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Abstract

Purpose of review—Epstein-Barr virus (EBV) is a known determinant for numerous 

malignancies and may contribute to autoimmune diseases. The underlining mechanisms behind 

EBV pathologies is not completely understood. Recently, extracellular vesicles (EVs) released 

from infected cells have been found to produce profound effects on cellular microenvironments. 

Therefore, in this review we sought to critically evaluate the roles of EVs in EBV pathogenesis 

and assess their potential therapeutic and diagnostic utility.

Recent findings—EBV-altered EVs are capable of activating signaling cascades and phenotypic 

changes in recipient cells through the transfer of viral proteins and RNAs. Moreover, several EV-

associated microRNAs have encouraging prognostic or diagnostic potential in EBV-associated 

cancers.

Summary—Current evidence suggests that EBV-modified EVs affect viral pathogenesis and 

cancer progression. However, further research is needed to investigate the direct role of both viral 

and host products on recipient cells and the mechanisms driving viral protein and RNA EV 

packaging and content modification.
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Introduction:

Epstein-Barr virus (EBV) is a member of the human Herpesviridae family that has 

established a persistent infection in more than 90% of the world’s population (1). However, 

in certain susceptible individuals, EBV can lead to the development of a wide range of 

malignancies including nasopharyngeal carcinoma, gastric adenocarcinoma, Hodgkin 

lymphoma, Burkitt lymphoma, post-transplant lymphoproliferative disease, NK/T-cell 
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lymphoma, aggressive NK-cell leukemia, lymphomatoid granulomatosis, and diffuse large B 

cell lymphoma (2, 3). Currently, EBV is estimated to contribute to the development of 

roughly 200,000 new cancers world-wide each year and account for nearly 2% of all human 

cancers (4). There is also some evidence that EBV may be an underestimated contributing 

co-factor to the progression of other malignancies like cervical and breast cancers (5–7). 

However, more studies are needed considering it is often difficult to establish a causative 

role of EBV in a particular cancer since only a small percentage of people infected will ever 

develop malignancies. In addition to cancer, EBV has been linked with autoimmune diseases 

such as multiple sclerosis and systemic lupus erythematosus (8, 9).

Oncogenic viruses contribute to the development and progression of malignancy by 

fostering a pro-tumoral microenvironment (10). Extracellular vesicles (EVs) have emerged 

as key factors driving intercellular communications in tumor microenvironments. Depending 

on the type of cancer, EVs have been shown to function in cell growth, invasion, metastasis, 

angiogenesis, drug resistance, and immune cell regulation through the transfer of bioactive 

molecules (11). EVs contain a diverse repertoire of proteins and RNAs enclosed in a lipid 

bilayer enriched in sphingolipids and cholesterol (12). Several EV populations are 

recognized based on their intracellular site of origin and include exosomes and microvesicles 

(12, 13). Exosomes are small (50–150nm) vesicles that form on the limiting membrane of 

multi-vesicular bodies, whereas microvesicles bud off from the plasma membrane and are 

generally larger in size (100–1000nm). The overlap in size and density has made it difficult 

to get truly pure vesicle populations using methods currently employed in the field for EV 

isolation. Adding to the complexity is the existence of exosome and microvesicle sub-

populations that likely have distinct cargo and functions (**14).

Once released from the cell, EVs can spread locally or enter bodily fluids and be transported 

to other sites in the body where they can be taken-up by target cells and release their cargo 

(11, 12). This EV-mediated intercellular molecular exchange can influence recipient cells 

and contribute to physiological and pathological processes (15–18). The unique properties of 

EVs has generated tremendous interest for their use as diagnostics, drug delivery vehicles, 

and therapeutic agents. However, before the full clinical utility of EVs can be achieved, a 

better understanding of the mechanisms driving biogenesis of EV subpopulations, EV-target 

cell interactions, and cargo release must be obtained. It is clear from our work and others, 

that viral infection alters the components and functions of EVs released from infected cells 

(10, 12, 19). In the case of EBV, it is evident that EVs contribute to pathogenesis of EBV-

associated cancers (10).

