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Summary

The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, 

and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, 

and optical transparency during early life stages, it is a particularly useful model to address 

questions about the cellular microbiology of host-microbe interactions. Although its use as a 

model for systemic infections, as well as infections localized to the hindbrain and swimbladder 

have been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish 

gastrointestinal tract have been neglected. Here, we summarize recent findings regarding the 

developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian 

systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, 

and more generally, for studies of host-microbe interactions in the gut.
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1. Introduction

Due to its fecundity, genetic tractability, small size, rapid development, and optical 

transparency during early development, the zebrafish (Danio rerio) has emerged as one of 

the most well-used vertebrate model organisms in cellular microbiology. Several reviews 

have focused on zebrafish as a model for infectious disease (Tobin et al., 2012; Sullivan et 
al., 2017; Duggan and Mostowy, 2018), but all were focused on systemic disease models or 

localized infections of the swim bladder or hindbrain; none discussed infections of the 
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gastrointestinal (GI) tract. Over the last few years however, literature in this area has grown 

considerably, as has literature focusing on the microbiota, and characterization of the 

transcriptional profiles and cell types of the zebrafish GI tract, allowing us to draw 

comparisons to the mammalian GI tract. These studies have made it clear that the 

development and physiology of the zebrafish GI tract bear many similarities to humans. For 

example, ~70% of human genes have a corresponding orthologue in zebrafish (Howe et al., 
2013), and the transcriptional regulatory networks controlling intestinal development and 

physiology are highly conserved between fish and mammals (Lickwar et al., 2017). These 

findings highlight the utility of the zebrafish model to study in vivo host-microbe and host-

pathogen interactions in the GI tract. With this review, we summarize recent literature 

highlighting structural and molecular similarities between zebrafish and mammalian GI tract 

architecture and immune surveillance. We further discuss examples of studies looking at 

host-microbe and host-pathogen interactions in the zebrafish GI tract, highlighting 

experimental features and summarizing the most important findings. We hope this review 

will highlight the utility of the zebrafish model for GI tract- microbe studies, bridging the 

gap from whole animal studies to single cell and molecular, mechanistic experiments.

2. Organization and development of the zebrafish intestine

2.1. Intestinal segmentation and architecture in zebrafish

The primary functions of the intestine include digestion and absorption of nutrients, and the 

elimination of waste products. The zebrafish intestine is highly homologous with the 

mammalian intestine in its development, organization, and function (Pack et al., 1996; 

Wallace et al., 2005; Ng et al., 2005; Carten and Farber, 2009). Gene expression and 

transcriptional regulation in intestinal epithelial cells are highly conserved along the 

segmental regions of the mammalian and zebrafish intestines (Lickwar et al., 2017), and 

many metabolic functions are also conserved (Schlegel and Gut, 2015; Quinlivan and Farber, 

2017). Both zebrafish and mammalian GI tracts are covered by a protective mucus layer that 

predominantly consists of the gel-forming mucin Muc2 as its structural component 

(Johansson et al., 2011; Jevtov et al., 2014). Mucin is primarily secreted by goblet cells, 

which in adult zebrafish are distributed throughout the gut (albeit more abundant in the 

middle and posterior gut) (Wallace et al., 2005; Ng et al., 2005).

There are, however, some key functional and architectural differences between zebrafish and 

mammalian GI systems to consider (Figure 1). The mammalian gastrointestinal tract is 

generally composed of five distinct parts: (1) the stomach, which partially digests food by 

mixing it with acid and digestive enzymes, (2) the duodenum, which aids chemical 

digestion, (3) the jejunum, which absorbs nutrients, (4) the ileum, which absorbs bile salts, 

and (5) the colon, which absorbs water and salts. The zebrafish intestine is divided into three 

histologically defined segments, including (1) the anterior intestinal bulb, (2) the middle 

intestine, and (3) the posterior intestine. This nomenclature for the zebrafish gut is typically 

maintained from larval to adult stages. In contrast to mammals, zebrafish lack the typical 

signatures of a stomach organ and the intestinal bulb undergoes no acidification. The 

passage of microbes through the acidic environment of the human stomach, which can reach 

pH values as low as 1.4 (Dressman et al., 1990), serves as a regulatory cue for some GI 
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pathogens (Ramos-Morales, 2012), and its absence may impact the outcome of infection. 

Zebrafish do, however, express several digestive enzymes that are functionally equivalent to 

mammalian gastric markers, including rennin, nothepsin, several cathepsins, and the lipase 

Lipf (Wallace et al., 2005; Wang et al., 2010). The different regions of the adult zebrafish gut 

have distinct functions analogous to the mammalian small intestine and colon. Functionally, 

the anterior intestinal bulb likely plays a role in bile salt recovery (Lickwar et al., 2017), 

while the anterior and middle regions may aid in lipid and protein absorption (Ng et al., 
2005; Brugman, 2016). Like the mammalian colon, the posterior region of the zebrafish gut 

is responsible for ion and water absorption (Wallace et al., 2005). Established markers of the 

mammalian small and large intestine (e.g., villin and fabp2) are differentially expressed 

along the length of the zebrafish intestine (Wang et al., 2010). Transcriptional domains 

identified in larval zebrafish are maintained in adults, and a model delineating five 

transcriptional and functional domains has been proposed, and includes ada for the anterior, 

duodenum-like region, fabp2 and rbp2a for the anterior, jejunum-like region, fabp6 and 

slc10a2 for the middle, ileum-like region, and lamp2 for the middle to posterior, colon-like 

region (Lickwar et al., 2017).

