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Abstract

Purpose: To present a novel method, based on convolution neural networks (CNN), to automate 

weighted log subtraction (WLS) for dual-energy (DE) fluoroscopy to be used in conjunction with 

markerless tumor tracking (MTT).

Methods: A CNN was developed to automate WLS (aWLS) of DE fluoroscopy to enhance soft 

tissue visibility. Briefly, this algorithm consists of two phases: training a CNN architecture to 

predict pixel-wise weighting factors followed by application of WLS subtraction to reduce 

anatomical noise. To train the CNN, a custom phantom was built consisting of aluminum (Al) and 

acrylic (PMMA) step wedges. Per-pixel ground truth weighting factors were calculated by 

minimizing the contrast of Al in the step wedge phantom to train the CNN. The pre-trained model 

was then utilized to predict pixel-wise weighting factors for use in WLS. For comparison, the 

weighting factor was manually determined in each projection (mWLS). The CIRS thorax phantom 

with five simulated spherical targets (5–25 mm) embedded in a lung-cavity, was utilized to assess 

aWLS performance. The phantom was imaged with fast-kV dual-energy (120 and 60 kVp) 

fluoroscopy using the on-board imager of a commercial linear accelerator. DE images were 

processed offline to produce soft-tissue images using both WLS methods. MTT was compared 

using soft-tissue images produced with both mWLS and aWLS techniques.

Results: Qualitative evaluation demonstrated both methods achieved soft-tissue images with 

similar quality. The use of aWLS increased the number of tracked frames by 1–5% compared to 

mWLS, with the largest increase observed for the smallest simulated tumors. The tracking errors 

for both methods agreed within 0.1 mm.

Conclusions: A novel method to perform automated WLS for DE fluoroscopy was developed. 

Having similar soft-tissue quality as well as bone suppression capability as mWLS, this method 

allows for real-time processing of DE images for MTT.
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1. Introduction

Dual energy (DE) fluoroscopy involves obtaining continuous radiographic images at high 

(e.g. 120 kVp) and low (e.g. 60 kVp) x-ray tube energies1, 2. By performing weighted 

logarithm subtraction (WLS) of the low energy from the logarithm of the high energy image, 

a third image is created that enhances soft-tissue visibility by reducing anatomical noise3, 4. 

Using this technique, the weighting factor is optimized to selectively remove bone from the 

combined images1, 2, 4, 5. Conventionally, the weighting factor is determined iteratively by 

minimizing the contrast between bone and neighboring soft-tissue regions5–7. Although this 

approach works well for fixed-angle fluoroscopy, the weighting factor may require 

adjustments in radiotherapy applications where the gantry is rotating during image 

acquisition, such as for markerless tumor tracking (MTT)8 during treatments utilizing 

volumetric modulated arc therapy (VMAT) delivery. In these cases, the fraction of 

overlapping bone vs. soft tissue can change significantly from frame-to-frame8. Manual 

adjustment of the weighting factor limits the real time clinical applications of DE 

fluoroscopy for rotational acquisitions. Hence, a methodology that optimizes the weighting 

factors automatically for varying degrees of bone overlap and addresses the shortcomings of 

manual-WLS (mWLS) is required.

In this study, we describe an automated method, using neural networks, for optimizing the 

weighting factor on a pixel-by-pixel basis that addresses the previous limitations. The 

presented method consists of a calibration and inference phase. During the calibration phase 

a convolutional neural network (CNN) architecture is trained to identify the mapping 

between high/low energy fluoroscopy to the pixel-wise weighting factors. A phantom 

consisting of aluminum (Al) and acrylic (PMMA) step wedges is utilized for calibration 

where the corresponding pixel-wise weighting factors are determined by minimizing Al 

contrast. During the inference phase, the predicted weighting factors from the CNN are used 

to perform automated-WLS (aWLS). We validate this method using an anthropomorphic 

phantom and compare the results against the mWLS technique.

