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Abstract

CAR T cells targeting CD19 provide promising options for treatment of B cell malignancies. 

However, tumor relapse from antigen loss can limit efficacy. We developed humanized, second-

generation CAR T cells against another B cell specific marker, B cell activating factor-receptor 

(BAFF-R), which demonstrated cytotoxicity against human lymphoma and acute lymphocytic 

leukemia (ALL) lines. Adoptively transferred BAFF-R-CAR T cells eradicated 10-day pre-

established tumor xenografts after a single treatment, and retained efficacy against xenografts 

deficient in CD19 expression, including CD19-negative variants within a background of CD19-

positive lymphoma cells. Four relapsed, primary ALLs with CD19 antigen loss obtained after 

CD19-directed therapy retained BAFF-R expression and activated BAFF-R-, but not CD19-CAR 

T cells. BAFF-R-, but not CD19-CAR T cells, also demonstrated antitumor effects against an 

additional CD19 antigen loss primary patient-derived xenograft (PDX) in vivo. BAFF-R is 

amenable to CAR T-cell therapy and its targeting may prevent emergence of CD19 antigen loss 

variants.

One Sentence Summary

BAFF receptor is a target for CAR T cell therapy of B cell malignancies, circumventing issues 

with CD19 antigen loss in tumors.

Introduction

Chimeric antigen receptor (CAR) T cells directed against CD19 have shown excellent 

response rates for treatment of lymphomas and leukemia (1–5). Despite high initial efficacy, 

some patients relapse through different modes of disease recurrence. One mode is CD19-

negative relapse with CD19 surface expression loss, likely resulting from consequent 

mutations and selection for alternatively spliced isoforms. Another involves CD19-positive 

relapse with CD19 surface expression retained, likely resulting from rapid disappearance or 

decreased function of the CAR T cells (6, 7). An estimated 20–30% of relapses post CD19-

CAR T-cell therapy involve antigen loss, pointing to the urgent need to identify alternative 

targets and improve efficacy and persistence of CAR T cells (6). We developed humanized, 

second-generation CAR T cells against another B-cell specific marker, B-cell activating 

factor-receptor (BAFF-R), a target for immune therapy of cancer that has not been fully 

realized. BAFF-R is a B-lineage marker with expression restricted to B cells after the 

progenitor stage and before the plasma cell stage of development, including malignant B cell 

counterparts. Its function has been well characterized, and studies show that its expression is 

critically required for normal B cell survival (8–12). These characteristics may thus limit the 

ability of malignant B cells to evade BAFF-R-directed therapies by downregulation. We test 

BAFF-R-directed CAR T cells against human lymphoma and acute lymphocytic leukemia 

(lines) in vitro and in mouse models in comparison to CD19-directed CAR T cells. 

Specifically, we test BAFF-R CAR T cell activity against CD19-negative targets.
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Results

Generation and Characterization of BAFF-R-CAR T cells

A humanized, single-chain variable fragment (scFv) derivative of a mouse anti-human 

BAFF-R antibody (13) was engineered onto a second generation CAR construct containing 

4–1BB costimulatory and CD3ζ intracellular signaling domains. Healthy donor T-cell 

subpopulations were selected, transduced by BAFF-R CAR, enriched, expanded, and tested 

for specific activation by BAFF-R expressing targets (Fig. 1A). Considerable amounts of 

TNF-α, IFN-γ, and granzyme B were released by CD4 and CD8 CAR T cells co-incubated 

with human BAFF-R expressing mouse fibroblast L cells (B2D) and human mantle cell 

lymphoma (MCL) lines (JeKo-1 and Z-138), compared with BAFF-R-negative parental (L) 

cells. Allogeneic reactions were excluded by including corresponding non-transduced T 

cells from the same donors (non-CAR, fig. S1). CD8-, and to a lesser extent CD4-, derived 

BAFF-R-CAR T cells also elicited specific cytotoxicity against a panel of human lymphoma 

cell lines and leukemia cell lines (Fig. 1B, fig. S2). In addition, CD8-, and to a lesser extent 

CD4-, derived BAFF-R-CAR T cells elicited significant specific cytotoxicity against 

multiple primary human lymphoma subtypes (P<0.0001 vs. controls, Fig. 1C).

BAFF-R-CAR T- cell subpopulations demonstrated robust in vivo antitumor effects

Next, we tested CAR-transduced human T-cells for therapeutic efficacy against 10-day pre-

established human Raji Burkitt lymphoma xenografts in immunocompromised mice. 

Because T cell phenotypes can affect CAR T cell function, we tested different mixtures of T 

cells (14–19). Remarkable tumor regression and prolonged survival were observed after 

treatment with CAR-transduced Pan-T cells (Fig. S3) or defined mixtures of CD4 naïve T 

cells (TN) with either TN, central memory (TCM), or stem memory (TSCM) enriched CD8 

CAR T cells, compared with either non-transfected T cells or PBS controls (Fig. 2A, Fig. 