The intestinal architecture of zebrafish is also less complex than that of mammals as it 

consists only of the mucosa, muscularis externa, and serosa layers. Underneath the mucosa 

and epithelium is the lamina propria containing blood capillaries, muscle fibers, and 

lymphatic vessels. Surrounding this layer is the muscularis externa composed of circular and 

longitudinal smooth muscle fibers and enteric neurons (Wallace and Pack, 2003). The lining 

of the mucosa is folded into large, randomly-shaped intestinal folds instead of the 

mammalian villi and intestinal crypts (crypts of Lieberkühn) (Pack et al., 1996; Wallace et 
al., 2005; Wang et al., 2010). Since zebrafish lack crypts of Lieberkühn, which in mammals 

are the source of intestinal stem cells, cell division instead occurs at the base of the folds and 

cells migrate to the tip of the folds where they become apoptotic (Wallace et al., 2005; Wang 

et al., 2010). The time course for cell migration in the anterior intestine is 5–7 days, while 

migration takes 7–10 days in the middle intestine (Wallace et al., 2005). Goblet cells are still 

present in zebrafish, but distributed throughout the mucosa rather than localized to crypts 

(Pack et al., 1996; Wang et al., 2010).

The enteric nervous system (ENS) is a functionally important component of the GI system 

both in zebrafish and mammals, and consists of enteric neurons and glial cells. These cells 

modulate several key functions including gut peristalsis, hormone secretion, water balance, 

and absorption. In contrast to the more architecturally complex mammalian ENS which is 

composed of two plexuses (i.e., myenteric and submucosal), each with their own 

interconnected ganglia, the zebrafish ENS develops into a single myenteric layer of neurons, 

glia, and other cell types (e.g., interstitial cells of Cajal) without any clearly defined ganglia 

(Wallace et al., 2005).

2.2. Development of the zebrafish gastrointestinal tract

Intestinal development in zebrafish larvae can be categorized into 3 major stages (Ng et al., 
2005). Stage 1 is defined by formation of the lumen; a thin rod of endodermal cells that 

undergo anterior-to-posterior differentiation and proliferation (Wallace and Pack, 2003); by 
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60 hours post-fertilization (hpf) the lumen has expanded rostrocaudal (Kimmel et al., 1995; 

Alvers et al., 2014). During stage 2, the intestinal epithelium becomes polarized via cell type 

differentiation (Pack et al., 1996; Wallace et al., 2005), and by 76 hpf, enteroendocrine cells 

are present throughout the anterior to posterior regions of the intestine. Enteroendrocrine 

cells produce and release active compounds (e.g., hormones) into the surrounding tissues as 

well as modulate enzyme secretions and muscle contractions (Wallace et al., 2005; 

Takashima et al., 2013). At 76 hpf, the beginning of stage 3, intestinal folds have developed 

in the anterior and middle intestinal regions, and peristaltic contractions have begun (Pack et 
al., 1996; Wallace et al., 2005). Growth and differentiation of the digestive tract continues, 

and by 5 days post-fertilization (dpf), the majority of the system is functional (Wallace and 

Pack, 2003; Ng et al., 2005); at this point the larval zebrafish digestive tract is comprised of 

the mouth, pharynx, esophagus, intestinal bulb, intestine, and anal opening. Extensive 

folding can be found within the anterior intestine, but at 5 dpf the posterior intestinal regions 

have no folds (Ng et al., 2005), and by 6 to 8 dpf, cell proliferation begins to decrease 

(Cheesman et al., 2011). As the larval zebrafish ages, folding continues and the folds 

themselves become shorter in the caudal direction (Menke et al., 2011; Li et al., 2019), and 

the lumen begins to widen at the anterior end and becomes progressively smaller towards the 

posterior region (Wallace et al., 2005).

Enteric precursors originating from the neural crest migrate into the intestinal tract at 32 hpf 

and reach the posterior end by 66 hpf (Olden et al., 2008; Heanue et al., 2016). By 4 dpf the 

zebrafish gut exhibits spontaneous, coordinated contractions and the digestive system is fully 

functional by 7 dpf (Holmberg et al., 2007). We refer readers to excellent recent reviews of 

ENS function and its interactions with the various other cells types of the zebrafish intestine 

(Ganz et al., 2016; Ganz, 2018).

