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Abstract
Background: Evaluation of pain and stiffness in patients with arthritis is largely based on par-
ticipants retrospectively reporting their self-perceived pain/stiffness. This is subjective and 
may not accurately reflect the true impact of therapeutic interventions. We now have access 
to sensor-based systems to continuously capture objective information regarding movement 
and activity. Objectives: We present an observational study aimed to collect sensor data from 
participants monitored while performing an unsupervised version of a standard motor task, 
known as the Five Times Sit to Stand (5×STS) test. The first objective was to explore whether 
the participants would perform the test regularly in their home environment, and do so in a 
correct and consistent manner. The second objective was to demonstrate that the measure-
ments collected would enable us to derive an objective signal related to morning pain and 
stiffness. Methods: We recruited a total of 45 participants, of whom 30 participants fulfilled 
pre-defined criteria for osteoarthritis, rheumatoid arthritis, or psoriatic arthritis and 15 par-
ticipants were healthy volunteers. All participants wore accelerometers on their wrists, day 
and night for about 4 weeks. The participants were asked to perform the 5×STS test in their 
own home environment at the same time in the morning 3 times per week. We investigated 
the relationship between pain/stiffness and measurements collected during the 5×STS test by 
comparing the 5×STS test duration with the patient-reported outcome (PRO) questionnaires, 
filled in via a smartphone. Results: During the study, we successfully captured accelerometer 
data from each participant for a period of 4 weeks. The participants performed 56% of the 
prescribed 5×STS tests. We observed that different tests made by the same participants were 
performed with subject-specific characteristics that remained consistent throughout the 
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study. We showed that 5×STS test duration (the time taken to complete the 5×STS test) was 
significantly and robustly associated with the pain and stiffness intensity reported via the 
PROs, particularly the questions asked in the morning. Conclusions: This study demonstrates 
the feasibility and usefulness of regular, sensor-based, monitored, unsupervised physical tests 
to objectively assess the impact of disease on function in the home environment. This ap-
proach may permit remote disease monitoring in clinical trials and support the development 
of novel endpoints from passively collected actigraphy data. © 2018 The Author(s)

Published by S. Karger AG, Basel

Introduction

Arthritis is an all too common and disabling condition affecting the musculoskeletal 
system [1]. In the period between 2013 and 2015, over 54 million people in the USA alone – 
approximately 22% of the population – had a diagnosis of some form of arthritis, with an esti-
mated annual direct and indirect cost of over USD 300 billion [2]. Patients with arthritis 
frequently report symptoms such as morning pain and stiffness, leading to limitations at a 
functional level and impaired quality of life [1, 3–5]. It is therefore logical that therapeutic 
interventions for arthritis would specifically target this period of the day and that any evalu-
ation of their efficacy would focus on their direct impact on morning pain and stiffness [6].

To date, the primary means of evaluating morning pain and stiffness has been the use of 
subjective rating scales [7, 8]. There are inherent issues with the use of such scales, as they 
rely entirely on subjective reporting. As such, they are limited as a means of providing 
objective and reliable measures of the impact of therapeutic interventions [9]. It is crucial that 
we develop new methodologies that facilitate the accurate and objective measurement of 
symptoms such as morning pain and stiffness. The best way to achieve this is to directly 
measure the impact of morning pain and stiffness on motor function, focusing on tasks such 
as stiffness to stand, and gait.

Until recently, this was achieved through direct measurement by clinicians. This has 
significant drawbacks, as there is necessarily a time gap between the patient waking up and 
the visit. Moreover, such a solution involves significant costs. A potential solution lies in using 
wearable sensor technologies to facilitate the objective measurement of appropriate motor 
tasks [10]. A good compromise would be to passively capture the data on sensors worn by 
the patients, and to infer the degree of pain and stiffness from it. However, while some motor 
tasks have been standardized and their relationship to pain and stiffness benefits from broad 
coverage, there is no obvious connection between data collected during normal activities and 
pain/stiffness. The approach followed in this paper was to have patients perform standard 
tests in their own homes while wearing the sensors. Our objective was to investigate whether 
this trade-off solution kept the reliability of standard motor tasks and the efficiency of passive 
monitoring.

To date, wearable sensor technologies have not been widely used in this way due to 
concerns as to whether patients could carry out motor tasks in a highly standardized manner 
such that the resultant data would accurately reflect meaningful change in their status. 
Moreover, it is not obvious whether patients would remember and adhere to performing such 
tests as prescribed, or whether sensor devices could accurately capture the relevant data.

We have run a non-interventional study on a population of subjects with arthritis and 
healthy individuals which was monitored for 4 weeks, during which time they were prescribed 
the Five Times Sit to Stand (5×STS) test 3 mornings per week. Previous work has investigated 
instrumented 5×STS tests to (1) compare the instrumented STS test to the manually recorded 
STS test [11], (2) validate the use of sensors for data capture against gold-standard motion 
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capture systems [12], (3) detect sit to stand transitions in free living conditions [13], and (4) 
understand how to best identify transitions between phases in the 5×STS test [14].