Viral EV cargo in the context of EBV cancers

EBV has the capability of altering vesicle content and secretion, which can have substantial 

effects on tissue and tumor microenvironments. EBV packages various viral components, 

including proteins and RNAs, into EVs (10, 20). The viral manipulation of host secretory 

pathways has been demonstrated to aid in the evasion of the immune system while 

promoting cancer progression by modifying the angiogenic, invasive and metastatic potential 

within the tumor microenvironment (21, 22). The principal oncogene of EBV is latent 

membrane protein 1 (LMP1) as it is expressed in most EBV-related cancers and is critical 
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for B-cell immortalization and cellular transformation (23). In figure 1, the viral EV cargo 

secreted by cell type and latency program are depicted and the functions of these products 

are summarized in table 1.

Latent membrane protein 1 (LMP1):

LMP1 is a constitutively active CD40 receptor mimic that triggers many pro-oncogenic 

consequences in cells by recruiting tumor necrosis factor receptor-associated factor (TRAF) 

proteins and other effector molecules to the C-terminal activating regions (CTAR). This 

recruitment allows LMP1 to initiate various signaling pathways that inhibit apoptosis and 

promote cell growth and survival (24–27). LMP1 has been identified in EVs and is capable 

of inducing similar cellular responses when taken-up by recipient cells (15, *28, 29). 

Specifically, several studies have demonstrated the ability of LMP1-containing EVs to 

activate PI3K/AKT and MAPK/ERK pathways in receiver cells as well as inhibit the 

function of immune cells (21, 22, 29). In fact, LMP1 expression increases levels of EGFR 

secreted by cells, which likely contributes to the ERK and AKT activating properties of the 

EVs (15). Along with the cargo modifications, LMP1 has also been found to increase the 

release of small CD63-containing EVs, perceived as predominately exosomes, from various 

cell lines and thereby floods tissue environments with virally-modified communicative 

vehicles (*28).

LMP1 is adept in activating a multitude of pathways that contributes to the progression of 

cancer (30). One of the recognized characteristics of malignancy progression is the 

epithelial-mesenchymal transition (EMT), which involves epithelial cells shifting to a more 

mesenchymal phenotype (31, 32). This phenotypic change is characterized by a cadherin 

switch, which is when cellular levels of E-cadherin fall while N-cadherin levels increase 

(31). LMP1 has been found to induce migration and produce a more malignant phenotype in 

cells by increasing integrin alpha-5 and N-cadherin levels (32). However, whether EV-

associated LMP1 produces similar effects in recipient cells has yet to be evaluated. Others 

have found that LMP1 further promotes malignancy by upregulating hypoxia-inducible 

factor-1 alpha (HIF1α) and secreting EVs capable of promoting EMT and angiogenesis (29, 

33). It is therefore likely that LMP1-modified EVs contribute to EMT and metastatic 

properties of EBV infected cancer cells.

In addition to enhancing migratory phenotypes, LMP1 supports tumor progression by 

regulating host immune functions. In a recent study by Tsai et al., LMP1 suppressed host 

humoral immune responses by blocking differentiation of B cells into antibody secreting 

cells (ASCs) (34). This study also discovered that LMP1 upregulated the expression of 

indoleamine 2,3-dioxygenase 1 (IDO1) which is involved in tryptophan production. The 

tryptophan metabolites inhibit B cell function in the surrounding cells thus further 

suppressing immunological responses (33). Interestingly, LMP1 was found to regulate 

programmed cell death protein 1 ligand (PD-L1) in NPC, which is involved in immune 

suppression, (35) and recently, PD-L1 was detected in exosomes (**36). Therefore, EBV 

LMP1 may increase packaging of PD-L1 into EVs, conceivably for the modulation of the 

host immune checkpoints within the tumor microenvironment. This could ultimately 

contribute to EBV immune evasion strategies and pathogenesis by preventing adequate 
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tumor recognition by immune cells. Immune checkpoint inhibitors are now becoming more 

widely used for the treatment of certain cancers. Based on current evidence, EBV cancers 

may therefore be suitable candidates for these therapies.

Since LMP1 can modify EVs, presumably to manipulate the infected microenvironment, 

gaining a greater understanding of how LMP1 traffics to EVs could foster the generation of 

novel targeted therapies. Kobayashi et al. determined that farnesylation of the C terminus by 

ubiquitin C-terminal hydrolase-L1 (UCH-L1) is critical for sorting of LMP1 into EVs (37). 