3. Immune surveillance of the gastrointestinal tract

Zebrafish have made valuable contributions to our understanding of vertebrate immunity 

(Martins et al., 2019). Multiple comprehensive reviews discuss the teleost immune system 

(Traver et al., 2003; Trede et al., 2004; Sullivan and Kim, 2008a; Meeker and Trede, 2008; 

Uribe et al., 2011; Renshaw and Trede, 2012; Rauta et al., 2012), and zebrafish immunity in 

the context of infectious disease (Sullivan and Kim, 2008b; Meijer and Spaink, 2011; Masud 

et al., 2017). The zebrafish and human immune systems share many similarities, including 

both innate and adaptive components (Traver et al., 2003; Renshaw and Trede, 2012).

3.1. Innate immunity and the GI tract

Larval zebrafish solely depend on their innate immune system to fend off invading microbes 

since the adaptive immune system is not functional until 4–6 weeks post-fertilization 

(Willett et al., 1999; Lam et al., 2004). During this time, colonization of the larval gut by 

commensals can prime innate immune cells against infections through a Toll-like receptor 

(TLR) and myeloid differentiation primary response 88 (MyD88) dependent pathway 

(Galindo-Villegas et al., 2012). One of the benefits of zebrafish is their optical transparency, 

allowing for the use of transgenic lines with fluorescently-marked innate immune cells like 

macrophages (Ward, 2003; Redd et al., 2006; Hall et al., 2007; Ellett et al., 2011; Walton et 
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al., 2015; Sanderson et al., 2015; Nguyen-Chi et al., 2017), neutrophils (Mathias et al., 2006; 

Renshaw et al., 2006; Buchan et al., 2019), and eosinophils (Balla et al., 2010). These 

resources have given valuable insights into the role of innate immune cells in intestinal 

homeostasis and pathogenesis.

Intestinal macrophages play a role in microbiome homeostasis and complement regulation. 

Loss of intestinal macrophages in adult zebrafish irf8 mutants causes dysbiosis of the 

resident gut microbiota, and a reduction in the complement component C1q (Earley et al., 
2018). Neutrophils are recruited to the intestine in response to inflammatory stimuli such as 

the pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS). Immersion of 

larvae in LPS activates MyD88 and tumor necrosis factor-alpha (TNF-α), and leads to 

intestinal neutrophil influx (Bates et al., 2007). Colonization of larvae by a conventional 

microbiota promotes production of alkaline phosphatase by the gut epithelium, which 

detoxifies microbiota-derived LPS and prevents excessive inflammation to maintain 

intestinal homeostasis (Bates et al., 2007). Zebrafish TLRs that recognize PAMPs share key 

structural similarities with mammalian TLRs, but some TLRs may differ in functional 

aspects (Palti, 2011). For example, in mammals TLR4 responds to LPS, while zebrafish 

TLR4 paralogs (Tlr4a and Tlr4b) fail to recognize and respond to LPS (Sullivan et al., 
2009). Since zebrafish are, however, able to mount a MyD88-dependent inflammatory 

response upon LPS stimulation (Bates et al., 2007; Yang et al., 2017), it is likely that a 

hitherto unidentified TLR could be functionally equivalent to mammalian TLR4. At least 17 

TLRs have been identified in zebrafish (Jault et al., 2004; Meijer et al., 2004), suggesting 

redundant and potentially overlapping functions; we refer readers to another review of TLRs 

and their known functions in teleost species (Palti, 2011).

Zebrafish neutrophils typically migrate to sites of infection or injury at a faster rate than 

macrophages (Ellett et al., 2011), thus forming the first line of defense against pathogen 

insult. The presence of a commensal intestinal microbiota increases the number of 

circulating neutrophils, enhances neutrophil migratory velocity, and recruitment to extra-

intestinal sites of injury (Kanther et al., 2014). Zebrafish neutrophils are functionally largely 

equivalent to mammalian neutrophils: they are capable of phagocytosis and degranulation, 

produce cytokines and reactive oxygen species (ROS), and can form neutrophil extracellular 

traps (NETs) (Lieschke et al., 2001; Harvie and Huttenlocher, 2015; Palie et al., 2007).

The precise role of eosinophils has been difficult to delineate due to a lack of specific 

markers, but they may play a role in responding to intestinal helminth infections (Balla et al., 
2010). Adult zebrafish eosinophils share morphology and differential gene expression with 

mammalian eosinophils (Lieschke et al., 2001). When challenged with helminth antigens or 

- infection, eosinophil numbers within the zebrafish intestine increase, indicating 

conservation of eosinophil-mediated immune responses between zebrafish and mammals 

(Balla et al., 2010).

Secretion of antimicrobial molecules into the intestinal mucosal layer, both constitutive and 

in response to TLR activation by PAMPs, is also conserved from mammals to zebrafish. 

Zebrafish produce antimicrobial peptides (AMPs), of which β-defensins, cathelicidins, 

hepcidins, and histone-derived peptides are also found in mammals, and piscidins are fish 
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specific (Zou et al., 2007; Katzenback, 2015). Secreted peptidoglycan recognition proteins 

(PGRPs) (Chang et al., 2007) and antibacterial lectins functionally similar to mammalian 

pore forming C-type lectins (Brinchmann et al., 2018) also contribute to zebrafish intestinal 

mucosal immunity. Secreted antimicrobial factors are expressed throughout the zebrafish 

intestine, both in larvae and adults (Oehlers et al., 2011a).