In contrast, our goals were to (a) evaluate whether or not study volunteers could reliably 
perform the 5×STS tests unsupervised and (b) investigate the relationship of the duration of 
the 5×STS test (extracted from sensor data) to pain and stiffness.

Subjects and Methods

Study Design
Recruited Participants
In total, 45 subjects participated in this study. A group of 30 patients with arthritis was 

selected according to the distribution of age and gender summarized in Table 1. Among them, 
18 patients had rheumatoid arthritis, 2 patients had psoriatic arthritis, and 10 patients had 
osteoarthritis. For personal reasons, 2 of the 10 osteoarthritis patients chose to withdraw 
from the study on the 23rd and the 29th day of analysis, respectively. Since rheumatoid 
arthritis and psoriatic arthritis are two types of inflammatory arthritis, the patients from the 
two groups were analysed together. In addition to the patients with arthritis, a group of 15 
healthy volunteers was selected according to the distribution of age and gender summarized 
in Table 1. The healthy volunteers were recruited through University College Dublin and the 
arthritis patient cohort was recruited through Tallaght Hospital via Trinity College Dublin.

Deployment Plan
Every participant was equipped with the ActiGraph GT9X Link device [15], which was 

configured to capture accelerometer data at 30 Hz whilst being worn on the wrist (the partic-
ipants were free to choose which one) throughout the study period. Raw acceleration data 
were extracted at the end of the study through the USB interface. The participants were asked 
to charge the device’s battery, which had an average lifetime of around 1 week, and were 
reminded if they did not. A smartphone was used with a pre-installed app (CentrosHealth, 
Boston, MA, USA) [16], which collected patient-reported outcomes (PROs) regarding the 
degree of pain and stiffness perceived. Reminders were sent if the PROs were not filled out. 
The data from the sensor devices were periodically uploaded to a cloud system in an aggre-
gated format (1 sample/min), which enabled us to run preliminary analyses (e.g., calculating 
the percentage of wear time). However, the results presented in this paper have been obtained 
through offline analyses, which were run on the 30-Hz data retrieved at the end of the study.

Patient-Reported Outcomes
The PRO consists of 8 questions with instructions for completion: 4 items related to 

stiffness and 4 related to pain. The stiffness-related questions and pain-related questions can 

Disease 
type

Age, years Females, % Total number in 
category

RA 50.7, 33–75, 11.4 72 18
PA 47.5, 32–63, 15.5 100 2
OA 60.7, 55–70, 4.5 60 10
HV 48, 31–71, 13.6 66 15

Age is given as the mean, range, and STD. RA, rheumatoid arthritis; 
PA, psoriatic arthritis; OA, osteoarthritis; HV, healthy volunteer.

Table 1. Distribution of patients 
and HVs
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be further divided into questions asked in the morning, i.e., immediately following waking up, 
and questions asked in the evening.

The full set of 8 questions includes:
1. Stiffness suffered: morning question (“yes” or “no”). The value is “yes” if the participant 

feels stiffness of any degree, and “no” if no stiffness is suffered
2. Stiffness severity: morning question. The value rates stiffness upon waking (0–4 numerical 

scale, where severity increases with the score)
3. Stiffness severity during day: evening question. The value rates stiffness over the course 

of the day (0–4 numerical scale, where severity increases with the score)
4. Stiffness duration: evening question. The value measures the duration of stiffness from 

waking up to the moment when it disappears. The answer is a multiple choice between 
“30 min,” “30 min to 1 h,” “1–2 h,” “2–4 h,” “4 h,” “all day,” and “none”

5. Pain waking up: morning question. The value rates pain severity upon waking (0–10 
numerical scale, where severity increases with the score)

6. Pain overnight: morning question. The value rates pain severity over the course of the 
previous night (0–10 numerical scale, where severity increases with the score)

7. Pain since getting up: evening question. The value rates pain severity over the course of 
the day (0–10 numerical scale, where severity increases with the score)

8. Pain last 24 h: evening question. The value rates pain severity over the course of the last 
24 h (0–10 numerical scale, where severity increases with the score)
The text of the questions that appeared on the participants’ smartphone is given in the 

Appendix.

Onsite Visits
At the start of the study, an investigation team visited the participants at home and 

provided them with the ActiGraph devices. This team had the following duties: (1) to set up 
the CentrosHealth app, train the participants to use it, and provide written instructions and 
(2) to show how to perform the 5×STS test, ask the participants to complete a test under their 
supervision, and record test date and time. At the end of the study, the patients were visited 
at home again. The investigator supervised the participants performing the 5×STS test again 
and collected the sensor devices.

Data Transformation
Data Set Creation
The data set was divided into development, test, and validation data sets. We assigned 24 

participants to the development set, 11 to the test set, and 10 to the validation set. We used 
the development participants to select the model, the test participants to confirm model 
selection, and the validation participants to check whether the model generalized to other 
patients. Moreover, we took aside 5 days from each participant and added them to the vali-
dation set to validate the participant-specific model and ensure that it generalized for a given 
participant. The development data set was used to investigate the correlations between PRO, 
5×STS test duration, and other covariates, i.e., age, gender, BMI, disease type, and seconds 
since getting up. We calculated the last through a sleep detection algorithm, applied to the 
actigraphy data, which uses a combination of Cole-Kripke [17] and Tudor-Locke [18] algo-
rithms.