2. Material and Methods

2.1 Theory

DE imaging requires acquisition of two radiographic images at different x-ray tube 

potentials e.g., 120 kVp and 60 kVp9. At diagnostic x-ray energies, the Compton and 

photoelectric absorption dominate as photons interact with tissues in the body10. The 

Compton scattering cross-section is directly proportional to electron density and inversely 

proportional to incident photon energy (Eγ), while the photoelectric effect is proportional to 

atomic number (Z) and Eγ via Z3/E3
γ (up to 200 keV)10. Given these differences, Brody et 

al (1981) showed the possibility of combining two radiographic images so that one material 

(high or low Z) is subtracted1. As an example of this technique, consider high (h) and low (l) 

mono-energetic photon beams irradiating a phantom composed of two homogeneous 

materials such as bone and soft tissue. The transmission intensity of each beam, as it strikes 

the imaging detector, is given by1:
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Il =   Il
0 ⋅   e

− μl
Soft  ⋅  tSoft −  μl

Bone  ⋅  tBone (1)

Ih =   Ih
0 ⋅   e

− μh
Soft  ⋅  tSoft −  μh

Bone  ⋅  tBone (2)

where μ and t represent the attenuation coefficient and thickness of each material, 

respectively. The intensities of individual pixels produced from the high and low energy 

images are given by Ih and Il, respectively. In order to suppress bone, a weighted logarithmic 

subtraction of the two images can be performed, using following equation, which highlights 

soft tissue1, 9:

DE = lnIh − wSlnIl . (3)

In the above equation ln and ws are the natural logarithm and optimal weighting factor, 

respectively, required to produce the soft tissue image. Theoretically, in the limit when ws 

approaches the ratio of linear attenuation coefficients of bone at high and low x-ray photons 

  μh
Bone

  μl
Bone , an optimal image is created that replaces the thickness of bone with tissue. 

However, clinical x-ray sources are polychromatic and varying thickness of the patient will 

affect beam hardening, resulting in different ws values as the x-ray tube is rotated around the 

patient. Therefore, a computational method, described in Section 2.3, is required to select 

the optimal weighting factor.

2.2 Manual Weighting Factor Optimization (mWLS)

Conventionally, the weighting factor is optimized iteratively by reducing the contrast 

between regions of bone and neighboring soft-tissue5, 6. Briefly, a 25×25 pixel region of 

interest (ROI) is placed in the bone and neighboring lung region of the phantom. The 

weighting factor ws (in Equation 3) is then increased from 0 to 1 in increments of 0.01 to 

create DE images. For each weighting factor, the relative contrast between the bone and 

adjacent region is calculated in the resulting DE image. The optimal value of ws is selected 

when the relative contrast is a minimum. Figure 1 shows DE images as the weighting factor 

is varied from 0.5 to 0.7 in 0.05 increments as well as the optimal weighting factor of 0.55 

(top row last column). Of note, small variations in the weighting factor can result in less than 

complete subtraction of bone, and impact tumor visibility.

In rotational acquisitions, the amount of bone in the pre-determined ROI may change 

significantly. This requires re-adjustment of the ROIs as well as optimization of weighting 

factors for each projection which can be laborious and time consuming process in clinical 

applications.

2.3 Automated Weighting Factor Optimization (aWLS)

To address the limitations of mWLS, an automated weight optimization methodology is 

developed that enables real-time removal of the bone with no further interaction. This novel 
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technique is composed of three phases: determination of pixel-by-pixel true weighting 

factors, training a CNN architecture to map fluoroscopic projections into corresponding 

weighting factors and finally performing pixel-by-pixel WLS using predicted weights.

