this end, plasma metabolomics was evaluated in 

premutation carriers and age- and sex- matched controls with the aim of providing a 

complete view of the status of intermediary metabolism with the potential of uncovering 

perturbations in metabolic pathways [17, 18] associated with the presence of the FMR1 
premutation.
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Materials and methods

Characteristics of the subjects enrolled in this study

The study was conducted at the MIND Institute and approved by the IRB ethics committee 

at UC Davis Medical Center. Exclusion criteria were refusal of the patient or his guardian, 

infection or malignancy. Blood samples were obtained by venipuncture with informed 

consent. Controls and carriers of the premutation were recruited through the Fragile X 

Treatment and Research Center at the MIND Institute at University of California, Davis, and 

who participated in our genotype-phenotype study of families with fragile X between the 

years 2013 and 2015. All blood draws were performed at the MIND Institute between the 

hours 8 and 10 am (fasting was not advised). No exercise prior to the blood draw was 

reported; however, it seems an unlikely event since the subjects are usually at the Clinic 

between 7–8 am on the day of the exam. Clinical evaluations with Dr. Hagerman and 

associates were performed after the blood draw. CGG repeat number in all individuals 

included in this study was evaluated by using Southern Blot and PCR analysis as previously 

described [28]. Participants were not excluded from this study if they were taking 

prescription medications. However, careful record of all prescription medications was 

obtained.

Subjects

The “control group” consisted of 16 individuals (female-to-male ratio = 1.3; mean age ± SD 

of 37 ± 13 y). The “premutation group” was constituted by 23 premutation carriers (female-

to-male ratio = 1.1; mean age ± SD of 37 ± 19 y; Table 1). Four of the subjects in the 

premutation group were diagnosed with FXTAS utilizing the criteria by Jacquemont et al. 

[29], Of the subjects included in this study, 6 controls and 13 carriers were on multivitamins/

probiotics or nutritional supplements, 1 control and 8 carriers were on antidepressants, 3 

controls and 4 carriers on cyclooxygenase inhibitors, 2 controls and 2 carriers on hormone 

replacement therapy, 1 control and 2 carriers on antihistamines, 1 control and 1 carrier on 

nitric-oxide producing drugs. Other medications included hydroxymethylglutarylCoA 

reductase inhibitors (2 carriers), proton pump inhibitors (2 carriers), beta2 agonist (2 

carriers), levodopa (1 carrier), alpha2A receptor agonist (1 carrier), alphal adrenergic blocker 

(1 control), ACE inhibitor (1 carrier), anticoagulant (1 control), barbiturate (1 carrier), beta-

blocker (1 carrier), and inhibitor of monoamine transport (1 carrier). Although not 

significant, carriers were more likely to take vitamins and supplements than controls (56.5% 

vs. 37.5%; p = 0.059).

Sample preparation for metabolomics

The protocol for plasma metabolomics was reported in detail before [30]. Plasma samples 

were extracted following the protocols published [31]. Samples were derivatized by 

methoxyamine hydrochloride in pyridine and subsequently by N-methyl-N-

trimethylsilyltrifluoroacetamide for trimethylsilylation of acidic protons. Data were acquired 

according to [32]. Absolute spectra intensities were further processed by a filtering 

algorithm implemented in the metabolomics BinBase database. The BinBase algorithm used 

the settings: validity of chromatogram (<10 peaks with intensity >107 counts s−1), unbiased 

retention index marker detection (MS similarity>800, validity of intensity range for high m/z 
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marker ions), retention index calculation by 5th order polynomial regression. Spectra were 

cut to 5% base peak abundance and matched to database entries from most to least abundant 

spectra using the following matching filters: retention index window ± 2,000 units 

(equivalent to about ±2s retention time), validation of unique ions and apex masses (unique 

ion must be included in apexing masses and present at >3% of base peak abundance), mass 

spectrum similarity must fit criteria dependent on peak purity and signal/noise ratios and a 

final isomer filter. Failed spectra were automatically entered as new database entries if S/N 

>25, purity <1.0 and presence in the biological study design class was >80%. Quantification 

was reported as peak height using the unique ion as default, unless a different quantification 

ion was manually set in the BinBase administration software BinView. A quantification 

report table was produced for all database entries that were positively detected in > 10% of 

the samples of a study design class (as defined in the miniX database) for unidentified 

metabolites. A subsequent post-processing module was employed to automatically replace 

missing values from the *.cdf files. Replaced values were labeled as ‘low confidence’ by 

color coding, and for each metabolite, the number of high-confidence peak detections was 

recorded as well as the ratio of the average height of replaced values to high-confidence 

peak detections. These ratios and numbers were used for manual curation of automatic 

report data sets to data sets released for submission. Metabolites were identified by matching 

the ion chromatographic retention index, accurate mass, and mass spectral fragmentation 

signatures with reference library entries created from authentic standard metabolites under 

the identical analytical procedure as the experimental samples.