The choice of covariates was evaluated on the test set. A model was fitted on the devel-
opment set, and its accuracy was tested on the test set, after which adjustments were 
permitted. Then, the adjusted model was tested on the validation set, and on the union of the 
test and validation sets.
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Time Reference
For more convenient visualization, the sensor data for each participant were organized 

into data analysis days (DADs), which are 24 h starting and ending at 18: 00. The day on which 
recording starts is set to DAD 0, so that DAD 1 is the first day within the study with 24 h of 
data (assuming full adherence; all deployments were completed before 18: 00). This approach 
using DADs instead of standard calendar days ensured that the overnight sleep session did 
not get split across 2 days when a participant went to sleep before midnight.

Change of Coordinates
The raw accelerometer data were transformed from Cartesian (x, y, z) to spherical (r, 

azimuth, elevation) coordinates [19], where r is the vector norm of the acceleration, azimuth 
is the rotation of the accelerometer in the plane of the device/watch face, and elevation is the 
tilt relative to the plane of the device/watch face (an example of accelerometry data in 
spherical coordinates is given in the Appendix). With this transformation, it was easier to 
observe movements that characterize the 5×STS test, such as arm position and chest tilt.

Corrections to Accelerometer Signals
To ensure that acceleration was measured correctly in all directions of space, the data 

were autocalibrated to ensure that the sensor would report 1 g of acceleration while at rest. 
Autocalibration was performed according to the method described by van Hees et al. [20]. 
Briefly, the method identifies the periods where the sensor is at rest and measures the accel-
eration in the given sensor orientation. A generalized ellipsoid is fitted into the distribution 
of points and used to normalize the acceleration values reported by the sensor. We selected 
data at rest from the start of recording until we had at least 50 points in each of 6 equal sectors 
of the sphere (2 polar and 4 equatorial), and resampled the data before regression to ensure 
a reasonably uniform coverage of orientations to avoid bias.

5×STS Tests
Test Instructions
The participants were asked to perform the 5×STS test without supervision 3 times per week 

(on Mondays, Wednesdays, and Fridays) while wearing the sensor device on their wrist. We 
decided not to use a daily schedule for two reasons. The first reason is that we wanted to avoid 
training effects, i.e., increases in performance caused by improvements in the ability to take the 
test, which are not connected to health improvements. The second reason is that we wanted to 
reduce the patients’ burden, who additionally had to fill in the PROs on the smartphone, wear the 
sensor device, and charge the battery for both the smartphone and the sensor device.

The average number of expected unsupervised tests was 12; however, this could vary 
based on the effective days of analysis, as well as on the days of the week on which a partic-
ipant started and ended.

Figure 1a shows the 5×STS test execution plan. The 5×STS exercise consists of 5 cycles of 
standing and sitting, with arms crossed over the chest (Fig. 1b).

Adherence to 5×STS Tests
To extract the 5×STS test data and measure the participants’ adherence, we built a 

detection algorithm to automatically detect 5×STS execution (see Appendix). 
The algorithm was based on the assumptions that (1) the arms were crossed on the chest, 

(2) the trunk moved back and forth whilst the participant was sitting and standing, and (3) 
the norm of the acceleration followed a reproducible pattern, which we observed in the devel-
opment set. The algorithm’s parameters were calibrated on about 90 5×STS tests, which were 
extracted from 6 participants who belonged to the development set.
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When expected 5×STS tests could not be found, we reverted to manual inspection, and if 
this failed too, we marked the test as not performed. We detected 56% of the prescribed 
5×STS tests, of which 80% were automatically detected, while 20% were manually detected. 
All detected tests were manually reviewed, as were all the days on which a 5×STS test had 
been expected to occur but was not identified automatically.

Consistency of 5×STS Tests
To measure the consistency of the participants in performing 5×STS tests, we compared 

the data collected during different tests through dynamic time warping (DTW) [21]. DTW is 
a method of calculating the distance between time series through dilation of the shortest 
5×STS test time series in such a way that the distance between the two time series is mini-
mized. As a common choice, we considered the norm of the difference as the element-wise 
distance, whose sum is the quantity minimized by DTW. In addition, we normalized the result 
by the length of the longest time series, to make distances comparable for different lengths of 
the time series.

The main reason behind the choice of such a distance metric is to compare the main charac-
teristics of how participants perform the test while abstracting from timing characteristics, e.g., 
speed of execution, possible pauses between any of the 5 iterations, etc. The latter characteristics 
are pertinent to the performance of the test, which is likely to bias the consistency metric, since 
the performances of the same participant on different tests are likely to be correlated.