3.2. Adaptive immunity and the GI tract

The zebrafish adaptive immune system reaches morphological and functional maturity by 4–

6 weeks post-fertilization (Willett et al., 1999; Lam et al., 2004) and consists of B- and T-

cells capable of antigen receptor rearrangement in response to pathogens via recombination 

activating genes 1 and 2 (ragl and rag2) (Trede and Zon, 1998; Langenau and Zon, 2005). 

Other initiators of the adaptive immune response, like major histocompatibility complex 

class I and II molecules, are also present in zebrafish (Sültmann et al., 1993; Sültmann et al., 
1994; Takeuchi et al., 1995; Rauta et al., 2012).

The zebrafish lymphatic system shares many morphological, molecular, and functional 

features with those of mammals, but lacks some lymphoid tissues, like lymph nodes (Jung et 
al., 2017) and Peyer’s patches (Boehm et al., 2003; Brugman, 2016). However, there is 

evidence that the enterocytes of the larval and adult zebrafish mid-intestine are highly 

endocytic (Oehlers et al., 2011a) and perform a specialized function in luminal antigen 

sampling. Consistent with that, a labeled antigen derived from a Yersinia ruckeri immersion-

vaccine is initially detected in the mid-intestine enterocytes of zebrafish larvae, followed by 

the spleen (Korbut et al., 2016). In adult zebrafish orally infected with Mycobacterium 
marinum, bacteria are taken up into vacuoles by antigen-sampling cells, which make up the 

majority of the epithelium of the posterior mid-intestine. Bacteria are trafficked to the basal 

side of the intestine, where they subsequently co-localize with leukocytes, before eventually 

travelling to the liver and spleen (Løvmo et al., 2017).

Teleost B-cells exhibit additional phagocytic and microbicidal functions not typically seen in 

higher vertebrates (Li et al., 2006; Øverland et al., 2010), and can also function as initiating 

antigen-presenting cells (APCs), linking the innate and adaptive immune systems in 

zebrafish (Zhu et al., 2014; Lewis et al., 2014). In teleosts, intestinal mucosal immunity is 

largely dependent on B-cells acting as the primary responders to perturbation, but our 

understanding of their origins and full spectrum of functions in maintaining gut homeostasis 

is still limited (see Parra et al., 2016 for review).

4. Zebrafish infection models of gastrointestinal pathogens

4.1. Common routes of infection

Several approaches are currently in use to establish infections with GI pathogens in the 

zebrafish host, each with distinct advantages and disadvantages to consider. One of the most 

commonly used routes of infection is by immersion of larvae or adults in a suspension 

containing a defined pathogen concentration (for detailed protocols see e.g. Varas et al., 
2019 for larvae and Mitchell et al., 2017 for adults). The former also offers a side-by-side 

comparison of infection resulting from immersion vs. caudal vein injection. Immersion 
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infection can be used for larvae beginning when the mouth first opens at around 3 dpf (Ng et 
al., 2005). It is advantageous due to its extremely high throughput and does not require much 

specialized equipment. Its disadvantage is that the exact dose of pathogen taken up by the 

fish, although it can be measured, can only be indirectly controlled by varying the 

concentration of pathogen in the suspension. Immersion cannot be applied to strictly 

anaerobic microbes. For some GI pathogens, in particular those for which zebrafish are not a 

natural host, immersion does not lead to robust intestinal colonization (e.g., Tysnes et al., 
2012; Stones et al., 2017 etc.). More recently, the protozoan Paramecium caudatum, a 

natural prey for larval zebrafish, has been adapted as a vehicle for food-borne infection 

models (Stones et al., 2017; Flores et al., 2019; Fan et al., 2019). The protozoan internalizes 

bacteria into storage vacuoles and following uptake of Paramecia by the zebrafish and 

degradation of the protozoan in the foregut, the bacterial load is released into the middle 

intestine. This approach, although more laborious than simple immersion, still allows for 

high throughput and mimics human exposure to GI pathogens by consumption of 

contaminated food. Another advantage is that P. caudatum passages the pathogen through 

acidifying storage vacuoles prior to its release into the zebrafish gut, and the low pH may 

prime the pathogen similarly to the low pH environment of the human stomach, as discussed 

in section 2. A third, more labor intensive route of infection is oral gavage of adults or 

microgavage of larval zebrafish (see Cocchiaro and Rawls, 2013 for a detailed protocol). A 

defined amount of pathogen suspension is directly delivered into the foregut via a fine 

capillary that is inserted into the mouth and esophagus of the animal. This technique comes 

with several costs: it is time consuming, requires specialized equipment, and a skilled 

experimenter is necessary to prevent injury or death of the infected animal. Sufficient sample 

sizes are necessary to compensate for attrition or failure of the inoculum to reach the 

intestine due to regurgitation (Runft et al., 2014). Lastly, some studies inject GI pathogens 

into the caudal vein or peritoneum of zebrafish, which introduces the pathogen into the 

blood stream. Despite the difference in administration, these studies have contributed 

valuable insights into microbial factors modulating inflammation and tissue damage, which 

often drive mortality as a result of infection (Dong et al., 2013; Okuda et al., 2014).