Our group later demonstrated that the N terminus and transmembrane region 1 of LMP1 are 

sufficient for sorting into EVs (*38). Furthermore, a mutant lacking the N terminus and 

transmembrane domains 1 through 4 failed to be packaged, whereas other mutations resulted 

in enhanced packaging. These data suggests that there are regulatory mechanisms for LMP1 

EV cargo sorting (*38). Alternatively, LMP1 may exists in distinct EV populations with 

different mechanisms of targeting and biogenesis. For example, LMP1 was detected in 

fractions consistent with larger microvesicles, as well as the small light and dense EVs 

described by Kowal and colleagues (**14, *28). In the same study, LMP1 packaging into 

exosomes requires the tetraspanin protein CD63 (*28, **39). Despite recent advances, the 

mechanisms controlling LMP1 EV trafficking remain incomplete. Regardless, accumulating 

evidence supports a role of LMP1-modified EVs as having a prominent involvement in the 

pathogenesis of EBV-associated cancers.

Latent membrane protein 2 (LMP2):

LMP2 was found by Ikeda and Longnecker to be secreted from cells in exosomes (40). EV-

associated LMP2, unlike LMP1, has not been as well studied. Even though LMP2 is critical 

for maintaining viral latency in EBV infected cells, it is not required for B-cell 

immortalization (30). Yet, LMP2 has the ability to activate many oncogenic signaling 

pathways including PI3K/Akt, MAPK/ERK, and NF-kB. LMP2 is required for outgrowth of 

EBV-infected epithelial cells in vitro (41) and can induce anchorage-independent growth, 

enhance cell motility and adhesion, and induce EMT (42–44). When cholesterol is depleted 

in cells, LMP2A cellular levels and EV secretion were both enhanced, but LMP2A was no 

longer able to be endocytosed (40). LMP2A in the EV fraction is ubiquitinated and not 

phosphorylated, suggesting that ubiquitination may be important for exosomal loading (40).

Though the effects of LMP2 EVs on recipient cells have not been well studied, LMP1 

research suggests that LMP2-modified EVs may both activate pathways and modulate the 

tumor microenvironment through the promotion of EMT in recipient cells. LMP2 also acts 

as a B-cell receptor mimic, but the distinct isoforms perform different functions in cells. 

LMP2a inhibits B-cell activity, while LMP2b activates B-cells (45). This contrasting activity 

may help maintain EBV latency. Further research is needed to determine if the unique 

isoforms also effect recipient cells differently. LMP2 promotes malignant progression of 

NPC therefore it is conceivable that EV-associated LMP2 may exhibit biological effects 

within the tumor microenvironment (46).
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Epstein–Barr virus-encoded RNA (EBER):

In addition to proteins, EBV will package viral RNAs into EVs. Epstein-Barr virus-encoded 

RNAs (EBERs) are non-coding RNAs that are detected in all EBV infected cells and can be 

packaged into exosomes with the EBER binding protein La (47). Recently, EBER 

expression was found capable of distinguishing non-cancerous patients from NPC patients 

and higher EBER1 levels correlated with increased viability (48). Lee et al. discovered that 

EBER2 interacts with cellular transcription factor paired box protein 5 (PAX5), which is 

involved in B cell activation (49). These data suggest that EBV infected cells may use 

secreted EBERs to alter recipient cell function and could be used as a biomarker for cancer.

Epstein–Barr virus microRNAs:

MicroRNAs (miRNAs) are small noncoding RNAs, typically 20–25 base-pair long, which 

can act as key regulators of gene expression. The miRNAs can be packaged into EVs and 

secreted into the extracellular space for cell-to-cell transmission (20, 50). In the case of 

EBV, miRNAs have been found to play a large role in the pathogenesis of EBV-associated 

cancers. There are 44 mature EBV miRNAs. Four are mapped to the Bam HI fragment H 

rightward open reading frame 1 (BHRF1), and forty are mapped to BamHI-A rightward 

transcript (BART). Different latency stages have unique expression levels of these miRNAs. 