Statistics

Post-hoc analysis to compute the achieved power given the actual sample size utilized in this 

study (alpha = 0.05) indicated that it was >0.999 when performed with these outcomes 

(G*Power, v.3.0. 10). Metabolite identification was performed through the use of several 

databases including PubChem Compound [33], KEGG [34] and HMDB [35–37] and the 

online chemical translation service [38]. Before analysis, raw data were filtered by the 

presence of metabolites in at least 80% of patients and all data were mean-centered and 

standardized. Identification of the characteristic metabolites with significance between 

clusters was performed using the PLS-Discriminant Analysis (PLS-DA) method 

implemented in XLSTAT (version 2016.04.32331). The importance of each metabolite in the 

PLS-DA was evaluated by variable importance in the projection (VIP) score. The VIP score 

positively reflects the metabolite’s influence on the classification, and metabolites with a 

score >0.8 were considered important in this study. Additionally, plasma metabolites along 

with their relative concentrations were also analyzed using a Metabolite Set Enrichment 

Analysis (MSEA). The MSEA was performed by using quantitative enrichment analysis 

(QEA). The relative concentrations of metabolites were analyzed using the metabolic 

pathway-associated metabolite set library and the enrichment analysis was performed by 

using the globaltest package [39]. The QEA was performed using a generalized linear model 

to estimate a Q-statistic for each metabolite set, which allows describing the correlation 

between compound concentration and disease. The results were summarized as the average 

Q statistics for each metabolite in the input set.
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Results

a. Plasma metabolomics

Metabolomics was performed on plasma samples from carriers of the premutation and age- 

and sex-matched controls (Table 1). The average CGG repeats at the 5’UTR of FMR1 of the 

mutant allele in heterozygous carriers was 83 ± 19 (mean ± SD), whereas that of 

hemizygous carriers (males only) was significantly longer (123 ± 45; p = 0.021). In both 

cases, the CGG repeats were significantly longer than those observed in controls (31 ± 6, p = 

5×10−5; Table 1).

A total of 143 metabolites were identified in plasma samples from these subjects. The partial 

least squares-discriminant analysis (PLS-DA) was utilized to identify the performance of 

multiple metabolite biomarkers associated with premutation or, in other words, the 

predictive value of the class membership of subjects based on their metabolomic profile 

(Figure 1). Variable importance in projection (VIP) scores from the PLS-DA of all 

metabolites was calculated to evaluate those that contributed the most to the segregation of 

the diagnostic groups (VIP ≥ 0.8; Figure 1A). Considering that variables having a VIP score 

>1.0 are interpreted as being highly influential, values between 0.8 < VIP score < 1.0 

indicate moderately influential variables, and VIP scores < 0.8 represent less important 

variables [40], the VIP cut-off value ≥ 0.8 (also used in other studies such as [41]) allowed 

the inclusion of not only potential biomarkers but also that of other metabolites with a 

relatively significant contribution in discriminating the groups (control vs premutation), as 

well as a significant number of metabolites needed for a global interpretation of the changes 

in the metabolic pathways. Using the above-mentioned cut-off, the number of metabolites 

discriminating the premutation carriers from controls was reduced to 64 (48% of all 

originally identified). Following the BRITE classification within the KEGG database, 

plasma metabolites with biological roles were divided into the following categories (Figure 

1B): carbohydrates and related (n = 17); amino acids, derivatives and biogenic amines (n = 

17); carboxylic acids (n = 18); lipids (n = 15); and others (n = 3). Of note, a significant 

increase in metabolites belonging to the “carbohydrate” category was observed in the 

premutation group, which mirrored the decline in those within the “lipid category” (Figure 

1B).

b. Pathway discovery analyses

By performing PLS-DA or fold-change analyses, the potential to identify subtle, but 

consistent changes among a group of related compounds, could be undermined. To 

overcome this obstacle, plasma metabolites along with their relative concentrations were 

analyzed using a Metabolite Set Enrichment Analysis (MSEA). This approach identifies 

biologically meaningful patterns that are significantly enriched in quantitative metabolomic 

data. MSEA is a metabolomic version of the popular GSEA (Gene Set Enrichment Analysis) 

approach with its own collection of metabolite libraries analyzing directly a set of 

functionally related metabolites without the need to preselect compounds based on some 

arbitrary cut-off threshold. Metabolomic data from controls and carriers showed that the 

pathways significantly enriched were (in decreasing order of significance and with FDR < 

0.05; Figure 2A) (i) citric acid cycle, (ii) the metabolism of the following compounds: 
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purine, Asp, arachidonic acid, propanoate, glycerolipid, pyruvate, beta-alanine, and 

phospholipid biosynthesis, (iii) the glycerolphosphate shuttle (which serves to transport 

reducing equivalents from the cytosol to mitochondria), and (iv) the metabolism of 

phenylacetate and betaine.

In parallel, we utilized the Pathway Analysis module of MetaboAnalyst, which combines 

results from the pathway enrichment analysis with the pathway topology analysis to identify 

the most relevant pathways in the premutation category. Pathway enrichment analysis 

usually refers to quantitative enrichment analysis directly using the compound concentration 

values, as compared to compound lists used by over-representation analysis. As indicated 

above, this analysis is more sensitive and has the potential to identify subtle but consistent 

changes among compounds involved in the same biological pathway. For this analysis, 

concentrations of each metabolite—normalized to averaged control values—were used as 

input values, Globaltest was the pathway enrichment analysis method and the node 

importance measure for topological analysis was the relative betweenness centrality (which 

measures the number of shortest paths going through the node for metabolite importance 

measure focusing on global network topology [42]). A graphical and detailed list of the 

pathways identified and their relative impact are shown in Figure 2B. The most significant 

ones (in decreasing order) were carbohydrate and lipid metabolism including galactose, 

propanoate, TCA, arachidonic acid, pentose phosphate pathway, pyruvate metabolism, 

panthotenate and glycolysis or gluconeogenesis.