Below, we discuss GI pathogens studied in zebrafish to date, along with relevant outcomes 

from those studies. The developmental stage and route of infection used in each case are 

listed in Table 1.

4.2. Edwardsiella and Aeromonas infections in zebrafish

Major aquaculture and opportunistic human pathogens include members of the Edwardsiella 
and Aeromonas genera (Lee and Wendy, 2017). The consumption of food contaminated with 

these bacteria can cause gastroenteritis in healthy persons, and more severe diarrheal disease 

in elderly and immunocompromised individuals (Clarridge et al., 1980; Gracey et al., 1982). 

Edwardsiella species known to infect fish include E. ictaluri, E. hoshinae, E. piscicida, and 

E. tarda, but only the latter is known to affect humans (Jordan and Hadley, 1969; Hawke et 
al., 1981; Nomura and Aoki, 1985). Like other fish pathogens, the Edwardsiella and 

Aeromonas species enter their host through the skin and/or gills (Ventura and Grizzle, 1987; 

Menanteau-Ledouble et al., 2011). Infection of zebrafish with E. tarda (Pressley et al., 2005) 

or E. ictaluri (Hawke et al., 2013) induces the pro-inflammatory cytokines IL-β and TNF-α, 
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leads to the development of hemorrhagic septicemia and increases mortality. Furthermore, 

studies using zebrafish infection models have elucidated E. tarda virulence factors such as 

(1) the type III secretion system essential for invasion and intracellular replication in 

phagocytic cells (Okuda et al., 2014), (2) an invasin protein important for haemolytic 

activity and biofilm formation (Dong et al., 2013), and (3) flagellar components involved in 

motility, biofilm formation, and adhesion (Xu et al., 2014). As with E. tarda, a type III 

secretion system dependent increase in mortality is seen with E. piscicida, although a type 

VI secretion system was identified as an additional virulence factor in the latter (Hu et al., 
2019). The same model was used to show that the NOD-like receptor mediated immune 

response is required for upregulation of antibacterial genes, including beta-defensins and 

major histocompatibility complex (MHC) related genes, in response to E. piscicida infection 

(Wu et al., 2019). Failure to induce the pathway leads to increased bacterial burden and 

mortality in response to infection. Several studies have used zebrafish to investigate the 

efficacy and mechanism of action of potential novel therapeutics to combat Edwardsiella 
infections, including vaccines (Guo et al., 2015) and immunomodulatory nanoparticles that 

fortify resistance against pathogens (Udayangani et al., 2017).

Members of the genus Aeromonas that affect humans include A. hydrophila, A. caviae, A. 
veronii, and A. dhakensis, while A. salmonicida is fish-specific (Clarridge et al., 1980; 

Sacho et al., 1990; Joseph and Carnahan, 1994). Immersing larval or injured adult zebrafish 

in A. hydrophila upregulates the production of IL-ip and TNF-a in response to colonization, 

and increases neutrophil recruitment to the wound site (Saraceni et al., 2016). Aeromonas 
sp. isolated from the zebrafish gut exhibit intrinsic antibiotic resistance and harbor 

extracellular enzymes such as lipase, hemolysin, proteases, and DNase with the potential to 

degrade host cells, indicative of their potential to cause disease in the zebrafish host 

(Hossain et al., 2018). Gut colonization with A. hydrophila alters the adult zebrafish 

intestinal microbiota composition, concomitantly increasing pathogen abundance and 

decreasing beneficial intestinal bacteria (Yang et al., 2017). Although both A. hydrophila 
and A. veronii are able to colonize the intestine and cause mortality (Saraceni et al., 2016; 

Ran et al., 2018), A. veronii expresses more aerolysin toxin, which causes intestinal lesions 

and invasion of the intestinal barrier, and is associated with increased virulence compared to 

A. hydrophila (Ran et al., 2018).

4.3. Vibrio infections in zebrafish

Members of the Vibrio genus are natural inhabitants of warm coastal waters. The 

consumption of raw or contaminated seafood often leads to vibriosis in humans, a disease 

characterized by diarrhea, nausea, and/or abdominal cramps (Johnston et al., 1986). Though 

gastroenteritis is most closely associated with V. cholerae, V. parahaemolyticus and V. 
vulnificus can also cause intestinal disease, serious wound and soft tissue infections, as well 

as bacteremia (Johnston et al., 1986; Lee et al., 2003; Tsai et al., 2009). Various groups have 

attempted to model Vibrio-induced diseases in both mammalian and non-mammalian 

systems, however the animals used were not natural hosts and required tedious manipulation 