Nanbo et al. found that cells in type III latency produce the most EVs, when compared with 

type I latency or EBV-negative (51). Additionally, the cells in type III latency were found to 

incorporate many viral miRNAs, along with specific host miRNAs (51). EBV encoded 

miRNAs can regulate viral and host pathways to inhibit apoptosis, promote cell growth, and 

maintain a persistent infection (52, 53).

EBV miRNAs were found to suppress the release of proinflammatory cytokines, such as 

IL-12, and repress differentiation of CD4+ T cells. This reduces activation of cytotoxic 

EBV-specific CD4+ effect T cells (54). EBV infected cells also evade CD8+ T cells by 

releasing miRNAs that directly target the transported TAP2 and reduce levels of TAP1 and 

MHC class 1 molecules. The miRNAs are able to decrease levels of EBNA1, which is a 

target of CD8+ T cells (54). These pathways allow EBV to use EVs to evade the immune 

system.

Bam HI fragment H rightward open reading frame 1 (BHRF1):

BHRF miRNAs are not typically expressed in nasopharyngeal carcinoma (NPC), unless the 

cells undergo lytic reactivation, or exhibit a type III latency expression pattern (55). In 

diffuse large B-cell lymphoma (DLBCL), natural killer/T-cell lymphoma (NKTL), and 

gastric carcinoma (GC), expression of the BHRF1 miRNA cluster has not been detected (56, 

57). However, Cai et al. found that BHRF miRNAs are expressed in cells exhibiting an EBV 

type III latency program (58). Interleukin 1 (IL-1) receptor 1, which is important for immune 

regulation, is suppressed by BHRF1–2-5p (59). A study by Pegtel et al. discovered that EVs 

secreted by EBV-infected B cells containing BHRF1–3 can reduce expression of certain 

genes, such as the immunostimulatory gene CXCL11, in uninfected recipient cells providing 

the first evidence of functional miRNA delivery by EVs (16).

Cone et al. Page 5

Curr Clin Microbiol Rep. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BamHI-A rightward transcript (BART):

Ramayanti et al. performed RNA sequencing on plasma RNA from patients with NPC and 

found that there were higher levels of EBV encoded miRNAs than endogenous miRNA (60). 

They also discovered that the miRNA profiles differed between patients and that BART13–

3p was present in 97% of the samples, suggesting that this BART may be used as a 

diagnostic marker (60). Additionally, BART miRNAs have been found to be upregulated in 

GC with BART1 and BART4 being overexpressed (61). High levels of BART miRNAs were 

detected in DLBCL and NKTL, with the highest expression being BART7, BART22, and 

BART10 (62). BART miRNAs were found to be expressed at high levels in latently infected 

epithelial cells and low levels in B cells (58). IL-6 receptor B is targeted by BART6–3p (63), 

and CREB-binding protein, which is a coactivator in type 1 interferon signaling, is a direct 

target of BART16 (64). Taken together, these data imply that EBV-modified EVs are 

important for controlling innate and adaptive antiviral immune responses through miRNA 

transfer. Since the BART miRNAs can alter various pathways, such as PI3K/AKT and Wnt 

signaling, or bind to a multitude of tumor suppressor genes (65), it is likely that BART 

miRNAs in EVs will also target similar pathways in recipient cells.

lncRNA:

Cellular long non-coding RNAs (lncRNA), specifically H19 and H19 antisense, have been 

found to be packaged into exosomes and released from EBV-positive LCL cells (66). 

However, little is known about the role these lncRNA play in EBV pathogenesis. H19 was 

found to have increased levels in retinoblastoma cells and patients with high H19 expression 

were found to have decreased survival times. Also, knockdown of H19 suppresses cell 

proliferation and invasion (67). A recent study by Chen et al. additionally found that 

macrophages in breast cancer, specifically tumor associated (TAMs), secrete EVs containing 

HIF-1α-stabilizing lncRNA to alter glycolysis in cells within the tumor environment (68). It 

would be interesting to evaluate whether this occurs in EBV cancers or even what other 

influences cellular and viral lncRNAs have on the tumor microenvironment.

mRNA:

In addition to non-coding RNAs, EBV also secretes EV-associated mRNA including LMP1, 

LMP2, Epstein-Barr nuclear antigen 1 (EBNA1) and EBNA2 into the extracellular space 

(69). More research is required to determine if these mRNA are translated in recipient cells 

and their downstream effects. It is likely that these mRNAs are be secreted in EVs by 

infected cells to prime other cells for infection and may enhance cancer progression.