Pain and Stiffness Prediction Model
To estimate how stiffness and pain were related to the duration of the 5×STS test and 

other covariates, we made a regression analysis based on a linear mixed-effects model. Such 
a model can cope with both fixed effects, i.e., the conventional linear regression part, and 
random effects, i.e., individual experimental units drawn at random from a population. The 
data collected for the study presented in this paper are grouped by participant, which consti-
tutes the random experimental component. Intuitively, the data collected from each partic-
ipant are correlated; however, this is not necessarily also the case for data gathered from 

Mon

Deployment Observational period

Wed Fri Mon
Wed Fri Mon

Wed Fri Mon
Wed Fri

a b

Fig. 1. a Overview of expected Five Times Sit to Stand tests. The participants performed two tests under the 
supervision of an assistant, one at the beginning and one at the end of the study. Additionally, the participants 
were asked to perform the tests without supervision 3 times per week, on Mondays, Wednesdays, and Fri-
days. b Arm position during the Five Times Sit to Stand test.
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different participants, as there could be differences between individuals in baseline data on 
the reported pain and 5×STS test performance.

We built a model for the prediction of pain and stiffness where the key independent 
variable is the duration of the 5×STS test. Duration is one of the most widely used parameters 
to evaluate the test’s performance [22]. Other parameters have been proposed, such as the 
movements’ smoothness [23] or the duration of the single phases (sit to stand and stand to 
sit) [24]. Even though these parameters may lead to better results, they are more difficult to 
estimate than overall duration; hence, they are more likely to introduce a measurement error. 
Moreover, such parameters have been validated in studies where elderly participants are 
compared to younger ones. However, the effects of pain may be different – for instance, the 
time spent standing and sitting may be representative of the patient’s need to recover before 
starting the next sit-to-stand cycle.

To increase the prediction accuracy, we also considered other covariates that possibly 
affect pain and stiffness, i.e., age, gender, BMI, seconds since getting up, and disease type.

Results

Participants’ Adherence
The participants wore the sensors day and night for about 91.5% of the time on average 

(about 2% of the missing data are due to the device charging times). Moreover, 88.3% of the 
PRO questionnaires were completed (including those of the participants who withdrew 
consent), probably reflecting the use of reminders sent through the smartphone app (indeed, 
we observed peaks in adherence right after the daily reminders had been sent out at 10: 00 
and 11: 00, and at 19: 00 and 21: 00, respectively). In addition, 56% of the 5×STS tests were 
performed, even though the reminders used were transient (i.e., a banner that would disappear 
as soon as the smartphone was unlocked). The per-patient and condition-aggregated 
adherence regarding sensor wear time and 5×STS tests is given in Tables A1 and A2 in the 
Appendix.

In Figure 2a, we plotted the time span between the first and the last test, normalized by 
the total days of analysis, versus the number of 5×STS tests performed, normalized by the 
total number of prescribed tests. With this visualization, we could analyse the adherence to 
the 5×STS tests and distinguish different adherence patterns: the participants who performed 
the 5×STS test regularly for a certain duration but then stopped (points on the diagonal) from 
those who forgot to perform some tests but overall stuck to performing the 5×STS tests as 
prescribed throughout the study (points spread across the top), and those who were highly 
adherent regarding both aspects (points in the top right). As shown in Figure 2a, there was a 
considerably higher number of participants with high adherence (participated in performing 
the tests for more than 80% of the time, completed more than 20% of the tests) than partici-
pants with low adherence (participated in performing the tests for less than 80% of the time, 
completed less than 20% of the tests), which is significant according to the χ2 test. Moreover, 
we observed no significant difference in the number of 5×STS tests performed between 
healthy volunteers and patients. To check whether they followed different probability distri-
butions, we ran the Kolmogorov-Smirnov test (at the 5% significance level), which could not 
reject the hypothesis that they came from the same distribution.

Consistency of 5×STS Execution
Consistency of 5×STS execution was assessed by comparing the accelerometry traces 

within and between participants via the DTW-based distance (Fig. 2b). The DTW-based 
distance metric is sensitive to any difference in execution of the test, including, for example, 
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the position of the arms, the amount of sideways sway during the test, or the intensity of the 
forward/backward movement of the trunk.

On the other hand, DTW adjusts for speed differences. This choice ensures a perfor-
mance-independent measure of consistency, which also prevents bias from participants who 
perform the test at similar speeds. Moreover, we compared the data from different 5×STS 
tests without compensating for possible consistency-degrading factors due to, e.g., more pain 
suffered, a wrong sensor position, etc.

We used the values of the DTW distances to make relative comparisons between different 
5×STS tests. In particular, we wished to check whether supervision played an important role 
by comparing distances between two supervised tests with distances between a supervised 
and an unsupervised test. Moreover, we wished to compare the distance between two tests 
performed by the same subject with the distances between two tests performed by different 
subjects, to measure the degree of consistency for each participant in performing the test.

From Figure 2b we observed no evident increase in distances between supervised and 
unsupervised tests when compared to the distances between two unsupervised tests. In 
contrast, two unsupervised tests made by the same person were remarkably more similar 
than two unsupervised tests made by different participants. This result suggests that there 
was no systematic difference in performance of supervised and unsupervised tests; thus, the 
participants were consistent in the way they performed the 5×STS test and they complied 
with the supervisor’s instructions, even when unsupervised. In contrast, there was an evident 
difference in test execution between two different participants. In conclusion, the partici-
pants performed the 5×STS test in an individually consistent manner.