Taken together, both analyses concurred on most of the pathways (TCA and fatty acid 

metabolism including glycerolphosphate shuttle) and extended some of the conclusions to 

other pathways (pentose phosphate pathway, gluconeogenesis).

b.1. Fatty acid and carbohydrate metabolism—Lower levels of plasma fatty acids 

(C9–C20) and derivatives were observed in carriers vs. controls (Figure 1A; Table 2). These 

findings along with elevated levels of adipic acid (a dicarboxylic acid), glycine and glycerol 

and lower levels of the ketone body 3-hydroxybutyrate resembled some of the features—

although not as marked—of the nonketotic, hyperglycinemia with glyceric acidemia 

syndrome. This scenario may be interpreted as an increased lipolysis (higher glycerol) 

followed by increased hepatic fatty acid oxidation (decreased circulating FFA, preferentially 

outside mitochondrial fatty acid oxidation) to fuel the hepatic gluconeogenesis pathway. The 

fact that glycine levels were higher in carriers than controls is suggestive of a decreased 

activity of the mitochondrial glycine cleavage system. If this were the case, an imbalanced 

redox status could be occurring in mitochondria characterized by higher [NADH]/[NAD+] 

ratios. Higher [NADH]/[NAD+] ratios may inhibit NAD-dependent dehydrogenases such as 

pyruvate dehydrogenase complex (PDHC), alpha-ketoglutarate dehydrogenase (AKGDH) 

and isocitrate dehydrogenase (ICDH). The lower entry of pyruvate into the TCA via PDHC 

could result in two options: one, to form oxaloacetate via the anaplerotic reaction catalyzed 

by pyruvate carboxylase or, two, form lactate via lactate dehydrogenase (Figure 3).

In support of the latter option, several intermediates of the TCA cycle, especially those 

located within the first half of the cycle—namely citrate, aconitate, isocitrate—, some TCA 

analogs (such as tartaric acid or 3-hydroxymalic acid), and lactate were higher in carriers 
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than controls (1.6 to 1.9-fold) suggesting a lower TCA activity (Figure 3). Furthermore, the 

higher ratio of Gln-to-Glu observed in plasma of premutations compared to controls (2.3-

fold) suggested an increased flux from TCA to Gin while the higher 4-hydroxybutyrate 

levels (GHB, a GABA derivative) suggested an increased synthesis of GABA from Glu. Of 

note, the higher ratio of GHB-to-succinate in carriers than controls (2.2-fold; p = 0.035) is 

indicative of a lower succinic semialdehyde dehydrogenase (SSADH) activity, probably due 

to either a direct oxidation of critical Cys [43] (e.g., increased oxidative stress conditions 

within mitochondria) or genetics contributing to the premutation phenotype.

b.2. Fatty acids in prostaglandin pathways—To gain a deeper understanding of the 

fatty acid profile in carriers, we evaluated both the levels of free fatty acids between controls 

and carriers of the premutation and their ratios, which are predictive of the activation of 

prostaglandins of the series 2 vs. series 3.

The levels of pelargonic, palmitoleic, oleic and arachidonic acids were lower than controls 

(respectively −1.12, −1.64, −1.36, −1.47 with p = 0.015, 0.018, 0.025, 0.021; Figure 1A; 

Table 2) as well as the ratio of fatty acids of the n-3 series over the n-6 series 

(docosahexaenoic over that of linoleic and arachidonic acids; −1.38-fold; p = 0.015; Table 

2). The levels of myristic acid followed the same trend as that of other fatty acids (−1.38 of 

controls) but without reaching a statistical significance (p = 0.079). Fatty acid ratios were 

used to estimate enzymatic activities of steps involved in fatty acid desaturation, elongation 

and de novo lipogenesis (Figure 4; Table 2). As such, the estimation of the activity of the 

stearoylCoA desaturase (SCD-1), rate-limiting enzyme in monounsaturated fatty acid 

biosynthesis, which converts palmitic to palmitoleic and stearic acid to oleic acid, was 

calculated as the SCD-16 (C16:l n-7/C16:0) and (C18:l n-9/C18:0) ratios as described by 

[44], The SCD-16 (C16:l n-7/C16:0) was significantly lower in carriers than controls (−1.46; 

p = 0.017;_Table 2) indicating that the synthesis of palmitoleic acid was lower in these 

subjects. Similarly, the SCD-18 (C18:l n-9/C18:0), which promotes the endogenous 

synthesis of oleic acid from stearic acid, followed a similar trend but without reaching 

statistical significance (−1.21; p = 0.075; Table 2). The monounsaturated to saturated fatty 

acids ratio [MUFA/SFA = (C18:l n-9 + C16:l n-7)/(C18:0 + C16:0); Table 2], also used as an 

index of the desaturase activity, confirmed the previous findings and it was significantly 

lower in carriers than controls (−1.38; p = 0.015; Table 2).

The ratio of arachidonic to linoleic acid ratio (C20:4 n-6/C18:2 n-6) was evaluated as an 

index of the activation of the pathway leading to the formation of prostaglandins of the 2 

series (PGA2, PGE2, PGF2α, PGI2, TXA2, LTB4; Figure 4) starting from linoleic acid, via 

the formation of arachidonic acid. This ratio (Δ6D and Δ5D in Table 2) was significantly 

lower in carriers than controls (−1.30; p = 0.039; Table 2) suggesting a lower activation of 

the n-6 long chain polyunsaturated fatty acids (i.e., Δ6D and Δ5D) or, more likely, an 

increased generation of prostaglandins of the series 2 from arachidonic acid which is not met 

by the demand.

b.3. Increased oxidative stress—Increased mitochondrial ROS production, elevated 

biomarkers of lipid and protein oxidative-nitrative damage, and decreased antioxidant 

defenses have been observed in lymphocytes, postmortem brain samples and fibroblasts 

Giulivi et al. Page 7

Biochem J. Author manuscript; available in PMC 2020 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from premutation individuals [11, 45, 46], Consistent with these findings, increased levels of 

metabolites derived from oxidative stress-mediated damage to proteins (aminomalonate) and 

carbohydrates (galacturonic acid) was also noted in the plasma of carriers. Lower levels of 

the amino acid derivative beta-Ala can result from lower catabolism of carnosine (dipeptide 

of beta-Ala and His taken from diet or synthesized in muscle or brain by carnosine 

synthetases), anserine (dipeptide of beta-Ala and MethylHis), dihydrouracyl or coenzyme A. 