EV diagnostic markers

One of the foremost contributing factors towards improving prognosis and better health 

outcomes is having the tools and methods allowing for the early identification of diseases. 

Early diagnosis has been shown to vastly improve patient outcomes in many cancers, as 

exemplified by those patients diagnosed in stage I/II versus stage III/IV having significantly 

greater one-year survival rates (70, 71). This is especially true for nasopharyngeal cancers 

since N3 NPC has been shown to have a high risk of metastasis and low five-year 
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survivability (72). Thus, the development of novel sensitive and specific biomarkers 

continues to remain a primary focus of various research endeavors. Within the biomarker 

field of study, EVs are now becoming more universally accepted as a superior source of 

biomarkers for many diseases, including cancer, and research into EVs as prospective 

biomarkers has dramatically increased in the past decade.

The benefits of utilizing EVs as biomarkers is that EVs are quite stable, typically minimally 

invasive to obtain, and have been shown to contain specific cargo relating to the disease and 

pathology (60, 73). Several recent studies have found the presence or enrichment of certain 

miRNAs in EVs correlated with particular diseases and even severity or disease stage.

In the case of EBV NPC, plasma EBV DNA and serological IgG assays have been the 

primary methods for the laboratory detection (74). However, a study by Ramayanti et al. just 

reported that EV BART13–3P was more sensitive and specific in differentiating EBV NPC 

from other head and neck cancers (60). As mentioned earlier, EBV BART 1 and 4 were 

found to be overexpressed in EBV gastric carcinoma. Another study by Tsai et al. found 

elevated levels of BART 4 as well as BARTs 11, 2, 6, 9, 18 by in situ hybridization of EBV 

GC surgical specimens (75). Interestingly, BART 9 sequence is homologous to miRNA-200a 

and miRNA-141, which have been associated with EBV GC EMT phenotype (75). It would 

be advantageous to examine the levels of these EBV miRNAs in EVs in comparison with the 

cellular levels since overexpression suggests enhanced secretion. Varying levels of EBV 

BART miRNAs could potentially not only indicate GC but may also provide additional 

information on GC phenotypes.

In addition to EBV miRNAs, analyzing host EV miRNA and other non-coding RNAs, may 

prove worthwhile since cellular expression levels in the context of cancer have been studied 

extensively. For instance, elevated levels of miRNA-155 as well as the long non-coding 

RNA PVT1 have both been associated with poor outcomes and survivability in NPC (76, 

77). There are ample other host RNA associations in various diseases and analyzing all of 

the differential expression for each disease type can quickly become complex. Yet, 

examining EV RNAs could perhaps help narrow down these in order to establish EV 

profiling assays for each disease. In fact, Taylor et al. established the first multiplexed 

miRNA EV profiling for ovarian cancer that could not only aid in patient diagnosis but also 

could be used in screening assays of asymptomatic women (78). Additionally, these 

multiplex assays potentially increase the prognostic capabilities of the assay which can help 

better direct patient therapies.

EV therapeutic applications

A key limitation to many types of therapeutics has been effective drug delivery. Recently, 

there has been a growing interest in nanoparticles as therapy delivery vehicles due to their 

competent targeting as well as permeability and retention capabilities (79). Nanoparticle 

delivery systems, including liposomes and mesoporous silica nanoparticles, typically range 

from 10 to 1000 nm in diameter and can be loaded with chemical therapeutics and miRNAs 

(79, 80). However, EVs have lately been explored as a possible superior vehicle. Unlike 

fabricated nanoparticles, EVs have greater stability, are more likely to evade compliment 

immune responses, and less prone to triggering negative off-target effects (81, 82). Several 
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studies have reported that coupling antigens with EVs increases the immunogenicity and 

efficacy of potential cancer vaccines (83, 84). This perhaps could be a method for targeting 

LMP1-induced pathogenic effects in both EBV cancer and autoimmune diseases.