We applied the two-sample Mann-Whitney U test (at the 5% significance level) to find 
significance differences between different groups (we chose this test as the data are not 
normally distributed). The test could not reject the hypothesis that the distances between two 
supervised tests and the distances between a supervised and an unsupervised test came from 
the same distribution. In contrast, the test rejected the hypothesis that the distances between 
two tests performed by the same participant and the distances between two tests performed 
by different participants came from the same distribution.

The outlying point at the top right of Figure 2b corresponds to a participant who kept a 
wrong arm position during unsupervised tests (the arms were not crossed with the hands on 
the chest), despite performing a correct supervised test during the entry visit. This partic-
ipant was the only one by whom the tests were performed with noticeable inconsistence. At 
the bottom left of the left figure, we may observe a group of 5 points that are further from the 
diagonal. These points relate to those participants who kept a wrong arm position during 
supervised tests. For three of them, we detected a wrong supervised test during the first visit 
of the instructor; hence, the supervisor, who happens to have been the same for all of them, 
did not instruct these participants correctly. Interestingly, those participants’ unsupervised 
tests were adherent to the instructions given in the leaflet, even if their supervised test during 
the entry interview was not.

In summary, each participant performed unsupervised tests with high consistency, 
compared to the remarkable difference between tests performed by different participants.

Pain and Stiffness Prediction Model
Model Creation
We fitted a random intercept model where each participant was given an individual 

intercept in the regression line. An additional individual slope term was also investigated, but 
it was observed that the regression would not converge, possibly due to the small number of 
participants. Thus, one general slope term based on all the data was used for each participant. 
In the mixed-effects model, the duration of the 5×STS test (gathered from the sensor data) 
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Fig. 2. a Study completion percentage against percentage of Five Times Sit to Stand (5×STS) tests performed. 
Light grey area: low adherence (participated in performing the tests for less than 80% of the time, complet-
ed less than 20% of the tests). Dark grey area: high adherence (participated in performing the tests for more 
than 80% of the time, completed more than 20% of the tests). There were more participants with high ad-
herence (top right corner) than participants with low adherence (bottom left corner). Moreover, we ob-
served a group of participants whose adherence was around 50%, but they took their tests until the end of 
the study (top centre side). The latter possibly were participants who forgot to take some tests. HV, healthy 
volunteers; OA, osteoarthritis; PA, psoriatic arthritis; RA, rheumatoid arthritis. b Comparison of different 
5×STS tests. Each point identifies the maximum distance, measured with dynamic time warping (DTW) [21], 
between two tests that are selected according to a specific criterion, which varies with the axes. On the left 
plot, the x axis characterizes supervised tests, while the y axis characterizes supervised tests performed by 
the same participant. On the right plot, the x axis characterizes tests performed by the same participant, while 
the y axis characterizes tests performed by different participants. The presence of a supervisor did not impact 
consistency (left). In contrast, different participants performed the 5×STS tests differently (right).



115Digit Biomark 2018;2:106–125

Perraudin et al.: A Wearable Sensor and Smartphone Application to Assess Pain and 
Stiffness

www.karger.com/dib
© 2018 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000493277

was an independent variable, and pain waking up (i.e., morning pain severity, collected 
through PRO) was the dependent variable. Since each participant was given an individual 
intercept, the PRO prediction was not driven by the inter-subject differences (e.g., disease 
type) but by the longitudinal variables (i.e., 5×STS test duration and seconds since getting up). 
The Akaike information criterion [25] was used as a quality measure for comparing regres-
sions with different numbers of parameters.

Table 2 shows the statistics of linear regression performed on a set of covariates, all of 
which had been centred and scaled to make the coefficients comparable. Note that the lowest 
Akaike information criterion would have been achieved with disease, seconds since getting 
up, and gender. However, we decided to remove seconds since getting up, as its contribution 
was negligible (regression coefficient = 0.01) and it was statistically insignificant (t = 0.14). 
Moreover, we decided to keep gender, even though it resulted as being slightly insignificant, 
as its contribution was great.

From Table 2, we observed a strong consistency for the estimated coefficients of 5×STS 
test duration, suggesting that its relationship to pain and stiffness was stable and reliable.

Model Accuracy
The random intercept mixed-effects model was fitted to the development data set, and 

evaluated by analysing the prediction accuracy on the test data set.
Figure 3a shows the regression lines projected across the 5×STS test durations, and the 

samples used for fitting the model for pain severity upon waking (pain waking up). In 
particular, we show the global regression line, which describes the overall behaviour for all 
participants, and the individual regression lines, which cater for individual variations in 
reporting pain (affecting the PROs) and physical fitness (affecting 5×STS test performance).