S3). Furthermore, at the minimum therapeutic dose of 2×106 cell (1:1 ratio of CD4:CD8 

CAR T cells) we observed superior therapeutic effects mediated by CD8 TN CAR T cells, as 

demonstrated by 80% long-term survival compared with 20% and 40% survival, respectively 

by CD8 TCM and TSCM CAR T cells (Fig. 2B).

We also tested the therapeutic efficacy of TN-derived BAFF-R-CAR T cells against an 

aggressive CD19-positive Burkitt lymphoma (Raji) line (Fig. 3A, Fig. S4). Mice with 

previously established tumors were treated with a single dose of defined mixtures of TN 

CD4 and CD8 BAFF-R- or CD19-CAR T cells (20) (identical CAR backbone) on day 7. 

Compared with control mice treated with non-CAR T cells or PBS, mice treated with CD19-

CAR T cells exhibited delayed, but progressive lethal tumor growth. In contrast, mice 

treated with BAFF-R-CAR achieved complete tumor regression, with 100% long-term 

survival (Fig. 3B). As one potential explanation of the difference between BAFF-R- and 

CD19-CAR T cell efficacy, we characterized respective surface antigen density on Raji and 

several other lymphoma and leukemia lines. Surprisingly, BAFF-R surface antigen density 

was significantly lower than that of CD19 on all cell lines (P<0.0001 BAFF-R vs. CD19, 

Fig. 3C).
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Therapeutic effects of BAFF-R CARs against human CD19-negative B-cell tumor lines in 
vitro and in vivo

One strategy to overcome the problem of antigen-loss tumor escape variants emerging after 

successful CD19-targeted therapies is to target alternative cell surface molecules, such as 

BAFF-R. We modeled disease relapse due to the loss of CD19 by generating CRISPR CD19 

gene knock-out of multiple human B-cell tumor lines, including MCL (Z-138), CLL 

(MEC-1), and ALL (Nalm-6) and a gRNA-silenced CD19 gene knock-down of an ALL 

PDX (21–23) (Fig. 4A–B, Fig. S5). CD19 expression on all resulting cell lines was absent 

by surface staining, whereas BAFF-R expression was not affected, as expected. We then 

tested CD8 TN-derived BAFF-R- or CD19-CAR T cells for cytotoxicity against both wild-

type and CD19-negative tumor cells in vitro. CD19-CAR T cells demonstrated cytotoxicity 

only against wild-type tumor cells, whereas BAFF-R-CAR T cells maintained cytotoxicity 

against both wild-type and CD19-negative tumors.

The therapeutic efficacy of BAFF-R-CAR T cells was tested against human MCL Z-138-

CD19-deficient xenografts established in NOD scid gamma (NSG) mice (Fig. 4C). A single 

dose of a defined mixture of TN CD4 and CD8 BAFF-R-CAR T cells infused on day 11 

completely eliminated established tumors. In contrast, treatment with identical mixtures of 

CD19-CAR T cells or non-transduced T cells from the same donor or PBS was associated 

with progressive tumor growth. Similar results were also observed against ALL Nalm-6-

CD19KO xenografts in vivo (Fig. 4D).

We next challenged NSG mice with Z-138 CD19-deficient cells spiked into a background of 

wild type Z-138 cells to determine whether CAR T cells could prevent the emergence of a 

pre-existing CD19-negative tumor population. NSG mice were challenged with a mixture of 

5 × 104 Z-138 (wildtype,CD19-positive) plus 5 × 104 Z-138-CD19 deficient tumor cells, and 

then groups of 5 tumor-bearing mice each were randomly assigned to a single treatment with 

either 2.5 × 106 CD4 TN + 106 CD8 TN BAFF-R- or CD19-CAR T cells per mouse on day 8 

(Fig. 5A–B). Non-transduced T cells from the same donor were used as allogeneic controls 

(non-CAR). As shown, only BAFF-R CAR T cells were able to eradicate both tumor 

populations, whereas CD19 CAR T cell treatment was associated with emergence of CD19-

deficient tumor and treatment failure (Fig. 5C).

BAFF-R-specific CAR T-cell activation by CD19 antigen loss primary human tumors

Finally, we tested BAFF-R-CAR T cells against a panel of cryopreserved primary CD19-

negative tumor samples, obtained from four patients at the time of relapse after CD19-

targeted therapy (CD19/CD3 bi-specific T-cell engager antibody, BiTE, blinatumomab (24)). 

Cell surface staining demonstrated CD19 and BAFF-R expression by corresponding tumors 

obtained prior to CD19-targeted therapy. However, post-treatment samples exhibited clear 

down-regulation of CD19, while retaining positive BAFF-R expression (Fig. 6A). Following 

depletion of patient T cells from tumor samples, specific effector function of either CD19- or 

BAFF-R-CAR T cells against paired pre- and post-CD19 BiTE therapy primary tumor cells 

was first determined by expression of degranulation marker CD107a on CAR T cells. 