(Rowe et al., 2014). Vibrios naturally colonize zebrafish, and some strains are natural fish 

pathogens, so using zebrafish as a host to model disease may offer valuable insights into 

Vibrio pathogenesis and aid the identification of therapies to combat infection (Runft et al., 
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2014). The V. cholerae serogroup O1 biotype El Tor responsible for cholera efficiently 

colonizes the zebrafish intestine and forms microcolonies in close contact with the intestinal 

epithelial surface similar to those seen in human specimen (Runft et al., 2014). The pathogen 

is shed into the water and can be transmitted to naïve fish (Runft et al., 2014). Adults 

immersed in V. cholerae develop cholera toxin-independent diarrhea characterized by 

increased mucin production and excretion (Mitchell et al., 2017). Although cholera toxin is 

dispensable for colonization and pathogenesis in zebrafish, accessory toxins including RTX 

and HlyA are induced during intestinal colonization, and the metabolic regulator CRP is 

required for their activation inside the zebrafish host (Manneh-Roussel et al., 2018). V. 
cholerae uses a host-directed type VI secretion system to enhance intestinal contractions in 

the zebrafish gut and to expel resident intestinal microbiota to allow for pathogen 

colonization (Logan et al., 2018). Treating zebrafish infected with V. vulnificus with the 

AMP epinecidin-1 increases host survival, possibly through modulation of 

immunomodulatory genes (Pan et al., 2011). Inoculating zebrafish with V. parahaemolyticus 
via intraperitoneal injection causes abdominal hemorrhaging, swelling, and secretion of two 

major markers of host sepsis, TNF-α and IL-1β (Zhang et al., 2016).

4.4. Salmonella infections in zebrafish

More recently, the use of zebrafish has been expanded to model infection of non-fish 

pathogens in the GI tract. Salmonella enterica serovar Typhimurium is a major causative 

agent of human foodborne gastroenteritis (Hoelzer et al., 2011). Immersing zebrafish larvae 

in S. Typhimurium leads to gut colonization and inflammation of the intestine and cloaca 

(Howlader et al., 2016; Varas et al., 2017). While the precise molecular mechanisms 

responsible for inflammation are not fully understood, expression of Salmonella virulence 

plasmid (spv) genes in adult zebrafish suppresses protective host responses such as 

expression of type II IFN-γ, IL-12, and TNF-α, and promotes expression of cytokines 

known to facilitate intracellular pathogen survival such as IL-4, IL-10, and IL-13 (Wu et al., 
2017). Furthermore, in vivo clearance of S. Typhimurium is mediated by inflammasome 

activation in neutrophils (Tyrkalska et al., 2016). Mechanistically, infected zebrafish release 

CXC chemokine 18 and leukotriene B4 that trigger both the recruitment of neutrophils to the 

infected site and phagocytosis of S. Typhimurium. Once engulfed, S. Typhimurium activates 

the Gbp4 inflammasome that modulates the activity of cytosolic phospholipase A2 and 

production of prostaglandins, ultimately leading to bacterial clearance (Tyrkalska et al., 
2016). Strains of S. Typhimurium with non-optimal translational fidelity recruit fewer 

neutrophils following colonization via the food-borne route, and are outcompeted by a wild-

type strain in vivo (Fan et al., 2019).

4.5. E. coli infections in zebrafish

Another human enteric pathogen successfully modeled in zebrafish is enterohemorrhagic 

Escherichia coli (EHEC), which colonizes the intestine and causes bloody diarrhea in the 

human host. Following foodborne delivery via P. caudatum, EHEC colonizes the middle 

intestine of zebrafish larvae despite the presence of endogenous microbiota, and by 4 days 

post-infection survival rates decrease by ~40% (Stones et al., 2017). In humans and cattle, 

intestinal colonization by EHEC and the formation of attaching and effacing lesions on 

enterocytes is mediated by a set of virulence genes encoded by the locus of enterocyte 

Flores et al. Page 9

Cell Microbiol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effacement (LEE), (Phillips et al., 2000; Elliott et al., 2000). Following foodborne infection 

of larval zebrafish, EHEC induce the LEE during early colonization of the GI tract, and LEE 

induction is required for optimal colonization and pathogenesis (Stones et al., 2017). The 

ability to colonize the zebrafish intestine, however, is not limited to pathogenic E. coli 
strains; Commensal E. coli isolates from the gut of healthy human volunteers also colonize 

zebrafish, and can reduce colonization by V. cholerae by decreasing the intestinal pH as a 

result of glucose metabolism (Nag et al., 2018).

4.6. Non-bacterial GI infections in zebrafish

Gastrointestinal microbes studied in zebrafish are not limited to bacteria; Eukaryotic 

microorganisms, such as the protozoan Giardia duodenalis can cause intestinal damage in 

humans and a zebrafish model of inoculation with cysts has been established (Tysnes et al., 
2012). Excystation and infection of the zebrafish intestine by trophozoites, however, remains 

to be shown. Altan et al. recently described a naturally occurring picornavirus in zebrafish 

(Altan et al., 2019). Picornavirus-1 ZfPV-1 selectively infects a subset of enterocytes and 

cells in the lamina propria, providing a natural model to study virus-GI tract interactions in a 

vertebrate host. Human norovirus persists in the larval zebrafish intestine and hematopoietic 

cells following yolk injection, replicates, and can be transmitted to naïve hosts (Van Dycke 

et al., 2019).

