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Abstract

Purpose of Review—Chlorhexidine gluconate (CHG) and mupirocin are increasingly used for 

Staphylococcus aureus decolonization to prevent healthcare-associated infections; however, 

increased use of these agents has led to concerns for growing resistance and reduced efficacy. In 

this review, we describe current understanding of reduced susceptibility to CHG and mupirocin in 

S. aureus and their potential clinical implications.

Recent Findings—While emergence of S. aureus tolerant or resistant to topical antimicrobial 

agents used for decolonization is well described, the clinical impact of reduced susceptibility is not 

clear. Important challenges are that standardized methods of resistance testing and interpretation 

are not established, and the risk for selection for co- or cross-resistance using universal, as 

opposed to targeted decolonization, is unclear.

Summary—Evidence continues to support S. aureus decolonization in certain patient groups, 

although further studies are needed to determine the long-term impact of CHG and mupirocin 

resistance on efficacy. Strategies to mitigate further development of reduced susceptibility and the 

consequences of selection pressures through universal decolonization on resistance will benefit 

from further investigation.
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Introduction

Staphylococcus aureus colonization of the nares occurs in approximately 20–40% of patients 

[1–3] and imparts a three-to sixfold increased risk of healthcare-associated infection (HAI) 

due to S. aureus [2], leading to increased length of stay and cost compared to non-colonized 
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patients [4]. Most HAIs caused by S. aureus are due to strains carried by patients before they 

developed infection [5]. Consequently, over the last several decades, clinicians have sought 

to reduce S. aureus HAIs by eliminating S. aureus carriage. Interest in decolonization grew 

further as the prevalence of methicillin-resistant S. aureus (MRSA) dramatically rose in 

hospitals and then communities around the world. Patients who carry MRSA are fourfold 

more likely to have MRSA infection (compared to patients colonized with methicillin-

sensitive S. aureus (MSSA)) [6], suffer 30% higher 30-day mortality [7], and serve as a 

reservoir for transmission to other patients and the community.

Decolonization refers to the elimination of carriage or reduction of the microbial burden of 

one or more pathogens from the body through the use of biocidal agents [8]. Decolonization 

strategies may be targeted to colonized patients or given universally to all patients. Topical 

chlorhexidine gluconate (CHG) (given as a bath or using impregnated wipes) and/or topical 

mupirocin ointment (typically 2% concentration, administered intranasally two to three 

times daily for 5–7 days) for S. aureus decolonization have been shown to reduce HAIs and 

are widely utilized in multiple healthcare settings. CHG is used for additional healthcare 

applications including hand hygiene, periprocedural disinfection, and for the prevention of 

central line-associated bloodstream infections (CLABSI) infections through impregnated 

dressings.

Topical agents have many advantages over systemic agents. For example, they limit systemic 

exposure while achieving high concentrations at the site of bacteria. Furthermore, the 

biocidal activity of CHG persists long after application compared to other antiseptics [9]. 

However, with increased use, reduced bacterial susceptibility to these compounds has 

emerged. Whether this reduced susceptibility is clinically meaningful is not certain but may 

depend on the agent, the degree of nonsusceptibility, and the application.

In this review, we summarize the emergence of S. aureus resistance to CHG and mupirocin 

in the context of their use for decolonization. We then focus on potential implications and 

evidence for reduced efficacy, consider the potential clinical implications of universal 

decolonization strategies on resistance, and conclude by posing questions and research that 

may guide thoughtful use and potential alternatives to CHG and mupirocin for the 

prevention of S. aureus-related healthcare-associated infections in the future. CHG and 

mupirocin are studied and employed most extensively in the context of S. aureus 
decolonization; thus, the scope of this review will be S. aureus resistance with only a limited 

discussion of non-staphylococcal resistance.