Activation of CD19-CAR T cells by all four CD19-negative post therapy tumors was 

substantially reduced, compared with BAFF-R-CAR T cells and with corresponding 
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available CD19-positive pre-therapy tumors, whereas BAFF-R-CAR T cells were equally 

activated by pre- and post-CD19-targeted therapy tumors (Fig. 6B).

A fifth B-ALL patient sample obtained at relapse was used for in vivo PDX engraftment. 

These B-ALL blasts were CD19-negative and BAFF-R-positive (Fig. 6C). B-ALL blasts 

were successfully engrafted, and by 26 days peripheral blasts reached 1–5% of total cells 

(human/mouse, Fig. 6D). Mice were randomly assigned to treatment with BAFF-R-or 

CD19-CAR T cells (5 × 106, 1:1 CD4:CD8 TN ratio/mouse) on day 26. Non-transduced 

CD4/CD8 T cells from the same donor were used as allogeneic controls (non-CAR). 

Analysis on day 54 revealed significantly fewer circulating tumor cells in BAFF-R CAR T-

cell treated mice, compared with CD19 CAR T-cell or control treated mice (P<0.0001). 

BAFF-R CAR T-cell treated mice also demonstrated significantly prolonged survival 

compared to all other groups (P<0.01, Fig. 6E).

Discussion

BAFF-R is a highly expressed B-cell lineage surface marker by various B-cell malignancies, 

making it an appealing target for immunotherapy. Mechanistically, BAFF-R-signaling 

activates NF-κB pathways to promote tumor survival and proliferation (25, 26) and 

increased BAFF-R expression correlated with disease progression in patients with B-cell 

lymphoma and pre-B ALL (27–29). Furthermore, mouse strains expressing a mutant BAFF-

R exhibit decreased B-cell life spans (30), associated with a substantially reduced peripheral 

B-cell compartment, and BAFF-R-null mice exhibit greatly reduced B-cell numbers and are 

essentially devoid of marginal zone B cells (8, 31). Collectively, these reports suggest that 

BAFF-R signaling is a driver of B-cell growth and survival. This critical feature may also 

limit the capacity of B-cell tumors to escape therapy by down-regulation of BAFF-R 

expression (10, 32–34).

The BAFF/BAFF-R axis has been targeted successfully for autoimmune diseases, 

particularly with mAbs against the BAFF ligand (35, 36); however, the promise for cancer 

therapy has not yet been realized. Most previously described mAbs against the receptor (37) 

failed to demonstrate efficacy against human B-cell tumors (11, 12). More recently, targeting 

BAFF-R with mAbs showed efficacy against CLL in preclinical models, particularly when 

combined with a Bruton tyrosine kinase inhibitor (38), and this mAb has entered clinical 

trials (). A preliminary report targeting BAFF-R using a CAR platform was limited to in 
vitro studies of ALL (39).

Although CD19-CAR T-cell therapy is effective in many patients with B-ALL or lymphoma, 

CD19-negative tumor cells are observed in 30% of post CD19-directed BiTE or CAR T-cell 

therapy relapses, underscoring the urgent need to exploit alternative targets (6, 40). CAR T 

cells targeting the B-lineage marker CD22 have been proposed as one alternative strategy to 

overcome relapse from CD19 antigen loss, as demonstrated by achievement of durable 

clinical responses in patients with CD19-negative B-ALL (41–43). Importantly, this clinical 

trial also demonstrated comparable potency of CD22-CAR T cells to that of CD19-CAR T 

cells at biologically active doses. However, relapses were associated with diminished CD22 
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site density that likely permitted CD22-negative cells to escape killing by CD22-CAR T 

cells.

We modeled CD19 antigen loss by CD19 gene knockout of multiple B-ALL and lymphoma 

cell lines and observed retention of susceptibility to cytotoxicity in vitro, and tumor 

eradication in vivo by BAFF-R-, but not CD19-CAR T cells. These in vitro findings were 

also verified in a primary PDX ALL tumor in which knockdown of CD19 expression had 

been achieved. We further modeled one mechanism of CD19-negative escape by 

demonstrating that BAFF-R-, but not CD19-CAR T cells, could prevent the emergence of 

CD19-deficient tumor cells when spiked into a background of wild type tumor in vivo. 

Finally, using four primary CD19-negative ALL tumor escape variants emerging naturally 

from patients treated with prior CD19-directed therapies, we demonstrated retention of 

BAFF-R expression, specific activation of BAFF-R-, but not CD19-CAR T cells in vitro, 

and antitumor effects and prolonged survival specifically associated with BAFF-R CAR T-

cell treatment against one additional primary PDX in vivo. Together, the findings suggest the 

potential effectiveness of BAFF-R-CAR T cells in the setting of CD19 antigen loss. Under 

the specific experimental conditions selected, the therapeutic effects of our BAFF-R-CAR T 

cells exceeded that of CD19-CAR T cells produced using the same second generation CAR 

backbone and administered at identical doses, particularly in vivo. The specific reasons for 

this therapeutic discrepancy between BAFF-R- and CD19-CAR T cells remain to be 

elucidated by additional investigation.