Figure 3b shows the forest plots for the coefficients of 5×STS test duration in the fitted 
model. Forest plots summarize a correlation between two variables, here 5×STS test and pain 
reported through PROs, along with the confidence interval of such a correlation. When the 
confidence interval excludes the line that represents zero correlation, the correlation is statis-
tically significant. We observed a positive correlation between 5×STS test duration and PROs. 
For most PROs (5 out of 8), this correlation was significant, as the error bars were strictly 
positive. The mean values for the coefficients of the questions asked in the morning (stiffness 
suffered, stiffness severity, pain waking up, and pain overnight) were larger than the values 
for the questions asked in the evenings (stiffness severity during day, stiffness duration, pain 
since getting up, and pain in the last 24 h).

Figure 4 shows the prediction discrepancy plots, which highlight the difference between 
the distribution of expected residuals from the model and the actual distribution on the data 
samples. The latter are taken from disjoint data sets to demonstrate the model’s generality. 
To produce the prediction discrepancy plot, we first calculated the cumulative distribution 
function (CDF) of the predicted pain values, based on the covariates. Then, we calculated the 
CDF for the actual pain values and compared the two CDFs.

Each quantile of the expected distribution of the residuals was expected to cover that 
quantile’s fraction of the total residuals. For example, the 0–5% quantile was expected to 
cover 5% of the observed residuals.

While the model overestimated responses on the test set, which resulted in more residuals 
than expected on the low tail of residuals, it underestimated responses on the validation set, 
which resulted in more residuals than expected on the high tail of residuals. In conclusion, we 
showed that 5×STS test duration has a positive and significant correlation with 5 out of 8 
PROs. Moreover, we observed an unbiased distribution of residuals from the fit, although the 
frequency of very high (on the test set) and very low (on the validation set) residuals was 
higher than expected.
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Discussion/Conclusion

The principal finding from this study is that the participants performed 56% of the 
prescribed 5×STS tests, with no qualitative difference between supervised and unsupervised 
tests. This suggests that, with appropriate preparation, participants in clinical trials could be 
relied on to capture data during standardized motor task performance tests.

Many modern clinical studies on pain and stiffness rely on tests performed in the clinic 
[26–29], which are necessarily infrequent, as many tests are invasive and require expensive 
clinic times. Moreover, in the case of morning stiffness, the clinic assessment cannot be 

Pain last 24 h
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Pain since getting up
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Stiffness duration num

Stiffness severity during day
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Fig. 3. a Prediction model of the pain waking up reported by the participants (patient-reported outcome 
[PRO]) as a function of Five Times Sit to Stand (5×STS) test duration through a mixed-effects model. The 
solid line represents the global model, i.e., the estimates obtained over the subset of fixed-effects components 
that are part of the mixed-effects model. The dashed lines are obtained by adding the individual intercept to 
the global model. Some of the individual lines differ noticeably from the global line, which motivates our 
choice of an individual intercept. HV, healthy volunteers; OA, osteoarthritis; RA, rheumatoid arthritis. b For-
est plot measuring the relationship strength between 5×STS test duration and the pain/stiffness reported by 
the participants. Dots and horizontal lines show the correlation value ± 2 times the standard error. The ver-
tical black line indicates a coefficient of zero. A high correlation between 5×STS test duration and pain sever-
ity was demonstrated. The relationship to pain severity on waking up was strongest and highly significant. 
Among stiffness-related PROs, the strongest relationship was to stiffness severity rated in the morning.
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performed shortly after waking up. An alternative approach is to use PROs [30], which enable 
participants to record their status at home; yet the outcome is subjective and prone to bias. 
Passive activity monitoring is another home assessment option [31], which is objective thanks 
to the use of sensors in lieu of questionnaires. However, the main problem is that not many 
clinical endpoints have been defined yet. The approach pursued in this paper is that of unsu-
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Fig. 4. Prediction discrepancy plots for the predictions of pain waking up, obtained from a mixed-effects 
model. This was fitted on the duration of the Five Times Sit to Stand exercise, along with two covariates: gen-
der and disease type. The graphs on the left show the histograms of the empirical cumulative distribution 
function (CDF) against the predicted CDF, while the graphs on the right show the predicted CDF as a function 
of the empirical CDF. The distribution of residuals from the fit is unbiased, although the frequency of very 
high and very low residuals was higher than expected.



119Digit Biomark 2018;2:106–125

Perraudin et al.: A Wearable Sensor and Smartphone Application to Assess Pain and 
Stiffness

www.karger.com/dib
© 2018 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000493277

pervised tasks, which combine the best characteristics of both approaches. The data are 
collected at the correct time and with high frequency and can be interpreted without the need 
to define new endpoints, since the data representation may change (e.g., from human driven 
to sensor based) but the semantics are kept unchanged.

The advantages of sensor-based monitoring during 5×STS tests have already been studied 
in the context of fall risk estimation [32]. However, such a study was done only under super-
vised settings. In contrast, we have shown that patients can perform the test unsupervised 
consistently, despite using a conservative consistency metric (it is likely that our consistency 
measure degrades if there is a disease-related change in the participant’s status). We conclude 
that the execution of 5×STS tests could be monitored without supervision.