2.3.1 Calibration—The soft tissue weighting factor is defined as the parameter that 

eliminates bone in the combined images and is determined by minimizing the relative 

contrast of the bone. To calibrate the weighting factors, a custom built wedge phantom 

consisting of various thicknesses of Al and PMMA was utilized. We use Al and PMMA as 

surrogates for bone and soft tissue due to their physical similarity and straightforward 

fabrication. The phantom consists 0.48 mm thick Al and 0.87 mm thick PMMA slabs that 

are stacked together to form step wedges with thicknesses varying between 0.48 to 1.92 cm 

and 0.87 to 9.57 cm, respectively (Figure 2, left). Two materials are then placed orthogonal 

to the direction of the x-ray beam to produce 60 different Al+PMMA thickness 

combinations (Figure 2, bottom left) using high (120 kVp, 15 mA, 20 ms) and low (60 kVp, 

60 mA, 20 ms) x-ray tube settings.

To calculate the weighting factor for each pixel, the difference between the transmitted 

intensities of Al+PMMA and PMMA (background region) of DE image is minimized to 

yield an optimization problem stated as follows:

minwS x . y DEAl + PMMA wS −   DEPMMA wS . (4)

Inserting Equation 3 as the minimization constraint and rearranging terms results in an 

equation that is described by raw measurements (the pixel dependency index is dropped in 

the subsequent discussion to avoid confusion of brackets):

min
wS

lnIh
Al + PMMA −   lnIh

PMMA −   wS *   lnIl
Al + PMMA − lnIl

PMMA .
(5)

In the mono-energetic approximation, Equation 5 can be further decomposed to the 

corresponding effective linear attenuation coefficients of the Al and PMMA:

min
  wS

−μh
Al +   wS *   μl

Al * tAl +   −μh
PMMA +   wS *   μl

PMMA * tPMMA .
(6)

Here, t(Al,PMMA) and μ h, l
Al, PMMA  are thicknesses of Al or PMMA and effective linear 

attenuations of Al or PMMA at high/low energies, respectively. To produce the desired soft-

tissue image, the first term in the parenthesis must vanish for all values of Al thickness (tAl). 

Minimization of this equation is not trivial since there are ~106 weighting factors that need 

to be optimized simultaneously within a typical image. However, instead of trying to 

minimize Equation 6, an alternative equation could be minimized to yield the same solution 

for the weighting factors:

min
  wS

−μh
Al +   wS *   μl

Al * tAl       =       min
wS

ln Ih
Al −   wS * ln Il

Al  
(7)
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It is important to emphasize that the solution for both Equation 6 and 7 are satisfied when 

the weighting factors (ws) approach the ratio of the linear attenuation coefficients of Al at 

high and low energies (
μh

Al

μl
Al ). Equation 7 simplifies the minimization problem and can be 

solved

wS =
lnIh

Al   −   lnIh
0

lnIl
Al   −  lnIl

0       . (8)

analytically using raw transmitted intensities by setting the minimum value to zero:

Here, lnIh
0 and lnIl

0 are the natural logarithm of air measurements at high and low energies, 

respectively, which are required for normalization. To suppress noise in the resulting 

weighting factors, a simple median smoothing filter with a kernel size of 11×11 is applied to 

the raw intensities before division. The weighting factor is undefined in air and soft-tissue 

only regions and was estimated using the average weighting factors of the remaining pixels. 

This last step is essential to train neural networks since patient images contain pixels without 

bone. Figure 3 depicts the weighting factors of the calibration phantom calculated as 

described above.

2.3.2 Training Phase—In the second step, the calibration phantom is utilized to train 

the neural network architecture that learns the mapping function between high/low Al

+PMMA images to corresponding soft tissue weights using the full image resolution of 

768×1024, as shown in Figure 4. The CNN architecture consists of three convolutional 

layers, each followed with linear rectifier (ReLU) activation. An intermediate 2×2 kernel 

size was selected to avoid any blurring effect. The number of filters in the first convolutional 

layer is 8 which was doubled in the following layers, totaling in 2746 trainable parameters. 

A shallow network was preferred without any down-sampling operation to emphasize 

mapping of the transmitted intensities to pixel weights rather than feature learning. The 

CNN architecture was implemented and trained using Keras neural networks API (v2.2.4)11 

with TensorFlow (v1.17)12 engine on the backend.