To our knowledge, given that there is no existing model of spontaneous CD19-negative 

antigen loss due to immunologic pressure of CD19-targeted therapy against human tumor 

xenografts in immunocompromised mice, the use of BAFF-R-CAR T cells to demonstrate 

true rescue of tumor escape variants must await the development of suitable models. Another 

potential limitation of our study is that although the critical role of BAFF-R signaling on 

normal B cell survival strongly suggests that antigen loss emerging from BAFF-R targeting 

is not likely, the definitive test of this potential mechanism of resistance to BAFF-R-CAR T 

cell therapy must await human trials, which are planned. As with most preclinical CAR T 

cell studies, recipient mice were immunodeficient, so side effects in an intact immune 

environment would not be detected.

Taken together, our data suggest that further development of BAFF-R-directed adoptive T-

cell therapies is warranted for B-cell malignancies. Future strategies combining dual 

targeting of CD19 and BAFF-R may also be warranted.

Materials and Methods

Study design

The overall objective of this study was to demonstrate that BAFF-R is a suitable target for 

CAR T-cell therapy against CD19 antigen loss disease. A novel BAFF-R CAR T cell was 

developed to test this hypothesis in vitro and in vivo. The in vitro experiments consisted of 

cell surface staining characterization of both target and CAR T cells and functional cytotoxic 

T lymphocyte, chromium release assays. All in vitro assays were performed with at least 

triplicate samples. Due to the limited availability of primary patient samples, replicate 
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testing was not always possible. In vivo studies were performed with n=5 mice per group of 

8–12 week old mice. Experiments were repeated at least 3 times. Based on the previous 

studies to establish the tumor models, the survival data in two-sided log-rank tests have least 

80% power at an overall 0.05 significance level to detect a hazard ratio (HR) of 0.15. Tumor 

challenged mice were randomized into treatment groups. Treatments were not administered 

blinded, however mice were monitored for signs of distress and humane endpoints in a 

blinded manner. Veterinary staff, independent of the researchers and studies, monitored mice 

daily and alerted researcher when a humane endpoint had been reached. All studies were 

performed under approved Institutional Animal Care and Use Committees (IACUC) and 

Institutional Review Board (IRB) protocols. Primary data are reported in data file S1.

Animals

NSG mouse breeding pairs were purchased from The Jackson Laboratory (Stock No.: 

005557). The NSG breeding colony was maintained by the Animal Resource Center at City 

of Hope. Mice were housed in a pathogen-free animal facility according to institutional 

guidelines. All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC: 15020). NSG mice used in the in vivo PDX model were bred within 

the Sandra and Edward Meyer Cancer Center PDTX Animal Core, under strict specific and 

opportunistic pathogen free (SOPF) conditions (protocol number 2014–0024).

Cell lines

Malignant human hematologic cell lines including JeKo-1, Raji, OCI-LY10, RL, RS4;11, 

MEC-1, Nalm-6 were purchased from either ATCC or DSMZ. Mouse fibroblast L cells, 

HT1080 human epithelial cells, and 293FT cells were obtained from ATCC. Z-138 cell line 

was provided by Dr. Michael Wang (MD Anderson Cancer Center). Banks of all cell lines 

were authenticated for the desired antigen/marker expression by flow cytometry prior to 

cryopreservation, and thawed cells were cultured for less than 6 months prior to use in 

assays.

Human blood and primary tumor samples

Non-cultured, primary human lymphomas were obtained as cryopreserved, viable single cell 

suspensions in 10% DMSO from the Lymphoma Satellite Tissue Bank at MD Anderson 

Cancer Center under an Institutional Review Board approved protocol (IRB: 2005–0656). 

Primary patient samples included PBMC from leukapheresis or blood from patients with 

mantle cell lymphoma (MCL), and excised lymph nodes from patients with diffuse large B-

cell lymphoma (DLBCL) or follicular lymphoma (FL). Tumor cells in each sample ranged 

from 80% to 98% for leukapheresis or blood, and from 50% to 60% for lymph node 

biopsies. Primary human ALL samples were obtained from the Pathology: Liquid Tumor 

Core tissue bank at City of Hope (IRB: 03162). Peripheral blood mononuclear cells (PBMC) 

from healthy donors were provided by the Michael Amini Transfusion Medicine Center at 

City of Hope (IRB: 15283).
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CAR T-cell production

A second generation BAFF-R CAR was generated consisting of the humanized H90 BAFF-

R antibody scFv(13), CD8 transmembrane, 4–1BB and CD3ζ intracellular signaling 

domains. The CAR cDNA was cloned into pLenti7.3 lentiviral vector (pLenti7.3/V5-DEST 

Gateway Vector Kit, Invitrogen). CD19 CAR was generated in the same way, replacing 

BAFF-R antibody scFv with CD19 antibody scFv.(20) Lentiviruses were produced in 293FT 

cells, concentrated and titered with HT1080 human epithelial cells.