In addition to EV loading methods, the therapeutic application of EVs from specific cell 

types is being explored for clinical purposes. MSCs, or mesenchymal stem cells, have been 

researched considerably for potential therapies but recently the EVs from these cells appear 

more promising because vesicle treatments induce the beneficial effects in target locations 

without the risk of uninhibited cell proliferation and differentiation (85). A recent study by 

Yuan et al. found that MSC EV express TNF-related apoptosis-inducing ligand (TRAIL) and 

could be selectively target and induce apoptosis in vitro (86). TRAIL was previously shown 

to induce apoptosis in numerous transformed cell types but its utilization has been 

problematic due to low bioavailability and difficulties with therapeutic delivery (86, 87).

EVs from immature dendritic cells (DC) may also prove to have therapeutic applications. 

DC-EVs have been found to induce beneficial anti-inflammatory effects that could be utilize 

in treating autoimmune diseases (88). A study by Kim et al. discovered that DC-EVs 

exhibited anti-inflammatory effects in vivo and reduced collagen-induced arthritis 

occurrence as well as severity in mice (89). In addition, DC-EVs are being researched as a 

possible antitumor therapies and several have made it into clinical trials (90, 91). In a Phase I 

trial for advanced non-small cell lung cancer, EVs containing MAGE tumor antigens were 

harvested from patients DCs and readministered (91). The therapy was well tolerated and 

some patients had positive immune responses and long-term disease stability (91). It may be 

beneficial to explore both MSC and DC

EVs as therapeutics for EBV associated diseases

Despite promising EV therapeutic uses, there are still obstacles that need be overcome 

before the widespread clinical application of EV therapies. EV isolation can be arduous and 

this is further complicated by the inability of current isolation methods to purely separate 

vesicle types (**14, 85, 92). EVs biogenesis pathways also have yet to be fully appreciated, 

consequently isolations may contain vesicles from different origins with highly varying 

cargos (**14, 93). The in vivo consequences of these EVs could pose safety risks so 

adequate research should be performed prior to the application of these treatments in the 

clinical setting.

Autoimmune diseases

EBV continues to be implicated in multiple autoimmune diseases, but directly linking 

infection with disease development can be problematic. Although EBV appears to be a 

prerequisite for some syndromes, not all who are infected will develop the disease. 

Regardless, EBV has been connected with several autoimmune diseases but the evidence is 

strongest for multiple sclerosis (MS), rheumatoid arthritis (RA) and systemic lupus 

erythematosus (SLE) (94–97). Previous research revealed a near 100% EBV-seropositivity 

in adult and pediatric patients who developed MS (96,95). Recently, over 200 gene loci have 

been associated with MS risk using genome wide association studies and EBV infection was 

found to regulate many of these genes, suggesting that EBV infection could be a 
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contributing factor for MS development or pathogenesis (98). RA patients have been found 

to have higher circulating anti-EBNA1 antibodies (99), elevated blood EBV DNA load (100) 

and other viral products (i.e. EBERs, LMP1) in synovial fluid (101, 102). Also, SLE patients 

have elevated circulating EBV DNA, antibodies to EBV EBNAs and viral capsid antigen 

(VCA) however previously contracting infectious mononucleosis does not lead to an 

increase chance of developing the disease (103, 104).

One of the accepted means by which viruses are thought to promote the development of 

autoimmune diseases is through antigenic mimicry. Some viruses have amino acid 

sequences in their proteins that closely resemble host proteins. This sequence mimicry can 

lead to immune cells developing antibodies or T cell receptors that can cross-react with host 

proteins following the viral infection. In the case of EBV, antigenic mimicry has been 

documented in MS, RA, and SLE (105). Pathogenesis in MS occurs mainly as a result of T 

cell induced CNS demyelination and chronic inflammation. The MHC class II allele 

DRB1*1501 has previously been reported as a risk factor for MS but Lang et al. 

demonstrated the close similarity of the crystal structures of DRB1*1501-MBP (myelin 

basic protein) peptide and DRB5*1010-EBV peptide presented for T cell recognition (105, 

106). For RA and SLE, there are reports of mimicry of EBNA1 peptides with synovial 

protein and RO/Sm autoantigens respectively (107–109).