Prior to training, fluoroscopic images were normalized with the corresponding air intensities 

that were also acquired using same kVp settings, with the phantom and couch removed from 

the view. Next, the normalized images were linearized using the natural-logarithmic 

operation. This process is fundamental in training neural networks to eliminate scale 

variability of inputs (transmission intensities). The Stochastic Gradient Descent (SGD) 

algorithm with mini-batch size of 4, resulting in a 4×768×1024 tensor, was utilized to 

minimize the mean-squared error between the predicted and calculated weighting factors. 

Parameter optimization of CNN was performed using the Adam Optimizer13 with a learning 

rate of 0.001. In total 60 calibration phantom projections were utilized for training which 

were acquired using the high (120 kVp) and low (60 kVp) energy imaging protocol. To 

improve generalizability of the model, images were randomly shifted and rotated. 

Additionally, the CNN parameters were regularized using the L2 norm of 0.015 to reduce 
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overfitting. Due to the relatively small learning rate, a total of 2000 training epochs was 

used. Performance of the CNN model was monitored on validation data and training 

terminated if no improvement was observed for 50 consecutive epochs. The training 

procedure was performed offline once and the trained model parameters were stored for 

future use.

During inference, high-low images were used to predict weighting factors as a function of 

pixel location and were consequently used in WLS. This step occurs in real-time and 

eliminates the need for manual region selection and weight optimization. Figure 5 shows a 

flowchart of the aWLS method.

2.4 Image Acquisition Using Fast-kVp Switching Dual-Energy Imager

DE images were acquired using fast-kV switching fluoroscopy implemented in Developer 

Mode of the TrueBeam linear accelerator ver 2.7MR3 (Varian Medical Systems, Palo Alto, 

CA). This approach enables rapid switching of the x-ray tube energy between programmed 

values. In this study, alternating 60 and 120 kVp x-rays were used based on a previous study 

by Haytmyradov et al.6 This study demonstrated that energy combinations of 140–60 kVp, 

130–60 kVp and 120–60 kVp produced the highest (and statistically equivalent) signal-

difference-to-noise ratios (SNDR) per unit dose. The mA setting for each pulse was adjusted 

to balance the air dose between the low (60 mA) and high (15 mA) kVp tube settings. The 

image acquisition rate was set to a maximum of 15 frames per second (fps). This rate results 

in DE images with an effective frame rate of 7.5 Hz. The source-to-axis distance (SAD) and 

source-to-image distance (SID) were 100 cm and 150 cm, respectively, and were fixed for all 

experiments. Acquired x-ray images were encoded in a 16 bit unsigned-integer having 

dimensions of 1024 × 768 and a pixel size of 0.388 mm (2×2 binned). These images were 

subsequently saved in the Varian proprietary XIM format. Following image acquisition, 

XIM files were processed with in-house software written in MATLAB (MathWorks, Natick, 

MA, USA) to create bone suppressed images using methods discussed in Section 2.2 and 

2.3.

To evaluate aWLS, the CIRS dynamic thorax motion phantom (CIRS Inc. Norfolk, VA) was 

utilized. This phantom consists of tissue and lung-equivalent epoxy materials with a 3D 

anthropomorphic spine and ribs constructed from material that simulates cortical and 

trabecular bone. A motion controller is connected to the lung insert, and is capable of 

producing complex 3D motions by utilizing simultaneous translational and rotational 

movements with pre-programmed periodic waveforms. In this study, the cos4 waveform with 

peak-to-peak amplitude 15 mm and period of 2.5 sec was used to simulate respiratory 

motion in the inferior-superior direction. A soft tissue target insert was placed in a lung-

equivalent compartment of the phantom to simulate tumor. Five different spherical target 

inserts with diameters of 5, 10, 15, 20 and 25 mm were used in this study. Separately, an 

anthropomorphic thorax phantom (Radiology Support Devices, Lung Chest Phantom, 

RS-315) was also utilized to perform qualitative assessment of images after WLS. Both the 

motion and the anthropomorphic phantoms were imaged in full 360 degree rotational 

acquisitions to validate robustness of WLS methods to varying degrees of bone-soft tissue 

overlap.
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2.5 Motion Tracking