CD4 and CD8 naïve T cells (TN) from the same healthy donor were isolated with Human 

Naïve CD4+ or CD8+ T Cell Isolation Kits, respectively (Stemcell Technologies). To isolate 

CD8 central memory T cells (TCM), CD8 T cells prepared with EasySep Human CD8+ T 

Cell Enrichment Kit (Stemcell Technologies) were stained with CD8-PerCP-Cy5.5, CD45 

RO-APC and CD62L-PE and sorted for CD8+/CD45RO+/CD62L+ stem memory T cells 

(TSCM) CD8 TSCM-like cells were generated by CD8 TN cultured in AIM-V medium 

supplemented with 5% human serum, 5 ng/mL IL-7, and 30 ng/mL IL-21. 5 mM TWS119 

(GSK3 inhibitor) was supplemented to inhibit differentiation and retain the TSCM-like state. 

All T cells were activated with Human T-Activator CD3/CD28 beads (Life Technologies) for 

24 h followed by transduction with lentivirus encoding CAR/GFP at MOI=1. Following 7 d 

in culture, GFP-positive CAR-T cells were enriched by FACS and further activated and 

expanded with CD3/CD28 bead stimulation for another 7 d. Only productions that yielded 

≥95% GFP-positive CAR-T cells were used for further studies.

Cytokine production assay

CAR-T cells were co-incubated for 24 h with BAFF-R expressing target cells (tumor lines) 

at an effector-to-target (E:T) ratio of 2:1. Controls included BAFF-R-negative L cells, 

BAFF-R-positive B2D cells, CD3/CD28 beads (10 μL/106 CAR-T cells), and non-

transduced T cells from the same donor. Supernatant was collected for ELISA detection of 

cytokines (Human IFN-γ ELISA Set and Human TNF ELISA Set, BD Biosciences) and 

granule release (Human Granzyme B DuoSet ELISA Kit, R&D).

Cytotoxic T lymphocyte (CTL) assay

A standard chromium-51 (51Cr) release assay was used to calculate specific lysis by CAR-T 

cells. Briefly, target cells (tumor cell lines or primary patient tumors) were radiolabeled with 
51Cr (PerkinElmer). CAR-T cells were co-incubated with labeled target cells at E:T ratios 

ranging from 1:1 to 10:1 for 4 h. Controls included non-transduced T cells from the same 

donor. Clarified supernatant was sampled for 51Cr detection in a Wizard Automatic Gamma 

Counter (PerkinElmer). Percent lysis was calculated by: 

Speci f ic Lysis % = CPM − SR
MR − SR

× 100% | CPM: Counts per minute (CPM); SR: CPM of 

spontaneous release; MR: CPM of maximum release. Individual experiments represent the 

mean ± s.d. of triplicate samples from a single T cell donor. A paired Student’s t-test was 

performed comparing experimental conditions with corresponding controls. Experiments 

were generally repeated with at T cells from at least three different donors.
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Generation of knock-out cell lines

FACS-sorted, stable Z-138-CD19-KO and Nalm-6-CD19-KO were generated using CD19-

CRISPR/Cas9 and RFP reporter gene containing homologous directed repair (HDR) 

Plasmid Systems (Santa Cruz Biotechnology) according to the manufacturer’s directions. 

Briefly, DNA-In Transfection Reagent (MTI-GlobalStem) was used to transfect the plasmid 

system. RFP-positive cells were sorted by FACS and expanded. A stable CD19-deficient 

clone was verified by flow cytometry and Western blots for CD19 knock-out prior to 

banking for subsequent studies.

CRISPR-mediated gene editing and CD19 gRNA cloning

Patient-derived, pre-B ALL cells (LAX7D, Müschen Lab) were transduced with lentivirus 

expressing Lenti-dCas9-KRAB-blast (Addgene, Plasmid #89567). Blasticidin-resistant cells 

were subsequently transduced with lentivirus expressing gRNAs against human CD19 in a 

puromycin-RFP vector backbone. gRNA sequences against human CD19 were selected from 

the hCRISPRi-v2 library and purchased from Integrated DNA Technologies Inc. Sequences 

were cloned into plasmids and verified by Sanger sequencing prior to lentivirus production. 

Non-targeting gRNA was used as control. 10 days post-CD19-gRNA transduction, cells 

were sorted based on RFP using BD Fusion.

In vivo tumor modeling

Tumor models—Stable, luciferase-expressing tumor lines were established for 

bioluminescent imaging in mouse models. Briefly, a luciferase gene was introduced into 

tumor lines by a lentivirus gene delivery system (pLenti7.3/V5-DEST Gateway Vector Kit, 

Invitrogen). The minimum lethal dose was determined for each tumor cell line by dose 

titration (1.5 × 106 JeKo-1, 10 d; 0.5 × 106 Raji, 7 d; 5 × 104 Z-138-CD19-KO, 11 d; 5 × 104 

Z-138-WT + 5 × 104 Z-138-CD19-KO (1:1 mixture), 8 d; and 0.2 × 106 Nalm-6-CD19-KO, 

10 d). Tumor cells were injected intravenously (IV) into six- to eight-week-old NSG mice, 

and tumor development was daily monitored by in vivo bioluminescence imaging.