The adherence to the prescribed tests obtained in our study (56%) is comparable to that 
obtained in a related study [33] (61% adhered to the test sessions), where participants with 
Parkinson’s disease were asked to perform prescribed tests on a daily basis while holding or 
wearing a smartphone. We observed that some participants performed the last test near the 
end of the study, yet some tests were missing, indicating that they possibly forgot to perform 
them. This was possibly caused by the test schedule, which was set to every Monday, 
Wednesday, and Friday, to avoid overburdening the participants. However, adherence could 
have been higher with a daily schedule, which may have been easier to remember, or with 
stronger reminders on the smartphones.

We evaluated the information captured by 5×STS test performance by analysing the 
correlation between performance impairment and morning pain and stiffness. Moreover, we 
built a mixed-effects model that predicted the severity of morning pain and stiffness via 
5×STS duration, disease type, and gender. We observed that different participants reported 
pain severity in a consistent way, but the pain reported by different participants differed 
under similar circumstances because of individual pain thresholds and physical differences. 
By developing individual pain models, we could accurately predict the PRO, providing a 
potentially useful objective measure for evaluating pain and stiffness.

The study discussed in this paper was run at two sites in Dublin. However, a similar study 
can be run at more sites spread across different places. Indeed, the low number of required visits 
makes the study scalable. Moreover, we observed that the participants could follow the instruc-
tions after a short training, which lasted about 10 min. When running such a study in different 
locations around the world, we expect gender to lose its correlation with reported pain, as this 
may be culture related. Instead, the use of an explicit “culture” covariate may be considered.

In the future, unsupervised instrumented tests could be used not only to measure the 
performance of widely accepted performance assessments, but also to develop new, more 
accurate endpoints, which are tailored to the characteristics of body-worn sensors and exploit 
their full potential. This study has allowed us to collect data not only during 5×STS tests, but 
also during everyday activities such as morning routines, sleep, and commuting to work. Data 
collected during everyday activities have previously been used to estimate the risk of adverse 
events [34], or specific activities such as walking [35]. However, the relationship between 
sensor data collected during normal activities and qualitative health metrics, such as pain 
suffered during such activities, would benefit from a broader coverage. We plan to contribute 
to this aspect in the future.
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Appendix

The participants were asked to respond to the questionnaire below.
1. “Were your joints stiff when you woke up today?”
2. “Please rate the activities in each category according to the following scale of difficulty: 

Stiffness severity upon waking up, first thing in the morning”
3. “Please rate the activities in each category according to the following scale of difficulty: 

Stiffness severity after sitting, lying down or resting during the day”
4. “How long did this stiffness last?”
5. “Can you rate the pain you were experiencing at the moment you woke up this morning on a 

scale of 0–10 where 0 represents no pain and 10 represents pain as bad as you can imagine?”
6. “Can you rate the pain you have experienced overnight on a scale of 0–10 where 0 repre-

sents no pain and 10 represents pain as bad as you can imagine?”
7. “Can you rate the pain you have experienced since you got up this morning on a scale of 

0–10 where 0 represents no pain and 10 represents pain as bad as you can imagine?”
8. “Can you rate the OVERALL pain you have experienced IN THE LAST 24 HOURS on a scale 

of 0–10 where 0 represents no pain and 10 represents pain as bad as you can imagine?”
The 5×STS tests are detected with a semi-automated procedure, which consists of running 

a detection algorithm on the accelerometer data, converted into spherical coordinates. Such 
an algorithm is run in the mornings (6: 00 to 12: 00) of the days where a test was expected. 
When automatic detection failed, we reverted to manual inspection. The detection algorithm 
is described by the pseudo-code below.
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function detect5xSTS (Azimuth, Elevation, Acceleration) 
    # Initalise 5xSTS Detection 
    stsDetectionTimes = { } 
    elevationThresholdCrosses = lastElevationTCrossing = 0 
    timeBelowTCondition = timeAboveTCondition = elevationTrigger = False 
    tCurrent = 0 
 
    for (tCurrent in 1,..,length(Elevation)) 
    # Get the elevation threshold with the data within the last 30 samples, i.e. 1 second  
        T = 0.5 * max(Elevation(tCurrent-29 : tCurrent)) +  
            0.5 * min(Elevation(tCurrent-29 : tCurrent)) 
 
        tCurrent = tCurrent+1 
        elevationTimeBelowT = count(elevationMetric (lastElevationTCrossing : tCurrent) < T) 
         
        if not timeBelowTCondition and elevationTimeBelowT > 10 and elevationTimeBelowT < 100 
            timeBelowTCondition = True 
            if timeAboveTCondition 
                elevationTrigger = True 
                timeAboveTCondition = False 
            endif 
        endif 
         
        if elevationTimeBelowT >= 100 
        # Maximum time below the threshold overcome, reset the condition. 
            timeBelowTCondition = False 
        endif 
         
        elevationTimeAboveT = count(elevationMetric (lastElevationTCrossing : tCurrent) > T) 
         
        if not timeAboveTCondition and elevationTimeAboveT > 10 and elevationTimeAboveT < 100 
            timeAboveTCondition = True 
            if timeBelowTCondition 
                elevationTrigger = True 
                timeBelowTCondition = False 
            endif 
        endif 
         