A non-commercial off-line research software (RapidTrack v3.0, Varian Medical Systems, 

Palo Alto, CA) was used for MTT14 in conjunction with the motion phantom. The MTT 

software is based on a template matching algorithm that localizes the position of the tumor 

in the radiographic image using templates derived from the computed tomography (CT) scan 

(Somatom Open AS, Siemens Healthineers, Germany). Templates were generated from a CT 

scan of the motion phantom and reconstructed with a 0.75 mm slice thickness. Contours of 

the individual targets were generated using Eclipse (ver 15.5, Varian). Subsequently, CT 

images and target contours were imported in the RapidTrack Planning v1.12 (Varian 

Medical Systems, Palo Alto, CA) to produce the individual templates.

Phantom DE fluoroscopy images were further processed using mWLS or aWLS methods to 

create soft-tissue images that were subsequently used with the templates to evaluate MTT. 

For each image, tracking was performed within a search window that was a 20 mm 

expansion of the template for each target. The template was scanned within the search 

window and at each location the normalized cross-correlation (NCC) was calculated 

producing a match score surface. The tracked location of the target was determined by the 

peak of the match score surface and the confidence in the match was obtained from the 

peak-to-side lobe ratio (PSR) of the surface15.

The method for obtaining ground truth (GT) locations of the target was described by 

Haytmyradov et al15. Subsequently, the distance between the tracked location and GT was 

determined for each tracking point. Values less than or equal to a defined threshold were 

tagged as true tracking events, while those values greater than the threshold were identified 

as false events. The threshold values were determined by computing the autocorrelation of 

each template with itself along with the width of the autocorrelation peak. The resultant 

thresholds were 1.3, 2.1, 2.5, 3.3, and 3.5 mm for the 5, 10, 15, 20 and 25 mm targets, 

respectively. In this analysis, PSR was used as a discriminator. Tracking accuracy was 

calculated as the difference between tracked locations and the ground truth of simulated 

tumors.

3. Results

4.1 Weighting factors

Due to the large number of frames, mWLS was applied every 20 frames and then forward 

projected for the next frames8. Depending on the gantry angle, the weighting factors varied 

from 0.54 to 0.61 using mWLS method, where a single weighting factor is used per 

projection. The aWLS method, however, is granular and the weights are determined for each 

pixel in every projection. Two examples of the aWLS weighting factors are shown in Figure 

6 with the corresponding 60 kVp image (shown on top row). Predicted weighting factors 

change with the amount of bone overlap and larger values are observed in regions containing 

thicker amounts of bone such as the spine.

Qualitative Evaluation—To qualitatively assess bone suppression capability of the WLS 

methods, several projections consisting of various amounts of bone and soft-tissue overlaps 
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were compared side-by-side. For the CIRS phantom, a 25 mm tumor inserted in the lung 

cavity of the phantom was compared against single (120 kVp) and DE images obtained with 

both WLS methods. Results of this comparison are shown in Figure 7. Similarly, the 

anthropomorphic thorax phantom was imaged at two different gantry angles corresponding 

to the largest amount of bone and soft-tissue overlap (Figure 8). Both DE images reduced 

anatomical noise and improved visibility of soft-tissue. Moreover, no apparent visual 

differences were observed in the resulting DE images with aWLS vs. mWLS.