Bioluminescent imaging—Mice were anesthetized with isoflurane and administered 150 

mg/kg D-luciferin (Life Technologies) via intraperitoneal (IP) injection 10 min prior to 

imaging. Imaging was performed on an AmiX imaging system (Spectral Instruments 

Imaging).

In vivo CAR T-cell therapy—8–12 week old mice (n=5 per group) were challenged with 

the minimum lethal dose of tumor cells administered IV and then treated with CAR T cells 

once tumor engraftment was confirmed via imaging. Treatments consisted of a single 300 

μL IV injection with defined populations of CD4 and CD8 CAR-T cells. Total CAR-positive 

cells infused ranged from 2–5 × 106 cells at CD4:CD8 ratio of 1:1 to 2.5:1. Controls 

included non-transduced T cells (Non-CAR) from the same donor and PBS. Imaging was 

performed weekly up to 80 days. Survival data are reported in Kaplan-Meier plots and 

analyzed by log-rank tests.

Post-mortem tumor analysis—Spleens from mice challenged with Z-138-WT + Z-138-

CD19KO mixture (Fig. 3d) were harvested immediately post-mortem. Spleens were 
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prepared into a single-cell suspension by mechanical disruption and stained for human 

tumor cells with FACS antibodies for human CD45 APC Cy7, CD20 PerCP Cy5.5, and 

CD19 APC antibodies (BD Biosciences). The average percentages of CD19-positive and -

negative expression in tumor cells were calculated.

Primary sample immunophenotyping

T cells were removed from thawed primary patient samples with the Human CD3 Positive 

Selection Kit (Stemcell Technologies). Remaining cells were stained with CD20 FITC, 

CD10 PEcy7, CD22 PerCP Cy5.5, CD19 PE, and BAFFR Alexa 647 antibodies (BD 

Biosciences). Samples were run on the BD LSRFortessa and analyzed with Flowjo 

Software.

Degranulation assay

1 × 105 T-cell depleted, primary patient samples were co-incubated with 2 × 105 CAR-T 

cells at an E:T ratio of 2:1 in complete RPMI 1640 medium containing GolgiStop Protein 

Transport Inhibitor reagent (BD Bioscience) and CD107a APC antibody (Biolegend) for 6 h. 

The cells were subsequently stained with antibodies against human CD3 Viogreen (Miltenyi 

Biotec), human CD19 PE-Cy7 (Biolegend), and human CD8 APC-Cy7 (Biolegend). 

Samples were analyzed with MACSQuant and FCS express software (Miltenyi Biotec Inc.). 

Non-transduced T cells from the same donors (non-CAR) were used as negative effector 

cells.

Intracellular cytokine production

A total of 2 × 105 CAR T cells were co-cultured overnight with 1 × 105 T cell-depleted 

patient sample as blast cells in 96-well tissue culture plates in the presence of Brefeldin A 

(BD Biosciences). The cell mixture was then stained using anti-CD8, anti-CD4, and 

biotinylated erbitux/streptavidin to analyze surface co-expression of CD8, CD4, and CAR, 

respectively. Cells were then fixed and permeabilized using the BD Cytofix/Cytoperm kit 

(BD Biosciences). After fixation, the T cells were stained with antibodies against IFN-γ and 

TNF-α. Cells were then analyzed using multicolor flow cytometry on MACSQuant and FCS 

express software (Miltenyi Biotec Inc.). Non-transduced T cells from the same donors (non-

CAR) were used as negative effector cells.

In vivo patient derived xenograft (PDX) model

1×106 leukemic cells isolated from a patient relapsing with CD19 negative B-ALL leukemia 

(identified by: human CD45+TdT+CD79a+CD22+) were injected into the tail vein of six- to 

eight-week-old NSG mice. Successful engraftment was determined when the percentage of 

peripheral blood circulating B-ALL reached 1–5% of the total (human/mouse) cells. Mice 

received a single infusion of 5×106 CAR T cells (BAFF-R CAR or CD19 CAR, CD4/CD8 

ratio 1:1) by tail vein injection. Controls included non-transduced T cells (Non-CAR) from 

the same donor and PBS. CAR T and leukemic cells were monitored by blood collections 

and FACS analysis for human CD45+CD3+CD4+CD8+ and CD45+CD22+CD58+ and 

respectively. Circulating murine cells were determined using anti-murine CD45 antibody 
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(Pe-Cy7-A). Data are reported as means ± SD and analyzed by a Student’s t-test. Survival 

data is reported in a Kaplan-Meier plot analyzed by log-rank test.