Carnosine has been claimed to serve as a quencher of lipid peroxidation products such as 4-

hydroxy-2-nonenal and malondialdehyde, to preclude glycation of proteins [47, 48] and to 

prevent neuronal cell death [49, 50], The fact that lower levels of both beta-Ala (−1.4-fold) 

and His (−1.2-fold) were observed in plasma from carriers compared to controls (Figure 1) 

might suggest an increased crosslinking of carnosine with peroxidation or oxidation 

products in an attempt to control increases in oxidative stress.

Plasma sorbitol and threonic acid (likely derived from glycated proteins) levels were 

significantly increased in plasma from premutation carriers (1.2-fold for both; Figure 1). 

While sorbitol has been linked to intestinal dysfunction [51], increases in both sorbitol and 

threonic acid concentrations in carriers are more consistent with increases in oxidative stress 

[52] as a result of a hyperactivation of the polyol metabolic pathway.

Damaged proteins are rapidly catabolized and the excess of nitrogen is disposed as urea. 

Indeed, the levels of citrulline and ornithine were higher (1.2-fold and 1.1-fold respectively; 

Figure 1) in plasma from carriers than controls, which may indicate an increased activity of 

the urea cycle.

In terms of antioxidant defenses, the higher levels of xylose (1.2-fold; Figure 1), erythritol 

(1.3-fold; Figure 1), and threitol (1.3-fold; Figure 1), probably to increase the availability of 

NADPH for antioxidant defenses, inferred higher glucose flux through the pentose 

phosphate pathway. However, the lower levels of both reduced and oxidized Cys (−1.3-fold, 

Figure 1), 3-hydroxybutyrate (−1.3-fold; Figure 1), and higher levels of Met (1.5-fold; 

Figure 1) were suggestive of a shift of homocysteine towards the transmethylation pathway 

(increased Met) from the trans-sulfuration one (to form Cys, 2-hydroxybutyrate). This shift 

may have an impact on glutathione metabolism, for Cys is a required building block for the 

synthesis of this antioxidant molecule.

A lower turnover of RNA (including mRNA) and DNA is supported by the lower plasma 

levels of hypoxanthine (−1.2-fold; Figure 1), allantoic (oxidation product of uric acid) and 

uric acids (purine metabolism; 1.1- and −2.1-fold respectively; Figure 1), beta-Ala 

(dihydrouracil; −1.4-fold; Figure 1) and aminoisobutyric acid (pyrimidine catabolism; −1.2-

fold). These lower levels may suggest a decreased repair capacity of nucleic acids [53, 54], 

decreased transcription rate (decreased protein synthesis), and/or lower rate of cell division.

c. Correlation with CGG repeats expansion

Considering that a number of mitochondrial outcomes (i.e., protein expression of ATPB, 

MnSOD and cytochrome c oxidase, subunit IV), as well as oxidative stress markers (nitrated 

ATPB) correlated with the CGG expansion in fibroblasts from carriers aged 41 to 81 years 

[11], and that the CGG expansion has also been shown to directly correlate with a disrupted/
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fragmented mitochondrial network [14], we tested whether plasma metabolite levels 

correlated with the triplet nucleotide expansion. From 143 metabolites, only 23 correlated 

significantly with CGG repeats, with 15 of them showing a direct correlation (Figure 5A; 

Supplementary Material, “Linear Regression” tab). Among these 15, five were amino acids 

or derivatives (Pro, Gly, hydroxyproline, citrulline and Glu-Val), seven were carbohydrates 

and derivatives (1,5-anhydroglucitol, xylose, UDP-glucuronic acid, maltose, threitol, 

glycerol-3-galactoside and lactic acid), and the rest were of different origin (creatinine, 

maleimide, aminomalonate). Those that followed a reciprocal correlation with the CGG 

expansion were three fatty acids and derivatives (pelargonic and myristic acids and 

oleamide), two amino acids and derivatives (Lys, methyalalanine), and others 

(phenylethylamine, 2-hydroxyglutaric acid and phosphoenolpyruvate). Recently we have 

shown that a panel of four core serum metabolites (namely, phenylethylamine, oleamide, 

aconitate and isocitrate) can be used for sensitive and specific diagnosis of the premutation 

[55], and one of these ratios (i.e., oleamide/isocitrate) showed significant potential as a 

specific biomarker for FXTAS [55], Indeed this ratio showed a trend decreasing as the stages 

of FXTAS increased in severity (Supplementary Figure 1). Although not significant due to 

the low number of carriers/stage, further research needs to expand the pool of FXTAS-

affected carriers to confirm these findings (Table 1).