Zebrafish were initially used to study natural fish pathogens with the intention to limit the 

impact of infection on aquaculture, but the studies discussed above highlight a rapidly 

expanding movement to use zebrafish to model zoonotic and human bacterial infections, as 

well as protozoan and viral infections.

5. Zebrafish as a model to study the intestinal microbiome

The gut microbiome is the collective population of microorganisms that reside in the host GI 

tract. Many members of the microbiome have beneficial roles, such as regulating digestion, 

nutrient absorption, and immune system maturation (Umesaki et al., 1999; Semova et al., 
2012; Thaiss et al., 2016). Perturbation of the gut microbiome has been linked to a wide 

range of disease states including neurodevelopmental disorders, obesity, and inflammatory 

bowel diseases (IBD) (Turnbaugh et al., 2008; Frank et al., 2011; Luna et al., 2017; Felice 

and O’Mahony, 2017). The application of metagenomics has enabled the differentiation of 

microbes preferentially residing in healthy versus diseased hosts, but it is presently unclear if 

there is a conserved ‘core’ microbiome, or how host genetics, the microbiome, and 

environmental factors interact to determine physiological and pathophysiological states of 

the host.

Zebrafish are a powerful model to address these unknowns and begin to unravel complex 

host-microbiota interactions in a more controlled, simple model system compared to other 

vertebrates used in microbiome studies. For example, derivation of germ-free (GF) larvae is 

simpler, more expedient, and more cost-effective than using murine GF models (Pham et al., 
2008). Studies using conventionally raised (i.e., born and raised in the presence of their 

normal microbiota), GF, and conventionalized (i.e., derived GF and then colonized with 

microbiota) larvae are beginning to elucidate the mechanisms governing host-microbiota 
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homeostasis as well as the effects of the microbiota on host organ development and 

differentiation. Comparative studies of conventional and GF zebrafish larvae demonstrate 

that the microbiota influences host gene expression, particularly genes related to intestinal 

epithelial proliferation, nutrient metabolism, and the innate immune response (Rawls et al., 
2004; Reikvam et al., 2011). Other studies support the hypothesis that host factors have a 

dominant effect on determining the intestinal microbiome composition (Rawls et al., 2006; 

Roeselers et al., 2011). For example, transplantation of intestinal microbiota from donor 

mice into GF zebrafish larvae reveals that, while the resulting GI microbiota in zebrafish 

resembles that of the donor mice, the number of microbial lineages present in the recipient 

community changes drastically. This suggests host-mediated selective pressures restrict the 

microbiome composition (Rawls et al., 2006). This observation is further supported by 

microbiome profiling of recently caught and domesticated zebrafish reared in multiple 

research facilities; there exists a ‘core’ microbiome that is shared among zebrafish lineages 

regardless of environmental exposure (Roeselers et al., 2011). In vivo analyses indicate the 

intestinal microbiome is required for intestinal epithelium development and differentiation in 

zebrafish (Bates et al., 2006). Several developmental deficiencies have been observed in GF 

larvae, including the absence of brush border intestinal alkaline phosphatase activity, 

immature glycan expression, a decrease in secretory cell numbers, and altered gut motility. 

These effects can be reversed with the re-introduction of microbiota from conventional 

donors (Bates et al., 2006). For an in-depth review of the gut microbiome and its analysis in 

zebrafish and other teleosts, see Tarnecki et al., 2017.

The mammalian and zebrafish gut microbiome share six bacterial divisions, but the human 

GI tract is primarily dominated by Firmicutes, Bacteroidetes, and Actinobacteria while 

Proteobacteria are the predominant phylum in zebrafish (Rawls et al., 2004; Eckburg et al., 
2005; Bates et al., 2006). Several studies demonstrate the GI tract of zebrafish can be 

colonized with aerobic and anaerobic species derived from human fecal communities (Toh et 
al., 2013; Arias- Jayo et al., 2018; Valenzuela et al., 2018). The successful colonization of 

the larval gut with anaerobic species, including Lactobacillus paracasei and strict anaerobes 

such as Eubacterium limosum and Akkermansia muciniphila, in particular, was an important 

stepping stone in establishing zebrafish as a surrogate host for studies on the human gut 

microbiome (Toh et al., 2013; Arias-Jayo et al., 2018).