        if elevationTimeAboveT >= 100 
        # Maximum time above the threshold overcome, reset the condition. 
            timeAboveTCondition = False 
        endif 
         
        if (elevationTrigger) 
            lastElevationTCrossing = tCurrent 
            elevationThresholdCrosses = elevationThresholdCrosses + 1 
            elevationTrigger = False 
        endif 
        #Check if acceleration matches the pattern  
        (accelerationPatternMatched,startPatternMatch,endPatternMatch) = 
        accelerationPatternMatch(acceleration) 
        if (Azimuth in [1.5,3] or Azimuth in [0,1.5]) and 
        (elevationThresholdCrosses> 7) and accelerationPatternMatched 
            stsDetectionTimes = stsDetectionTimes + (startPatternMatch,endPatternMatch) 
            elevationThresholdCrosses = 0 
        endif 
    endfor 
     
    return stsDetectionTimes 
endfunction 
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where accelerationPatternMatch is a function that transforms Acceleration into low/medium/
high accelerations, which are denoted by a/b/c respectively, and then detects when the 
regular expression below is matched:
‘b{1,5}c{1,60}+[b]+[a]+[b]*[a]+[b]+[c]+[b]+[c]+[b]+[a]+[b]*[a]+[b]+[c]+[b]+[c]+[b]+[a]+ 
[b]*[a]+[b]+[c]+[b]+[c]+[b]+[a]+[b]*[a]+[b]+[c]+[b]+[c]+[b]+[a]+[b]*[a]+[b]+[c]*b{1,5}’
The transformation of Acceleration into the a/b/c levels is done thanks to two thresholds, 
which were calibrated using data from 6 participants, who all belonged to the development set.

With the algorithm presented above, 80% of the 5×STS tests that were performed were 
detected. Moreover, we validated the accuracy of detecting the test start and end by visual 
inspection of every test. An example of 5×STS test data in spherical coordinates is given in 
Figure A1.
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Fig. A1. a Example of accelerometer data in spherical coordinates during a 3-min observation period. The 
red vertical lines identify an unsupervised Five Times Sit to Stand exercise. b Focus on the Five Times Sit to 
Stand test data.
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The remaining 20% of the 5×STS tests were detected through manual inspection. When 
also manual inspection failed, we marked the test as not performed. In total, 56% of the 
prescribed tests were detected, either automatically or manually.

The algorithm described above did not generate false positives, i.e., it never happened 
that the algorithm found a 5×STS test where there was none. In contrast, we had some false 
negatives, for different possible reasons such as the following: not all 5×STS tests were 
performed, some 5×STS test attempts were stopped and repeated, etc.

We report the adherence to 5×STS tests and the sensor wear time for each patient in 
Table A1. Moreover, we report such results aggregated by condition in Table A2.

Table A1. Adherence in sensor wear time and 5×STS tests performed 
for each participant

Participant
No.

Sensor wear, 
%

5×STS tests 
performed, n

Condition

1 70.8 10 of 15 RA
2 98.49 8 of 12 RA
3 43.35 3 of 12 RA
4 83.42 9 of 13 RA
5 94.87 15 of 15 RA
6 97.24 3 of 12 RA
7 97.63 13 of 13 RA
8 98.69 14 of 14 RA
9 97.71 9 of 12 RA

10 95.75 0 of 12 RA
11 97.71 7 of 12 RA
12 97.6 11 of 12 RA
13 98.99 4 of 14 RA
14 97.64 11 of 12 RA
15 84.19 8 of 12 RA
16 97.75 0 of 12 RA
17 97.9 12 of 12 RA
18 98.39 6 of 12 RA
19 95.62 8 of 15 RA
20 99.76 8 of 12 RA
21 95.49 5 of 13 OA
22 97.84 10 of 12 OA
23 94.06 10 of 14 OA
24 98.28 3 of 12 OA
25 96.23 11 of 12 OA
26 59.99 2 of 12 OA
27 97.39 2 of 14 OA
28 72.33 1 of 9 OA
29 98.62 0 of 14 OA
30 69.74 3 of 12 OA
31 94.18 11 of 12 HV
32 97.36 10 of 13 HV
33 97.66 8 of 12 HV
34 88.39 3 of 12 HV
35 97.79 6 of 15 HV
36 97.22 9 of 12 HV
37 96.92 9 of 12 HV
38 98.45 0 of 14 HV
39 95.3 10 of 12 HV
40 97.22 2 of 14 HV
41 99.21 12 of 12 HV
42 97.72 7 of 14 HV
43 80.55 10 of 13 HV
44 77.32 8 of 12 HV
45 78.95 6 of 11 HV

RA, rheumatoid arthritis; OA, osteoarthritis; HV, healthy volunteer.
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Table A2. Adherence in sensor wear time and 5×STS tests performed 
aggregated by clinical condition

Disease Sensor wear, % 5×STS tests performed, %

RA 92.18 61.80
OA 88.00 37.60
HV 92.95 59.80

Total 91.50 55.76

RA, rheumatoid arthritis; OA, osteoarthritis; HV, healthy volunteer.
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