The Importance of Mupirocin and Chlorhexidine Gluconate for 

Decolonization and Prevention of HAIs

An estimated 720,000 HAIs occur each year in US hospitals, for which S. aureus is the 

second leading causative pathogen (behind Clostridium difficile) and the most common 

identifiable cause of healthcare-associated surgical site infections [10]. HAIs due to MRSA 

are associated with two to three times the risk of 30-day mortality compared to patients 

without MRSA infection [7].
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Level 1 evidence supports S. aureus decolonization in ICU patients to reduce MRSA 

colonization and bloodstream infections [11, 12•, 13, 14]. Evidence-based guidelines also 

recommend S. aureus decolonization of perioperative surgical patients for prevention of 

surgical site infections [15, 16], especially cardiothoracic and orthopedic surgeries [17]. The 

benefits of S. aureus decolonization in other non-ICU, non-surgical inpatient settings outside 

of certain high-risk patient populations (e.g., hemodialysis [18] or with central venous 

catheters[19]), remain to be determined [20].

Review of Chlorhexidine Gluconate Resistance and Influencing Factors

Developed in the 1950s, CHG is an antiseptic with broad biocidal activity including gram-

positive and gram-negative bacteria, fungi, and enveloped viruses [21]. The bactericidal 

mechanism of CHG is thought to act through binding the cell wall, leading to osmotic 

disruption and cell death (Fig. 1) [22]. CHG is the water soluble form of a divalent cationic 

biguanide [23] and is generally regarded as safe and well tolerated when applied topically 

(typical concentrations ranging from 0.5 to 4%) [22], although rare allergic reactions have 

been reported [24]. With this strong safety and tolerability record, CHG is a mainstay 

antiseptic used in a wide range of healthcare products, including oral care rinses, hand 

hygiene rubs, soaps, CHG-impregnated catheter dressings, and CHG-impregnated catheters 

[25••, 26–28]. CHG-alcohol prepping solution is the preferred agent for skin antisepsis prior 

to central venous catheter placement or surgery [29].

S. aureus resistance to CHG is thought to occur primarily through efflux pumps [30•] 

encoded by quaternary ammonium compound (qac) genes, particularly qacA and qacB [31]; 

however, their exact role in CHG resistance is not well understood. Although the lack of a 

standard definition for CHG susceptibility prevents comparability of data in many cases, 

studies using internally valid methodologies suggest CHG resistance increases over time 

with widespread use [32, 33•]. A summary of the definitions, mechanisms, and prevalence of 

S. aureus CHG resistance is in Table 1.

Limitations to Defining CHG Resistance

Phenotypic CHG resistance is most commonly defined as a minimum inhibitory 

concentration (MIC) ≥ 4 μg/mL by broth dilution; however, this definition is not 

standardized and may not be clinically relevant [38]. The use of MIC to determine CHG 

resistance has been questioned for several reasons. First, the inhibitory effects are less 

important than the bactericidal effects of an antiseptic, such as CHG. Second, broth dilution 

does not take into account the significant residual biocidal activity of CHG over time [9]. 

Third, CHG concentrations attained topically are orders of magnitude higher than those 

considered to represent CHG resistance. For example, a 0.5% CHG aqueous solution 

equates to roughly 5,000 μg/mL [38]. It has been noted that the term “resistance” may be an 

inaccurate term for biocides like CHG [38]. While some microbes, like spores, are 

intrinsically non-susceptible to CHG [25••], others can survive at least lower concentrations 

of CHG (e.g., 4 μg/mL), due to persistence in the protective environment of a biofilm 

(“phenotypic tolerance”) [41] or through overexpression of efflux pumps (“chlorhexidine 

tolerance”) [42, 49]. Consequently, some prefer the term “reduced susceptibility” [38] or 
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“tolerance” [39] rather than resistance. For purposes of simplicity and consistency, we will 

refer to CHG resistance in this review.

The presence of qacA/B is often used as a marker or surrogate for phenotypic CHG 

resistance; however, the relationship between genotypic and phenotypic resistance is 

inconsistent. These discrepancies may be due to the inability of qacB (which is genetically 

difficult to distinguish from qacA without sequence analysis) to interact with CHG as a 

substrate or the presence of other multidrug efflux pumps active against CHG [34••].

Review of Mupirocin Resistance and Influencing Factors

Mupirocin, previously known as pseudomonic acid A, is a naturally occurring antibiotic 

produced by the soil bacterium Pseudomonas fluorescens that inhibits bacterial isoleucyl t-

RNA synthetase (Fig. 1) [50]. The spectrum of clinically useful antibacterial activity of 

mupirocin includes broad gram-positive coverage, including methicillin-resistant S. aureus 
(MRSA). Mupirocin is rapidly metabolized and rendered in-active in the body, limiting its 

clinical use to topical applications, primarily nasal decolonization of S. aureus and impetigo.