To derive a more refined understating of those metabolites correlated with the CGG 

expansion, we manually extracted metabolite data from the OMIM, Rare Metabolic Disease, 

HMDB, and Metagene databases for genetic diseases in which any of these metabolites 

matched the same trend of levels observed in the carriers (e.g., elevated lactic acid compared 

to controls). This manual curation process permitted a finer tuned resolution of problems 

arising in the validation data, for example, from differences in metabolite nomenclature. The 

subset of genetic diseases that fulfilled at least one of these laboratory parameters, were used 

to generate a list of potential enzyme or protein targets (Figure 5B). A quick glance at the 

identified diseases revealed that several of them are considered mitochondrial disorders 

(Leigh’s, MELAS< MERFF, Alpers’, Pearson) suggesting that the plasma metabolites that 

correlated with CGG expansion are indeed associated with mitochondrial dysfunction. The 

above identified potential protein targets (Figure 5B) were used to build a protein-protein 

interaction network (Figure 5C), and these results were used for analyzing data in terms of 

their gene ontology (Figure 5D and Supplementary Material). In support of the previous 

conclusions, the most significant cellular component was identified as mitochondria, 

followed by cytosol, and myelin sheath (Supplementary Material, “Cellular compartment” 

tab). Along with this finding, molecular function and biological process gene ontology 

analyses revealed oxidoreductases and mitochondria-associated processes as the most 

significant ones (Supplementary Material, “Molecular function” and “Biological process” 

tabs). Pathway analysis performed by using the KEGG database, indicated not only the 

relevance of mitochondrial processes (oxidative phosphorylation, one-carbon metabolism or 

folate, branched-chain amino acids catabolism, Gly-Ser-Thr metabolism, Kreb’s cycle, Ala-

Asp-Glu metabolism, ketone bodies metabolism) but also the connection to other 

neurological diseases such as Parkinson’s, Alzheimer’s, and another triplet nucleotide repeat 

disease (Huntington’s disease).
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d. Xenobiotics of pharmaceutical or dietary origin

Current metabolomics approaches, in addition to measuring metabolites originated from 

endogenous cellular metabolism, also detect those derived exogenously from drugs, food, 

and cosmetics. Presumptive diet- or treatment-related findings were also noted for carriers as 

well as controls. Examples include, but were not limited to, food component/plant origin and 

pharmaceutical-related metabolites such as salicylate, naproxen, benzoic acid, quinic acid, 

gluconic acid, 1,2-cyclohexanedione, and glycolic acid. From the variety of medications that 

both groups were receiving (see Methods), carriers were more likely to be taking 

antidepressants than controls (30.4% vs. 6.25%; p < 0.0001); among them, the most 

common class was the selective serotonin reuptake inhibitors (SSRI; n = 6, including one 

control). However, no difference in metabolite levels was observed in our study consistent 

with the lack of differences in PUFA levels between medicated and unmedicated subjects 

reported by others [56, 57], No unmedicated subjects were present in any group, but we did 

not find that the metabolomics data correlated with the presence of the iatrogenic 

compounds indicated above or with antidepressants, antipsychotics, or mood stabilizers.

Discussion

The significant similarity of affected pathways based on changes in plasma and CSF 

metabolites and canonical pathways observed for Alzheimer’s and Parkinson’s diseases [58] 

supports the notion that plasma could be used to depict closely biochemical fingerprints of 

brain changes in carriers of the premutation. In this study, by using a non-targeted plasma 

metabolomics screening approach in a clinically well-characterized cohort of subjects, 

several pathways were identified as being altered in carriers of the premutation. Although it 

could be argued that plasma levels of metabolites do not represent those in brain, 

unesterified fatty acids readily cross the blood–brain barrier into the brain [59] representing 

the major peripheral form that mirrors PUFA metabolism in the brain. Additionally, it has 

been reported that decreases in RBC membrane PUFAs from subjects with schizophrenia 

correlates with the degree of demyelination in brain white matter [60].

Among the pathways affected inferred by the plasma metabolomics data, mitochondrial 

dysfunction was associated with a Warburg-like shift (confirming our previous study 

performed with lymphocytes from premutation individuals [46]) with increases in lactate 

levels, altered TCA intermediates and analogs including Glu and GHB, and a pro-

inflammatory state as supported by the lipid profile as well as the increases in oxidative 

stress-mediated damage to carbohydrates and proteins.

Biological implications of the affected pathways in the context of the premutation

Consistent with our previous findings obtained with human carriers and animal models of 

the premutation, the current study also identified multiple pathways related to energy 

metabolism and, more specifically, to mitochondrial function that were already significantly 

affected in the premutation cohort [11–13, 61–64], Furthermore, specific markers that were 

elevated or reduced in plasma of carriers and that correlated with CGG repeats, identified 

not only mitochondrial pathways but also dysfunctional pathways shared by other 

neurological diseases such as Parkinson’s.
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Evidence for mitochondrial dysfunction resulted from the higher levels of a dicarboxylic 

acid (adipate) and lactate (Table 3), both associated with mitochondrial respiratory chain 

disorders. Increases in TCA intermediates have also been observed in some mitochondrial 

diseases [65], generally associated with the formation of analogs of TCA intermediates (e.g., 

tartaric acid, methylmaleic acid or citraconic acid). These TCA analogs are known inhibitors 

of fumarase [66], which catalyzes the conversion of fumarate to malate. Indeed, fumarate 

concentrations were higher in premutation than controls (Figure 1A) suggesting that excess 

of fumarate may inhibit AKG-dependent prolylhydroxylases. This process would stabilize 

HIF-1α under normoxic conditions resulting in a constitutive activation of this factor and 

downstream genes, including glycolytic ones providing a mechanism for the metabolomic 

differences.

Besides putative energy deficits, which may accompany mitochondria dysfunction, 

neurotransmission perturbations could also result from this scenario. Indeed, the altered 

plasma levels of Glu and GHB may signal an imbalance in neurotransmission, which is a 

hallmark of anxiety disorders [67] (Table 3). This is relevant considering that carriers 

affected with FXTAS have higher incidence of anxiety/mood disorders, and daughters of 

men with FXTAS have a higher prevalence of neurological symptoms including anxiety 

when compared with non-carrier female controls [1, 68, 69].