4.3 Tracking Evaluation

The MTT results are summarized in Table 1. The PSR threshold is shown for both methods 

as a function of target size. This value represents the PSR value required to maintain a false 

tracking event rate of < 0.05. In general, the PSR thresholds were slightly lower for aWLS 

vs. mWLS across nearly all target sizes. As such, aWLS resulted in a higher percentage of 

frames for which tracking was accurately performed. The average PSR values as a function 

of target size were slightly less with aWLS vs. mWLS due to the lower PSR threshold with 

the maximum difference in average PSR of 0.18 observed for the 25 mm target. The effect 

of these two methods on local accuracy showed differences of < 0.1 mm across all tumor 

sizes, which were not statistically significant. In sum, both aWLS and mWLS produced 

nearly equivalent tracking results with a slight advantage to the aWLS method as it increased 

number of successfully tracked frames, particularly for smaller targets.

4. Discussion

The WLS technique used in conjunction with DE imaging has been shown to improve tumor 

localization5, 16–18 and enhance performance of MTT methods4, 8, 19–21 by suppressing bony 

anatomy. Conventionally, soft-tissue images are created by reducing the contrast of the bone 

and neighboring soft-tissue region followed by assigning a global weighting factor across 

the image. Although, this method shows promising results, its application is limited to static 

projections. Moreover, a global weighting factor may not be ideal to completely eliminate 

bones due to variations of densities and thicknesses of materials within the body.

Darvish-Molla et al. (2019) proposed an algorithm to calculate pixel-based weighting factors 

using prior CT data22. Their algorithm consists of pre-calculating weighting factors using a 

calibration phantom. Next, a CT image of the phantom is used to create digitally 

reconstructed thicknesses (DRTs) of bone and soft-tissue. To determine pixel-wise weighting 

factors, the weighting values for different pixel locations are determined by interpolating (or 

extrapolating) the values of the pre-calculated weighting factors. Comparisons of measured 

and simulated weighting factors demonstrated 3% agreement for all bone overlap regions. 

One disadvantage of this method is that the calculated pixel-wise weights may be misaligned 

with real-time projections and hence accurate image registration is necessary to produce 

high quality subtraction.

In our study, a novel method was developed to automate WLS of DE imaging based on 

neural networks. As described previously, the algorithm consists of creating per-pixel 

weighting factors using a calibration phantom and training a neural network that maps 

projections of the calibration phantom at high/low photon energies to corresponding 
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weighting factors. During the inference, the pre-trained model is used to predict weighting 

factors for a given phantom and perform WLS to remove bones. In this study, a step wedge 

phantom was used for calibration purposes. However, the methodology described herein is 

not limited to a particular calibration phantom. In particular, utilization of ramp phantom 

would provide larger dynamic range for Al+PMMA thickness combinations. Additionally, 

our method uses raw projections for both the weighting factor calculation and subsequently 

WLS, thus eliminating misregistration issues. In this study, the CNN architecture was 

preferred to map transmission intensities to weighting factors, however, other machine 

learning strategies such as polynomial regression can also be employed23. One limitation of 

this study is that Al and PMMA were used as a surrogate for bone and soft tissues. However, 

the impact of this approximation on the resultant images and MTT is minimal.

Deployment of the presented methodology follows the natural workflow of clinical image 

acquisition. To create soft-tissue images from DE images, the pre-trained model can be 

stored and used to perform WLS in real-time. The model can be verified and/or re-calibrated 

during routine quality assurance following the methodology described above.

5. Conclusion

A novel method to automate WLS of DE imaging was developed to adaptively determine 

per-pixel weighting factors and create soft-tissue images. The presented method was 

validated both qualitatively and quantitatively by comparing to aWLS to mWLS. Results of 

this study showed that visually aWLS is similar to mWLS, while in terms of tumor MTT, 

aWLS had a slight advantage over mWLS. The developed aWLS method is fully automated 

allowing for real-time processing of DE images in clinical applications. By providing real-

time visualization of lung tumors, DE imaging using the OBI on a linac can enhance MTT 

and image-guided radiotherapy.
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Figure 1. 
Visualization of a 15 mm target overlapping with vertebrae as a function of the weighting 

factor. Starting at the top left, the weighting factors are 0.45, 0.5, 0.55, 0.6, 0.65 and 0.7 

respectively. An optimal weighting factor is 0.55 shown on top row third column
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Figure 2. 
Demonstration of the calibration setup. The top image shows the wedge phantom on the 

treatment table in front of the OBI detector of the linac. A projection image of the of Al