Low levels of mupirocin in the environment are thought to generate a state of amino acid 

starvation, thereby increasing mutation rates and promoting acquisition of resistance that can 

spread either through clonal transmission or plasmid-mediated horizontal transfer from other 

bacteria, such as coagulase-negative staphylococci (CoNS).

The development of mupirocin resistance associated with widespread use of the antibiotic is 

well documented [51]. For example, one hospital observed the prevalence of mupirocin 

resistance among MRSA isolates rise from 2.7% at baseline to 65% 18 months after 

implementation of a universal mupirocin-based decolonization protocol [52]. Conversely, a 

Brazilian hospital saw the prevalence of high-level mupirocin resistance among MRSA 

clinical isolates fall from 44 to just 6% after instituting a policy restricting mupirocin use 

(from unrestricted use in all patients with MRSA colonization or infection plus treatment of 

skin infections to use only for targeted decolonization) [53]. The use of mupirocin to treat 

skin and soft tissue infections also promotes mupirocin resistance [54], and its role in 

treatment of impetigo has been questioned [55].

Similar to hospitals, communities with easy mupirocin access (e.g., over-the counter 

availability) have a high prevalence of mupirocin resistance [56]. At a Veterans Affairs 

Medical Center, the percentage of high-level mupirocin resistant MRSA isolates decreased 

from 31% during a period of unrestricted mupirocin use between 1990 and 1993 to 4% after 

strict “administrative control” of mupirocin prescriptions was implemented in 2000–2001 

[57]. In New Zealand, unrestricted mupirocin use was associated with higher rates of 

resistance (28%) during a period of over-the-counter mupirocin availability from 1991 to 

2000 [56] and resistance dropped significantly (to 11%) by 2013 following policy changes to 

restrict mupirocin use [58]. A summary of the definitions, mechanisms, and prevalence of S. 
aureus mupirocin resistance is in Table 2.
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Clinical Implications of Reduced Susceptibility to S. aureus Decolonization 

Agents

While there is convincing evidence to suggest that decolonization strategies to control S. 
aureus using CHG and mupirocin promote resistance to these agents, the clinical 

implications of resistance in terms of decolonization failure, reduced efficacy to prevent 

HAIs, or development of co- or cross-resistance are unclear. For example, Suwantrarat and 

colleagues analyzed 150 CLABSI-related intensive care unit (ICU) clinical isolates and 

found 64% overall prevalence of CHG resistance in units without routine CHG bathing, 

compared to 86% among units with routine CHG bathing [33•]. Although the greatest 

reduction in CHG susceptibility associated with CHG bathing was seen among gram-

positive bacteria, the overall number of CLABSI events declined and the proportion 

CLABSI due to S. aureus was lower in the units with CHG bathing (1 out of 16 gram-

positive isolates (6.25%) in the CHG bathing group versus 19 S. aureus out of 65 gram-

positive isolates (29%) in the non-CHG bathing group). Notably, enterococci were the most 

common isolate causing CLABSI in this study, 90% of which were CHG resistant; however, 

median CHG MICs were the same in both groups [33•].

Mupirocin resistance, particularly high-level resistance, is associated with decolonization 

failure [44, 69]. However, like CHG, the impact on efficacy in reducing HAIs is not clear in 

clinical studies. Furthermore, in vitro studies suggest the mupirocin resistance phenotype 

may come at a fitness cost in the absence of mupirocin [64].