Statistical analysis

All statistical analyses were performed with GraphPad Prism software. Depending on the 

experiment design, the following methods were used to calculate significance: Student’s T 

test, one-way ANOVA, two-way ANOVA, two-way RM ANOVA, and log-rank tests. 

ANOVA tests were followed by an appropriate Tukey’s, Dunnett’s, or Sidak’s post hoc test 

for multiple comparisons between experimental groups. All testing was two sided with a 

testing level (α) of 0.05. Unless otherwise stated, data are presented as means ± s.d., with 

n=3 or 4 replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BAFF-R CAR-T cells activate and elicit specific cytotoxicity against multiple subtypes 
of human B-cell malignancies.
(a) Either CD4+ or CD8+ BAFF-R CAR T cells were incubated with BAFF-R expressing L 

cells, mantle cell lymphoma (MCL) lines JeKo-1, Z-138, or as controls, parental L cells 

(mouse fibroblast) or T-activator CD3/CD28 beads. ELISA measurement of cytokines IFN-

γ, TNF-α, and granzyme B supernatant concentrations were determined following 24 h of 

incubation with targets. (b) Cytotoxic T-lymphocyte assay measuring the specific lysis of 

target cells by chromium-51 release after 4 h. Various chromium-51 labeled BAFF-R-

positive lymphoma and leukemia cell lines, BAFF-R-expressing L cells, or control BAFF-R-

negative parental L cells were incubated with either CD4 or CD8 CAR T cells, as indicated 

at an effector-to-target ratio of 3:1. FL, follicular lymphoma; DLBCL, diffuse large B-cell 

lymphoma; B-ALL, B-cell acute lymphocytic leukemia; B-CLL, B-cell chronic lymphocytic 

leukemia. (c) Lymphomas from primary patient samples were labelled with chromium-51 

and incubated either with naïve CD4 or CD8 BAFF-R-CAR T cells at various effector-to-

target ratios as in (b). Non-transduced T cells from the same healthy donors were used as 

Qin et al. Page 15

Sci Transl Med. Author manuscript; available in PMC 2020 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allogeneic controls (non-CAR). Data are shown as the mean ± s.d. of one CAR T-cell donor 

against triplicate tumors samples. All experiments were repeated with at least three different 

CAR T-cell donors. **P<0.001 vs. corresponding non-CAR control with the following tests: 

(a) One-way ANOVA and Dunnett’s multiple comparisons test; (b) Two-way ANOVA and 

Dunnett’s multiple comparisons test; (c) Two-way ANOVA and Tukey’s multiple 

comparisons test.
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Figure 2. Defined subpopulations of BAFF-R CAR-T cells eliminated established MCL tumors, 
in vivo, after a single treatment.
(a) Bioluminescence images and survival of groups of 5 NSG mice following intravenous 

(IV) tumor challenge (106 cells/mouse) on day 0 with luciferase-expressing human MCL 

line JeKo-1. CD4 TN CAR-T cells combined with either subpopulations of CD8 TCM, TN, or 

TSCM CAR-T cells were infused IV on day 10 at a single dose of 106 CD4 TN + 106 CD8 

CAR-T cells. Control mice received non-transduced CD4/CD8 T cells from the same donor 

as an allogeneic control (Non-CAR), or PBS. (b) Survival data were analyzed by Kaplan-

Meier plots of overall survival at 100 days. Data are representative of three independent 

experiments using different donor T cells. Log-rank test: **P<0.01 and *P<0.05 compared 

with controls.
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Figure 3. Superiority of BAFF-R versus CD19 CAR T cells in a Burkitt lymphoma model is not 
due to greater tumor antigen density.
(a) Bioluminescence images of groups of 5 NSG mice following IV tumor challenge (0.5 × 

106 cells/mouse) on day 0 with luciferase-expressing Raji cells. 2.5 × 106 activated CD4 TN 

CAR-T + 106 CD8 TN BAFF-R- or CD19-CAR T cells were infused IV on day 7 as a single 

dose. Control mice received non-transduced CD4/CD8 T cells from the same donor as an 

allogeneic control, or PBS. Data are representative of two independent experiments using 

different donor T cells. (b) Kaplan-Meier plot of overall survival at 80 days is shown. Log-

rank test: **P<0.01 compared with all other groups. (c) Calculated cell surface antigen 

density of BAFF-R and CD19 on lymphoma and leukemia lines stained by PE-conjugated 

antibodies at saturation. PE per cell (assuming 1 PE per antibody) was calculated against 

mean fluorescence intensity (MFI) standard curve with BD Quantibrite beads. Data are 

represented as mean ± s.d. of triplicates. Student’s t-test: **P<0.001 BAFF-R vs. CD19 in 

corresponding cell line.
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Figure 4. Therapeutic effects of BAFF-R CAR T cells against CD19-negative human tumor lines 
in vitro and in vivo.
CD19-negative B-cell tumor variant clones were generated by CRISPR/HDR CD19 gene 

knock-out (KO) of (a) two lymphoma cell lines (Z-138, MCL; MEC-1, CLL) and (b) one 

ALL cell line (Nalm-6), or by gRNA CD19 gene knock-down (KD) of one ALL PDX. 