+PMMA phantom is shown in the lower left, while an image of the PMMA wedge alone is 

shown in the lower right.
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Figure 3. 
Soft tissue weighting factor obtained using the wedge calibration phantom for each pixel. 

The edges of the phantom corresponding to air or PMMA are assigned average values. Each 

horizontal strip represents a different thickness of Al.
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Figure 4. 
Flowchart of the training phase. Transmission intensity images (left), normalized to air, are 

passed into CNN architecture (middle) to predict corresponding weighting factors (right).
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Figure 5. 
Flowchart of the automated WLS method. Ih and Il represents measured transmitted 

intensities of high and low kVp settings, respectively (left images). A mapping of the soft 

tissue weighting factors predicted using the pre-trained network is shown in the middle. The 

image on the right represents the DE image created by combining high and low energy 

images with the weighing factors using Equation 3.
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Figure 6. 
Demonstration of weighting factors obtained using neural networks. Projections of the 

anthropomorphic phantom at 60 kVp (top) and corresponding pixel-wise weighting factors 

for two different views. Higher values of the weighting factor are observed for bone pixels. 

The shoulder and abdominal region has higher values due to photon starvation.
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Figure 7. 
Projections of the CIRS phantom using 120kVp (left column), mWLS (middle column) and 

aWLS (right column) at 270 gantry angle. No expressive differences are observed between 

mWLS and aWLS techniques.
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Figure 8. 
Projections of the anthropomorphic thorax phantom using 120 kVp (left column), mWLS 

(middle column) and aWLS (right column) imaging at 270 and 315 gantry angles. No visual 

differences are observed between the both WLS techniques. Note: this phantom does not 

have an embeded tumor in the lung.
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Table 1.

MTT comparison between aWLS and mWLS methods. Each column represents simulated tumor diameter. 

Tracking local accuracy is similar using both methods, while tracking success rate is slightly improved with 

the aWLS method.

PSR Threshold

Target Size 5 mm 10 mm 15 mm 20 mm 25 mm

aWLS 3.08 3.67 3.80 3.68 3.28

mWLS 3.15 3.72 3.84 3.68 3.78

Tracked Frames

Target Size 5 mm 10 mm 15 mm 20 mm 25 mm

aWLS 239/438 (54.5%) 367/446 (82.3%) 386/446 (86.5%) 428/448 (95.5%) 444/447 (99.3%)

mWLS 216/438 (49.3%) 350/446 (78.5%) 377/446 (84.5%) 411/448 (91.7%) 441/447 (98.7%)

p-value <0.01 <0.01 <0.01 <0.01 <0.01

Mean PSR (Std. Dev) Values

Target Size 5 mm 10 mm 15 mm 20 mm 25 mm

aWLS 3.42+/−0.22 4.76+/−0.52 5.64+/−0.91 6.08+/−1.22 6.67+/−1.29

mWLS 3.47+/−0.22 4.85+/−0.50 5.71+/−0.92 6.22+/−1.26 6.85+/−1.25

p-value 0.02 0.02 0.29 0.10 0.04

Tracking Accuracy (mm)

Target Size 5 mm 10 mm 15 mm 20 mm 25 mm

aWLS 2.74 ± 4.82 0.89 ± 2.37 0.51 ± 1.61 0.38 ± 0.69 0.31 ± 0.28

mWLS 2.83 ± 4.99 0.85 ± 2.38 0.59 ± 2.12 0.38 ± 0.50 0.30 ± 0.51

p-value 0.79 0.8 0.53 1.0 0.72
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