While isolated CHG resistance is not directly associated with decolonization failure, the 

combination of qacA/B and low-level mupirocin resistance is shown to contribute to MRSA 

decolonization failure (defined as at least one positive weekly screening or clinical isolate 

within 1 year after decolonization) [70]. Although the impact of reduced decolonization 

failure on efficacy to prevent HAIs is unclear, the prevalence of qacA/B genes appear 

enriched among clinical isolates compared to isolates obtained for surveillance, suggesting a 

possible link to decolonization or disinfection failure, increased virulence, or antimicrobial 

co-resistance. For example, qacA/B-carrying S. aureus isolates are associated with invasive 

bloodstream infections [39] and Cho and colleagues found that ICU patients carrying 

qacA/B-positive MRSA were more likely have a clinical isolate (rather than just a 

surveillance MRSA isolate) and longer hospital stays compared to patients carrying qacA/B-

negative MRSA [36]. In addition, non-S. aureus bacteria may develop resistance following 

exposure to CHG; for example, increased Acinetobacter baumannii and Staphylococcus 
epidermidis resistance to CHG were observed 1 year following institution of routine CHG 

bathing [71].

The development of co-resistance (horizontal transfer of resistance genes affecting 

susceptibility to other antimicrobials or antiseptics) between mupirocin, CHG, and/or other 

antimicrobials or antiseptics is a worrisome feature that may be potentiated through 

selection pressure by their widespread use. Plasmids carrying qacA/B genes have been 

identified in S. epidermidis, Staphylococcus hominis, Listeria monocytogenes [72], and 

carbapenem-resistant Klebsiella pneumoniae [73]. CHG and mupirocin co-resistance are 

known to occur via the pSK1 family of conjugative staphylococcal multidrug-resistance 
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plasmids [74], which may harbor resistance genes for other antibiotics such as β-lactams 

[75] and MRSA isolates are often less susceptible to CHG compared to methicillin-sensitive 

S. aureus (MSSA) [76]. Insertion sequences, particularly IS257, flanking the mupA gene 

may allow recombination to occur with chromosomal DNA [77].

Similarly troubling are several studies indicating that CHG resistance may promote 

antibiotic cross-resistance [38] defined as a resistance mechanism leading to resistance to 

more than one agent. In one in vitro evolution study, repeated exposures of CHG led to 

reduced susceptibility of vancomycin-resistant Enterococcus faecium isolates to daptomycin 

[78]. While CHG cross-resistance in S. aureus is controversial [30•, 79], MRSA strains have 

been associated with CHG [80] and mupirocin [81] resistance. Whether selection for 

methicillin resistance is caused by or simply associated with resistance these agents is not 

clear. Aside from antibiotics, efflux-mediated cross-resistance to other antiseptics used for 

hospital cleaning could theoretically occur; however, to our knowledge, inadequate 

environmental disinfection has not been associated with CHG resistance for bacteria not 

already known to be CHG tolerant (e.g., Pseudomonas and Klebsiella spp.) [82]. Given its 

unique mechanism of action, mupirocin cross-resistance to other clinically used antibiotics 

is not known to occur [83].

Universal Versus Targeted Decolonization Strategies

Debate exists whether decolonization strategies should best be implemented universally for 

all patients, regardless of their colonization status, or targeted to patients with identified S. 
aureus colonization. Universal decolonization may be less time intensive (without the 

necessity for screening nasal culture or PCR) and more efficacious but increased CHG and 

mupirocin exposure risks potentially worsening resistance. The REDUCE-MRSA three-arm, 

cluster-randomized trial of ICU patients at 43 hospitals compared screening plus isolation 

without decolonization, targeted decolonization of MRSA-colonized patients with CHG and 

mupirocin, or universal decolonization with CHG and mupirocin. Studying over 122,000 

patients over 30 months, the study showed that universal decolonization was superior to 

targeted decolonization and screening plus isolation without decolonization in reducing 

MRSA infections (hazard ratios 0.92, 0.75, and 0.63, respectively) and all-cause 

bloodstream infections (hazard ratios 0.99, 0.78, and 0.56, respectively) [12•]. A universal 

decolonization strategy is proposed for prevention of surgical site infections as well [84•].

While the authors of the REDUCE-MRSA trial argue that universal decolonization may be 

more cost-effective, a meta-analysis published in 2009 found mupirocin to be cost effective 

only when a targeted decolonization approach was used [85]. In addition, universal 

decolonization may theoretically predispose towards the development of S. aureus 
antimicrobial resistance not only by selection of tolerant S. aureus clones but also through 

increased horizontal gene transfer from CoNS. In a separate study, in vivo transfer of 

plasmid-borne mupA between CoNS and MRSA was observed in a patient who developed 

high-level mupirocin-resistant MRSA during mupirocin treatment, suggesting that CoNS 

commensals may serve as an environmental reservoir for mupirocin resistance [86]. 