Lower plasma levels of FFA in carriers may reflect (a) the higher incidence of depression in 

carriers as lower levels of FFA have been reported in post-mortem brain samples from 

subjects affected with unipolar and bipolar depression [70], (b) neurodegeneration as lower 

levels of oleic and arachidonic acids have been reported in frontal cortex from subjects with 

Alzheimer’s disease [71] and with Parkinson’s disease [72], respectively (Table 3).

The lower ratio of fatty acids of the n-3 series over that of the n-6 series is suggestive of 

learning and memory issues in carriers vs. controls (Table 3) as it has been shown that n-3 

PUFAs foster neuronal activity [73] counteracting memory deficits in aged mice [74], 

enhance the expression of mitochondrial ATPase (whereas its deficiency led to deficient 

glucose transport in cortex; [75]), increase the expression of Glu transporters 1 and 2 

influencing neurotransmission [76], ameliorate spatial memory in rats by increasing the 

expression of subtypes of endocannabinoid receptors [77], increase the expression of 

transcription factors involved in learning and memory [78], and improve brain function and 

decreased levels of tau phosphorylation in a mouse model of Alzheimer’s with enhanced 

endogenous production of n-3 PUFA [79].

The significant decrease in plasma of palmitoleic acid in carriers of the premutation vs. 

controls along with the lower estimated enzymatic activity of SCD1 deserves further 

discussion considering the role of these factors in axonogenesis, neuron differentiation, and 

carbohydrate utilization (Table 3). Axonogenesis requires the de novo synthesis of 

monounsaturated fatty acids based on the evidence that brain-derived neurotrophic factor 

(BDNF) promotes both axonogenesis during brain development [80] while selectively 

increasing intracellular levels of palmitoleic acid and SCD1 [81], and that SCD-1 is highly 

expressed in axotomized neurons of the regenerating facial and hypoglossal nucleus [82]. 

More recently, a role for palmitoleic acid as an insulin-sensitizing lipokine has been 
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proposed (although still controversial), suggesting that lower levels of this fatty acid may 

limit carbohydrate utilization. This is an important observation taking in consideration that 

type II diabetes mellitus is associated with an increased risk of cognitive dysfunction and 

dementia in Alzheimer’s disease [83].

An increased pro-inflammatory status in carriers was inferred from the lower ratio of fatty 

acids of the n-3 series over that of the n-6 series in which prostaglandins generated via the 

Δ5–6 desaturase pathway (or prostaglandins of the 2 series) are more pro-inflammatory than 

those originated from alpha-linolenic acid which generates prostaglandins of the 3 series 

[84] (Table 3 and Figure 4, thick red arrows vs. thin green arrows). In this regard, PGE2 in 

neural injury in Alzheimer’s disease is well documented, and includes modulation of 

protein-lipid interactions, trans-membrane and trans-synaptic signaling [85]. Moreover, 

PGE2 levels in CSF have been identified as one of the key pathways linked to Alzheimer’s 

disease severity [58]: PGE2 is higher in patients with mild memory impairment, but lower in 

those with more advanced Alzheimer’s disease [86].

While a pro-inflammatory state is usually accompanied by increases in free radicals, other 

pathways also related to oxidative stress were found affected in carriers, confirming findings 

recently obtained in fibroblasts from premutation individuals, in which increased 

mitochondrial ROS production was accompanied by increased mtDNA deletions and 

increased biomarkers of lipid and protein oxidative-nitrative damage [45], as well as in post-

mortem brain samples [11], in which increase in oxidative/nitrative stress damage was 

preceded by mitochondrial dysfunction. Two metabolites identified in plasma belonging to 

the polyol pathway, a minor metabolic pathway of glucose running parallel to glycolysis, 

suggested a hyperactivation of this pathway, which leads to the formation of reactive 

aldehydes and biomolecule damage as evidenced by several metabolites in plasma (e.g., 

aminomalonate). Of interest, high levels of sorbitol have been reported in the CSF of 

subjects affected with mood disorder [87] and in cases with mitochondrial dysfunction [88] 

(Table 3).

Untargeted plasma metabolomics in the context of the premutation and other neurological 
disorders

We have recently shown that an untargeted serum metabolomic profiling approach, 

combined with sequential metabolite ratio analysis, has the potential to discriminate specific 

plasma biomarkers in FXTAS-free and FXTAS-affected carriers [55]. In particular, our 

results demonstrated that a panel of four core serum metabolites (phenylethylamine, 

oleamide, aconitate and isocitrate) could be used for sensitive and specific diagnosis of the 

premutation with and without FXTAS, and one of these ratios (oleamide/isocitrate) as a 

specific biomarker of FXTAS [55]. Here, we showed a statistically significant correlation 

between CGG expansion and 23 metabolites, some of which are associated with 

mitochondrial dysfunction (e.g., increased lactic acid) and two of them were among the 

biomarkers identified for carriers (phenylethylamine and oleamide) [55]. Taking together, 

these studies confirm previous evidence of mitochondrial deficits in human samples from 

carriers as well as in a number of cellular and animal models of the premutation [11–14, 46].
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The advantage of using untargeted metabolomics over traditional targeted assays relates to 

the detection of several hundred analytes, which could not be detected in clinical 

biochemical genetics laboratory even when using the full repertoire of tests available. 

Therefore, plasma metabolomic analysis may be an attractive alternative when the carrier’s 

phenotype shows unusual presentation of symptoms and the clinician is considering ordering 

a combination of biochemical tests. One effective option would be to start with a 

metabolomic testing followed by endophenotype specific testing for disorders that might be 

missed by metabolomic analysis. Through this approach metabolomics analysis may 

expedite additional diagnosis while allowing for the possibility to identify sources of 

phenotypic heterogeneity within the broad umbrella of the FMR1 premutation. It is worth 

reiterating that all specimens were collected while the carriers—as well as controls—were 

on clinical management designed to alleviate their clinical phenotype. Interestingly, the fact 

that most subjects were on multiple medications did not impact our ability to identify 

significant differences between groups. This could be partially explained by the overlap of 

the medications or supplements (see Methods), the fact that the medication did not 

significantly affect the metabolomics data or that the medication was not optimized for the 

intended treatment.