FACS histograms indicate CD19 and BAFF-R(13) expression on wildtype (WT) and 

corresponding KO/KD tumors. Cytotoxicity of corresponding tumor targets mediated by 

CD8 BAFF-R TN (blue) or CD19 TN CAR T cells (red) incubated at various effector-to-

target ratios was determined by chromium-51 release by tumor targets after 4 h. Non-
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transduced T cells from the same donor were used as an allogeneic control (green, dotted). 

Data are shown as the mean ± s.d. of triplicate samples. Data are representative of at least 

three independent experiments using different donor T cells. Two-way ANOVA and Tukey’s 

multiple comparisons test: **P<0.001 vs. non-CAR control. (c-d) Bioluminescence images 

of NSG mice following IV tumor challenge on day 0 with luciferase-expressing (c) 5 × 104 

Z-138-CD19KO MCL or (d) 2 × 105 Nalm-6-CD19KO ALL tumors. Groups of 5 tumor-

bearing mice each were then randomly assigned to treatment with either 2.5 × 106 CD4 TN 

CAR-T + 106 CD8 TN BAFF-R- or CD19-CAR T cells/mouse IV on day 11 or 10, 

respectively, as a single dose. Non-transduced CD4/CD8 T cells from the same donor were 

used as allogeneic controls (non-CAR). Data are representative of two independent 

experiments using different donor T cells. Kaplan-Meier plots of overall survival are shown. 

Log-rank test: **P<0.01 BAFF-R-CAR vs. CD19-CAR and controls.
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Figure 5. BAFF-R CAR T cells eliminate pre-existing CD19 antigen loss variants in vivo.
(a) Bioluminescence images of NSG mice following IV tumor challenge on day 0 with a 

mixture of 5 × 104 luciferase-expressing Z-138 (wildtype) plus 5 × 104 Z-138-CD19KO 

tumor cells. Groups of 5 tumor-bearing mice each were then randomly assigned to treatment 

with either 2.5 × 106 CD4 TN CAR-T + 106 CD8 TN BAFF-R- or CD19-CAR T cells/mouse 

IV on day 8, as a single dose. Non-transduced CD4/CD8 T cells from the same donor were 

used as allogeneic controls (non-CAR). (b) Kaplan-Meier plots of overall survival are 

shown. Log-rank test: **P<0.01 BAFF-R-CAR vs. CD19-CAR and controls. (c) 
Representative FACS plots of post-mortem tumor analysis from spleens of mice treated in 

(a). Cells were gated on CD45+ human tumor cells and analyzed for CD19 expression. 

Summary graph of mean percentage ± s.d. of triplicate samples CD19+/− tumor cells from 

n=5 mice/group. ***No tumor cells were detected. Two-way ANOVA and Tukey’s multiple 

comparisons test: **P<0.001 percentage of CD19-positive tumor cells vs. non-CAR and 

PBS controls.
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Figure 6. BAFF-R specific activation of CAR T cells by primary CD19 antigen-loss human ALL 
escape variants and antitumor effects of CAR T cells in vivo.
Blood or bone marrow tumor samples were obtained from ALL patients relapsing with 

CD19-negative tumors following CD19 bi-specific antibody treatment (relapse) and 

analyzed together with each patient’s corresponding pre-therapy tumor. (a) FACS 

histograms showing expression of CD19 and BAFF-R. (b) Cryopreserved ALL samples 

were co-cultured with BAFF-R or CD19 CAR-T cells derived from a single healthy donor in 

the presence of anti-CD107a antibody for 6 h. Non-transduced T cells (non-CAR) from a 
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single donor were used as a negative control. (c) FACS analysis of CD19-negative B-ALL 

cells isolated at relapse from a fifth patient for PDX establishment. B-ALL cells (106 cells/

mouse) were injected into NSG mice, and 4 mice/group were then randomly assigned to 

treatments of BAFF-R-or CD19-CAR T cells (5 × 106, 1:1 CD4:CD8 TN CAR T cells ratio/

mouse) on day 26. Non-transduced T cells (1:1 CD4:CD8 TN cells) from the same donor 

were used as allogeneic controls (non-CAR) (d) Percentage of peripheral blood CD19-

negative B-ALL blasts in PDX mice at days 26 and 54. B-ALL blasts were identified by 

CD45+CD22+CD58+ staining. Two-way, repeated measures ANOVA and Sidak’s multiple 

comparisons test: **P<0.001 BAFF-R CAR vs. CD19-CAR and controls. (e) Overall 

survival of CD19-negative B-ALL PDX mice after BAFF-R CAR-T treatment. Control 

groups include CD19 CAR-T, non-transduced T cells, and PBS. Log-rank test: **P<0.01 vs. 

CD19-CAR, non-CAR, and PBS control.
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