The emerging consumer interest in probiotics as a supplement to promote health and well-

being has further propelled microbiome studies in zebrafish. The lactic acid bacteria 

Lactobacillus plantarum is of particular interest and is currently commercialized as a 

beneficial probiotic that alleviates stress and anxiety in humans (Chong et al., 2019). In 

zebrafish, L. plantarum protects against stress-induced dysbiosis of the gut microbiota and 

ameliorates anxiety-related behavior. These changes in microbiome composition and 

behavior correlate with an increase in expression of gamma-aminobutyric acid receptors, 

and of serotonin transporters in zebrafish brains following administration of L. plantarum 
(Davis et al., 2016). Colonization of adult zebrafish with the probiotic Lactobacillus 
rhamnosus decreases the expression of host genes associated with dietary lipid metabolism 

(Falcinelli et al., 2017). Consequently, shifts in microbiome community structure resulting 

from high dietary fat intake and associated weight gain are ameliorated by supplementation 
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with L. rhamnosus, highlighting its potential to attenuate diet-related metabolic disorder 

(Falcinelli et al., 2017).

6. Zebrafish models of inflammatory bowel diseases

While the etiologies of multifactorial IBDs like ulcerative colitis and Crohn’s disease are 

unknown, two key features of the pathology are intestinal epithelial damage and intestinal 

dysbiosis. The intestinal epithelium provides a physical barrier between the intestinal lumen 

and surrounding tissues, and works in concert with immune cells to sense and respond to 

both normal microbiota and opportunistic infection. Therefore, factors such as host genetics 

and environmental conditions that impair intestinal epithelial homeostasis and disrupt the 

interplay with resident microbiota can significantly impact IBDs (Bellaguarda and Chang, 

2015). Novel murine models of intestinal epithelial damage and inflammation have 

advanced our understanding of IBDs, but several limitations associated with murine models 

such as cost, imaging capacity, and genetic manipulation still constrict elucidation of how 

the aforementioned disease modifiers converge and affect pathogenesis in vivo (Kiesler et 
al., 2015).

The zebrafish model circumvents murine-associated limitations and provides the opportunity 

to rapidly explore factors associated with increased inflammation and dysbiosis in response 

to intestinal epithelial damage and is thus relevant to IBDs in humans. Zebrafish models of 

chemically-induced IBD mimic some key aspects of the pathological condition in humans, 

including enterocolitis, intestinal epithelial damage, disruption of intestinal architecture, and 

shifts in microbiome composition (He et al., 2013). For example, intra-rectal administration 

of oxazolone in adult zebrafish causes disruption of the intestinal fold architecture, depletes 

goblet cells, increases immune cell infiltration of the gut, and upregulates pro-inflammatory 

cytokines (Brugman et al., 2009). Likewise, immersion of larval and adult zebrafish in 2,4,6-

trinitrobenzenesulfonic acid (TNBS) induces intestinal inflammation, inhibits peristalsis, 

and disrupts epithelial integrity by impairing the tight junctions between cells. This suggests 

TNBS disrupts intestinal barrier function and promotes features observed in IBD patients 

(Fleming et al., 2010; Oehlers et al., 2011b). It has been proposed that increased intestinal 

epithelial cell shedding after damage compromises barrier integrity, which in turn fuels more 

inflammation (Blander, 2016). In support of this, leukocytes mobilize from the caudal 

hematopoietic tissue to the periphery and accumulate around the damaged intestine 

following TNBS insult in zebrafish (Oehlers et al., 2011b). Disruption of the intestinal 

barrier by TNBS promotes microbial infiltration of the lamina propria, initiating a cascading 

pro-inflammatory response characterized by secretion of TNF-α, via activation of TLR3, 

MyD88, TIR-domain-containing adapter-inducing interferon-β (TRIF), and nuclear factor 

kappa-light-chain-enhancer of activated B-cells (NF-kB) (He et al., 2013). Together, these 

data support the idea that zebrafish provide a high-throughput model to interrogate genetic 

pathways and drug candidates that can restore epithelial barrier function and modulate 

immune cell function to protect against microbial infiltration during IBD.
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7. Perspective

Zebrafish have been a well-used model for infection biology for many years. More recent 

research highlighting similarities between the zebrafish gut and the GI tract of mammals has 

expanded to include studies on GI tract-pathogen interactions. The zebrafish as a model 

organism particularly lends itself to questions that cannot be addressed easily in other model 

systems thanks in part to the ease of intravital imaging and raw statistical power. Its use in 

this context may help unravel new details of the cellular microbiology underpinning 

infection, lead to the identification of novel virulence factors and aspects of their regulation 

within the GI niche, and aid the discovery of effective therapies by enabling high-throughput 

drug screening in the live host. Future studies that use zebrafish to study host-microbiome 

interactions will continue to identify host-intrinsic and - extrinsic factors and selective 

pressures critical for establishing and shaping the host microbiome. Such discoveries may 

aid in the development of novel therapies for combating microbiome- associated diseases.
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Figure 1. 
Comparison of cell types and structures between the mammalian (A) and zebrafish (B) 

gastrointestinal tract. The zebrafish intestine is organized into irregular folds as opposed to 

villi, and lacks crypts. Mammalian and zebrafish intestines share stem cells, enterocytes, 

enteroendocrine cells, and goblet cells. Paneth cells and M-cells are absent in zebrafish.
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