Strength of the study is in utilizing metabolomics to detect changes in a broad variety of 

metabolites that reflect the complexity of metabolic networks altered in carriers. The 

accuracy of our findings was enhanced by the selection of carriers that closely match the 

control group on demographic factors. Future studies will need to assess the progression of 

changes in the identified pathways to shed light on the mechanisms contributing to the 

morbidity or as indicators of disease progression, especially at the early pre-clinical stages 

while considering the effect of sex, X-inactivation ratio, CGG repeats as well as FMR1 
mRNA expression, and age on the morbidity of the disorder [89–92].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FMRP fragile X mental retardation protein

GHB 4-hydroxybutyrate

GSEA gene set enrichment analysis

ICDH isocitrate dehydrogenase

MSEA metabolite set enrichment analysis

PDHC pyruvate dehydrogenase complex

PLS-DA partial least squares-discriminant analysis

QEA quantitative enrichment analysis

SSADH succinic semialdehyde dehydrogenase

TCA tricarboxylic acid cycle
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Figure 1. Plasma metabolite levels in carriers of the premutation and matched-controls
A. Partial least squares-discriminant analysis of the metabolites obtained with both 

diagnostic groups shown with VIP ≥ 0.8 and their corresponding fold change. In italics, 

xenobiotics. B. Number of plasma metabolites from carriers separated by their biological 

roles according to BRITE (KEGG database). Metabolites with biological roles were divided 

into the following categories: carbohydrates and related (n = 17); amino acids, derivatives 

and biogenic amines (n = 17); carboxylic acids (n = 18); lipids (n = 15); and others (n = 3). 

Red and green columns represent respectively the number of metabolites with higher and 

lower abundance in carriers than controls.
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Figure 2. Pathway over-representation analysis derived from plasma metabolomics
A. Pathways overrepresented in premutation vs. controls were obtained by utilizing the 

Metabolite Set Enrichment Analysis (MSEA). B. Metabolites were analyzed using the 

Pathway Analysis module of MetaboAnalyst, which combines results from the pathway 

enrichment analysis with the pathway topology analysis to identify the most relevant 

pathways in the premutation. The table includes the data with p ≤ 0.27 associated with the 

pathway impact plot.
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Figure 3. Overview of metabolites related to glycolysis and bioenergetics in the premutation
Metabolites identified in this study are shown in bold. Bold wide arrows depict strong 

alterations (LOG2 ≥ ± 1.2; increase if up or decrease if down) whereas thinner ones indicate 

moderate fold changes (LOG2 ≥ ± 1.1). Gin in the production of GABA and alpha-

ketoglutarate in the Krebs’ cycle is also shown. The lower entry of pyruvate into the TCA 

via PDHC could result in two options: 1) to form oxaloacetate via the anaplerotic reaction 

catalyzed bv pyruvate carboxylase or, 2) form lactate via lactate dehydrogenase. In support 

of the latter, several intermediates of the TCA cycle (citrate, aconitate, isocitrate), some 

TCA analogs (tartaric acid or 3-hydroxymalic acid), and lactate were found significantly 

higher in carriers suggesting a lower TCA activity. Furthermore, the higher ratio of Gln-to-

Glu observed in plasma of premutations compared to controls suggested an increased flux 

from TCA to Gin while the higher levels of GHB suggested an increased synthesis of GABA 

from Glu. The higher observed ratio of GHB-to-succinate in carriers is indicative of a lower 

succinic semialdehyde dehydrogenase (SSADH) activity, probably due to either a direct 

oxidation of critical Cys (e.g., increased oxidative stress conditions within mitochondria) or 
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genetics contributing to the permutation phenotype. Other abbreviations used: GABA, 4-

aminobutyric acid; GHB: 4-hydroxybutyrate; SSA, succinic semialdehyde; Cit, citrulline.
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Figure 4. Overview of metabolites identified in the premutation in the context of the biosynthesis 
of fatty acids and eicosanoids
Different fatty acid ratios were used to estimate enzymatic activities of steps involved in 

fatty acid desaturation, elongation and de novo lipogenesis. The ratio of arachidonic to 

linoleic acid ratio (C20:4 n-6/C18:2 n-6) was evaluated as an index of the activation of the 

pathway leading to the formation of prostaglandins of the 2 series starting from linoleic acid, 

via the formation of arachidonic acid. An increased pro-inflammatory status in carriers was 

inferred from the lower ratio of fatty acids of the n-3 series over that of the n-6 series, as 

prostaglandins generated via the Δ5–6 desaturase pathway are more pro-inflammatory than 

those originated from alpha-linolenic acid which generates prostaglandins of the 3 series 

(thick red arrows vs. thin green arrows). Boxed metabolites were identified by 

metabolomics. Black, thick arrows are based on the abundance indicated under Table 2. 

Abbreviations: ALA, alpha-linolenic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; 

DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; AA, arachidonic acid; DHGLA, 

dihomo-gamma-linolenic acid; MUFAs, monounsaturated fatty acids; PUFAS, 

polyunsaturated fatty acids; SFAs, saturated fatty acids; E, elongase; desaturases are 

indicated as delta followed by the bond affected; OX, peroxisomal beta-oxidation. 