Consequently, some have advocated to limit mupirocin exposure to S. aureus-colonized 

patients in order to reduce the risk of emerging resistance [53]. However, a follow-up study 
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of 3,3173 MRSA isolates from the REDUCE-MRSA trial was performed to assess CHG and 

mupirocin resistance and found only 2 CHG-resistant isolates by broth dilution (defined as 

MIC ≥ 8 μg/mL), both occurring during periods without CHG/mupirocin decolonization 

[34••]. High-level mupirocin resistance was more common in the universal decolonization 

arm compared to the arms without decolonization or targeted decolonization; however, the 

difference was not statistically significant and the intervention period was short (18 months).

Mathematical models to evaluate the risk of resistance associated with universal 

decolonization show mixed findings. A model published by Hetem and colleagues (that 

accounted for ecological factors such as horizontal gene transmission from CoNS to S. 
aureus) concluded that the likelihood of worsening S. aureus mupirocin resistance through 

universal decolonization is negligible compared to a targeted decolonization strategy or no 

decolonization [84•]. However, a different model by Deeny and colleagues suggested that a 

universal decolonization could lead to a significantly higher prevalence of mupirocin 

resistance among MRSA strains compared to targeted decolonization after 5 years (21 

versus 9% estimated prevalence of mupirocin resistance, respectively) [87•].

Alternative Decolonization Agents

With increasing resistance, alternative agents for decolonization may need to be considered. 

Investigational antibiotic or antiseptic alternatives for mupirocin-based S. aureus 
decolonization include neomycin, povidone-iodine, fusidic acid, triclosan, intranasal CHG, 

lysostaphin, ethanol, and omiganan pentahydrochloride; however, the clinical efficacy of 

these agents is largely unknown [25••, 61, 88•, 89, 90]. Among these agents, only intranasal 

povidone-iodine has been directly compared to mupirocin in arthroplasty and spine fusion 

patients and was equivalent for the prevention of SSIs when either intervention was 

combined with CHG skin wipes [91]. Relative efficacy of other agents will require head-to-

head trials with mupirocin. Non-antibiotic/non-antiseptic alternatives that have been 

proposed include bacteriophage therapy [92], probiotics [93], medical-grade honey [61•, 

94], and tea tree oil [61•]. If efficacious, these products would theoretically have an 

advantage of achieving decolonization without selecting for antimicrobial resistance.

As an alternative antiseptic to CHG, dilute sodium hypochlorite (bleach) bathing was shown 

to be superior to CHG (both combined with intranasal mupirocin) for S. aureus eradication 

in a randomized controlled trial [95]. Octenidine dihydrochloride (combined with 

mupirocin) has also been investigated as another potential CHG substitute [96], but a recent 

prospective crossover trial failed to demonstrate a benefit to octenidine dihydrochloride body 

washing to prevent MRSA acquisition or MRSA infection [97].

Systemic antibiotics have been used to enhance topical decolonization and could play a 

future role in the management of increasing resistance to decolonization agents. Parras and 

colleagues studied mupirocin versus intranasal fusidic acid plus oral trimethoprim/

sulfamethoxazole (both in combination with CHG bathing) and found that they were equally 

effective for nasal MRSA decolonization [98]. Another study by Simor and colleagues 

demonstrated that oral antibiotics (rifampin and doxycycline for 7 days), in combination 

with CHG and mupirocin, successfully decolonized hospitalized MRSA-colonized patients 
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[69]. While the systemic antibiotic approach was not originally intended to combat CHG or 

mupirocin resistance but rather to address multisite, extranasal MRSA carriage such as 

gastrointestinal, perineum, or skin [61•], oral antibiotics may conceivably be used in certain 

high-risk populations identified as having CHG and/or mupirocin resistant strains in whom 

the benefits of effective decolonization may outweigh the risks of systemic antibiotic 

exposure or in whom decolonization protocols using mupirocin and CHG or dilute bleach 

have failed. However, the routine use of oral antibiotics for S. aureus eradication is not 

recommended by current IDSA Clinical Practice Guidelines [99].