It is evident that EVs have many roles in both normal and pathological states. One function 

of EVs is to serve as a source of antigen presentation complexes that can be taken up by 

antigen presenting cells (APC) or even possible directly activate T cells (110, 111). EBV has 

established capabilities in utilizing host EV machinery for the production, processing and 

release of viral products (15). Interestingly, CD63 is known to have a role in autophagy and 

trafficking of MHC class molecules for antigen presentation as well as being required for the 

vesicle secretion of certain viral products (*28, **39, 112). Therefore, it is plausible that 

EVs displaying the viral mimicry peptides are secreted and could serve as a source for 

autoimmune clonal expansion of B and T cells. Since EBV LMP1 protein has been shown to 

increase vesicle secretion, increasing levels of autoimmunogenic EVs may be released with 

LMP1 expression especially during latency switching (15, *28). As highlighted earlier, 

LMP1 has been detected in synovial fluid of afflicted joints of RA patients which may also 

contribute to the release of these mimicry-containing EVs that promote inflammation and 

pathogenesis (101).

Additionally EVs are capable of stimulating angiogenesis, which can induce damage to 

cartilage and bone in the joints of RA patients and vasculitis in SLE patients (113). LMP1 is 

known to increase VEGF expression and LMP1 containing EVs have been reported to 

promote angiogenesis (15, 114). Increased EBV infected cells (as inferred by elevated DNA 

levels) in autoimmune patients, may also contribute to increase secretion of pathogenic EVs 

that are capable of promoting inflammation and immune dysfunction. Altogether the 

literature supports a pathogenic role for EBV modified EVs in autoimmune diseases.
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Conclusions

Viruses have evolved with us and consequently many of the tactics that our bodies have 

employed to combat infection over the course of time have been met with effective counter 

adaptive strategies. It can be argued that EBV and other herpesviruses in particular, have 

been some of the most successful viruses in countering host defenses and exploiting cellular 

pathways. EVs are essential for the normal function of cells but unfortunately are also 

exploitable by viruses for the maintenance and spread of infection. Yet, EVs appear to be an 

opportunity for truly innovative therapeutic interventions that not only can target the viral 

infection but also the associated pathologies. EVs clearly have a role in the severity of many 

EBV induce pathologies but EV research may be the means by which we can improve early 

diagnosis and improve patient outcomes.
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Figure 1. 
EBV products packaged into extracellular vesicles. Assorted viral components have been 

found to be incorporated into EVs released from EBV infected cells. There are some 

differences in components depending on cellular origin and latency type. These EBV-

modified EVs perform various functions in recipient cells, such as inhibiting immune 

responses or promoting cell growth.
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Table 1.

Viral EV cargo secreted by cell type

Viral 
Product

Cell Lines Functions References

LMP1 BL, GC, LCL, NPC Enhance cancer growth, metastasis, 
invasion, and malignancy, immune 

regulation

Shair (24), Sheu (27), Meckes (15), Aga (29), 
Dawson (25), Wheelock (31), Wakisaka (33), Tsai 

(34)

LMP2 BL, LCL, NPC Promote EMT, enhance cancer 
progression, immune modulation

Moody (41), Scholle (42), Fukuda (43), Morrison 
(44), Cen (45)

EBER BL, LCL, NPC Alter recipient cell function Ahmed (47), Zeng (48), Lee (49)

BHRF1 BL, HL, LCL, PTLD Immune regulation Cai (58), Skinner (59), and Pegtel (16)

BART BL, HL, NPC, GC, NKTL, 
LCL, DLBCL, PTLD

Immune regulation Cancer 
progression

Pegtel (16) Meckes (15), Cai (58), Ramayanti (60), 
Kang (61), Ambrosio (63), Hooykaas (64), Wong (65)

mRNA LCL and NPC Enhance infection or cancer 
progression

Canitano (69)

BL- Burkitt’s lymphoma

HL- Hodgkin’s lymphoma

LCL- Lymphoblastoid Cell Line

PTLD- Post-transplant lymphoproliferative disease

NPC- Nasopharyngeal Carcinoma

GC- Gastric Carcinoma

NKTL- Natural Killer/T-Cell Lymphoma

DLBCL- Diffuse Large B-Cell Lymphoma
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