Eicosanoids with anti-inflammatory properties (resolvins, protectins) are indicated with thin 

green arrows whereas pro-inflammatory (prostanglandins of the series 2 and LTB4) are 

indicated with thick red arrows.
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Figure 5. Correlation of plasma metabolites with CGG repeats and identification of the 
associated biological, cellular and molecular pathways
A. List of plasma metabolites that showed a linear correlation with CGG expansion with the 

corresponding p values. More detailed information on the linear regression analysis is 

presented in the Supplementary Material. B. Prediction of enzyme or protein targets for 

those metabolites shown under panel A, whose concentrations were either elevated or 

reduced in plasma of genetic disorders listed under OMIM, Rare Metabolic Disease, 

HMDB, and Metagene databases. Rows represent disorders and columns represent the 

metabolites. If known, the causative gene’s name is indicated on the right. C. Using the 

putative targets identified under panel B as input data, a protein-protein interaction network 

was built with STRING. The interactions included both direct (physical) and indirect 

(functional) associations; they stem from computational prediction, from knowledge transfer 

between organisms, and from interactions aggregated from other (primary) databases. 

Detailed information of the analysis based on gene ontology for molecular function, 

biological process, cellular component and pathways is shown in Supplementary Material. 

D. The network generated under Panel C was used to generate a pathway analysis with the 

KEGG database. On the table it is shown the pathway/disease name (left) and false 

discovery rate (right).
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Table 1.

Demographics and clinical characteristics of plasma donors included in this study

Clinical groups Age
a
(y) CGG repeat expansion

b
Sex

c FXTAS Stage

C1 29.0 30 M 0

C2 54.0 30 M 0

C3 23.0 29, 30 F 0

C4 50.5 21 M 0

C5 24.0 30 M 0

C6 41.2 43 M 0

C7 28.8 20, 33 F 0

C8 26.0 30 M 0

C9 33.7 23, 30 F 0

C10 54.0 25, 33 F 0

C11 25.0 24, 33 F 0

C12 45.0 22, 33 F 0

C13 24.0 23, 35 F 0

C14 26.3 30, 37 F 0

C15 41.5 20 M 0

C16 57.4 23, 30 F 0

P1 46.3 61 M 0

P2 9.7 31, 63 F 0

P3 8.4 180 M 0

P4 24.0 31, 93 F 0

P5 19.7 177 M 0

P6 55.6 104 M 0

P7 49.3 31, 86 F 0

P8 17.3 16, 67 F 0

P9 45.3 69 M 0

P10 49.9 20, 98 F 0

P11 9.1 160 M 0

P12 55.4 30, 69 F 0

P13 53.0 16, 67 F 0

P14 33.1 30, 137 F 0

P15 43.2 30, 106 F 0

P16 38.4 33, 60 F 0

P17 8.4 180 M 0

P18 24.0 30, 79 F 0

P19 25.0 67 M 0

P20 62.5 105 M 4

P21 61.3 96 M 4

P22 61.8 110–130 M 1

P23 59.1 33, 107 F 3
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C and P refer to controls and carriers of the premutation, respectively. The number following the letter identifies the subject from which the plasma 
samples were obtained.

*
FXTAS-affected carrier, stage not available

a
Mean age ± SD = 37 ± 13 y and 37 ± 19 y respectively for controls and premutation (p = 1.000).

b
Mean CGG expansion ± SD = 31 ± 5 and 103 ± 40 respectively for controls and carriers (p < 0.0001).

c
Female-to-male ratio =1.3 and 1.1 respectively for the control and premutation groups (Chi square p = 0.802).
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Table 2:

Fatty acid levels and ratios in plasma of carriers and controls

Outcome LOG2 P/C ratio p-value

Saturated Fatty Acids

 pelargonic acid −1.12 0.015

 lauric acid −1.12 0.218

 myristic acid −1.38 0.079

 palmitic acid −1.06 0.332

 stearic acid −1.02 0.395

 behenic acid −1.10 0.225

 arachidic acid −1.01 0.399

Monounsaturated Fatty Acids

 palmitoleic acid −1.64 0.018

 oleic acid −1.36 0.025

Polyunsaturated Fatty Acids

 n-3 PUFA

  docosahexaenoic acid 1.09 0.179

 n-6 PUFA

  linoleic acid 1.02 0.232

  arachidonic acid −1.27 0.021

Ratio of n-3/n-6 −1.38 0.015

Estimation of enzymatic activity

 SCD index (Δ6D and Δ5D; 20:4 n-6/20:3 n-6) −1.30 0.039

 SCD n-7 index (SCD-16; 16:1 n-7/16:0) −1.46 0.017

 SCD n-9 index (SCD-18; 18:1 n-9/18:0) −1.21 0.075

 SCD index (MUFA/SFA) −1.38 0.015

 De novo lipogenesis index (16:0/18:2 n-6) −1.12 0.106

 Elongation index (18:0/16:0) 1.05 0.079
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Table 3:

Affected biochemical pathways in premutation and their association to clinical manifestations

Outcome measured Phenotype or symptom

Increased adipate and lactate levels Mitochondrial respiratory chain

disorders/deficits

Increased TCA intermediates Mitochondrial respiratory chain

disorders/deficits

Decreased overall fatty acids levels Depression

Decreased levels of oleic and arachidonic acids Parkinson’s, Alzheimer’s

Decreased levels of n-3 and n-6 FA Learning and memory function deficits

Decreased levels of n-3 over n-6 FA Increased inflammation

Decreased levels of palmitoleic acid Decreased axogenesis, neuronal

differentiation, carbohydrate utilization

Increased mitochondria-derived oxidative stress Anxiety-related disorders

Altered Glu, GHB Anxiety-related disorders

Increased levels of sorbitol Mood disorders

Mitochondrial dysfunction

In Italics are clinical outcomes reported in premutation individuals.
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