Discussion

CHG and mupirocin remain cornerstones for S. aureus decolonization for the prevention of 

HAIs; however, the emergence of resistance with widespread use raises questions about 

continued efficacy and implications for infection control. The development of CHG and 

mupirocin resistance associated with decolonization is poorly characterized and may be 

underappreciated. However, despite the association between resistance and increased 

decolonization failure, HAIs due to MRSA have in fact decreased by over 50% between 

2005 and 2011 [100], despite increasing mupirocin and CHG resistance during this time [48, 

51, 61•]. Reasons for retained decolonization efficacy may be because in vitro measures of 

resistance are clinically irrelevant or that trials are inadequately designed to account for the 

development of resistance over time.

Many studies demonstrating efficacy of decolonization to reduce infections failed to 

measure mupirocin or CHG susceptibility were performed in a background of low S. aureus 
resistance, or had a short follow-up period. For example, one of the largest multicenter 

randomized trials demonstrating the efficacy of perioperative nasal mupirocin/CHG 

decolonization involving 918 perioperative S. aureus colonized patients (showing a 56% 

reduced rate of S. aureus infection with decolonization compared to placebo) was performed 

in a population with a low background rate of S. aureus resistance; all 1,270 S. aureus nasal 

isolates collected in the study were methicillin and mupirocin susceptible [2]. Mupirocin 

resistance, which is expected to take several years to develop [87•], may not have had 

sufficient time to develop during the two year study [2]. Furthermore, CHG resistance was 

not measured.

Defining resistance is a challenge with no clear consensus definition for CHG or mupirocin 

resistance. In addition, MIC is an imperfect measure of phenotypic CHG resistance. 

Alternative CHG susceptibility methods have been proposed and deserve further scrutiny, 

including surface disinfection and residue testing [79], time-kill curve [101], epidemiologic 

cutoff values [30•, 102], and mean bactericidal concentration (MBC) [38]. On a molecular 

level, while the presence of mupA predicts mupirocin phenotypic resistance, the detection of 

efflux pump genes such as qacA/B likely provides an incomplete picture of CHG resistance. 

In addition to the difficulty of defining, detecting, and performing surveillance for mupirocin 

and CHG resistance, it is also unclear how resistance to these agents should influence 

clinical practice and what role, if any, there is for alternative options for decolonization.
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Conclusion

S. aureus colonization is a well-recognized and modifiable risk factor for infections due to S. 
aureus. Evidence continues to support the use of CHG and mupirocin-based decolonization 

strategies to prevent HAIs, which are responsible for considerable morbidity and mortality 

among hospitalized patients. Despite the association between resistance and increased 

decolonization failure, HAIs due to MRSA have dropped over the last decade despite 

increased mupirocin and CHG use.

Although the clinical implications of S. aureus resistance to CHG and mupirocin are unclear, 

the potential epidemiologic risks including CHG co- or cross-resistance to other agents and 

horizontal transfer of resistance genes are considerable and warrant further study. Future 

studies examining the efficacy of CHG and mupirocin-based decolonization must be done 

with longer or delayed periods of follow-up in order to determine decolonization efficacy in 

settings with resistance.

In order to minimize selection pressure for the development and spread of resistance to CHG 

and mupirocin, it is reasonable to limit the use of these valuable agents for indications 

without established benefit, such as mupirocin for skin infections or over-the-counter use 

[2]. Similarly, some have called for “antiseptic stewardship” measures restricting non-

evidence based CHG applications, such as eliminating CHG from alcohol-based rubs or 

soaps for routine hand hygiene [30•], which may help to control CHG resistance in the 

healthcare environment. Uncertainty remains whether the risks of increased resistance to 

these agents associated with universal decolonization (versus targeted decolonization) 

outweigh the possible benefits of feasibility, efficacy, and cost.
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Fig. 1. 
Mechanisms of bactericidal activity and resistance to CHG and mupirocin. qacA/B 
quaternary ammonium compound genes A and B, t-RNA transfer ribonucleic acid, mupA 
mupirocin resistance gene
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