A RTl C L E W) Check for updates

Deriving disease modules from the compressed
transcriptional space embedded in a deep
autoencoder

Sanjiv K. Dwivedi® ', Andreas Tjarnberg® %3, Jesper Tegnér® 4> & Mika Gustafsson® 1™

Disease modules in molecular interaction maps have been useful for characterizing diseases.
Yet biological networks, that commonly define such modules are incomplete and biased
toward some well-studied disease genes. Here we ask whether disease-relevant modules of
genes can be discovered without prior knowledge of a biological network, instead training a
deep autoencoder from large transcriptional data. We hypothesize that modules could be
discovered within the autoencoder representations. We find a statistically significant
enrichment of genome-wide association studies (GWAS) relevant genes in the last layer, and
to a successively lesser degree in the middle and first layers respectively. In contrast, we find
an opposite gradient where a modular protein-protein interaction signal is strongest in the
first layer, but then vanishing smoothly deeper in the network. We conclude that a data-
driven discovery approach is sufficient to discover groups of disease-related genes.
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trend in systems medicine applications is to increasingly

utilize the fact that disease genes are functionally related

and their corresponding protein products are highly
interconnected within networks, thereby forming disease
modules’>2. Those modules defines systematic grouping of genes
based on their interaction, which circumvents part of the previous
problems using gene-set enrichment analysis® that require path-
way derived gene-sets, which are less precise since key disease
pathways are highly overlapping!#. Several module-based studies
have been performed on different diseases by us and others,
defining a disease module paradigm!-%->6. The modules generally
contain many genes and a general principle for validation has
been to use genomic concordance, i.e., the module derived from
gene expression and protein interactions can be validated by
enrichment of disease-associated SNPs from GWAS. The geno-
mic concordance principle was also used in a DREAM challenge
that compared different module-based approaches’. Yet these
studies require as a rule knowledge of protein-protein interaction
(PPI) networks to define such modules, which by their nature
are incomplete, and either biased toward some well-studied dis-
ease genes®, with a few exceptions®!?, or derived from simple
gene-gene correlation studies.

Deep artificial neural networks (DNNs) are revolutionizing
areas such as computer vision, speech recognition, and natural
language processing!!, but only recently emerging to have an
impact on systems and precision medicine!2. For example, the
performance of the top five error rates for the winners in the
international image recognition challenge (ILSVRC) dropped
from 20% in 2010 to 5% in 2015 upon the introduction of deep
learning using pretrained DNNs that were refined using transfer
learning!3. DNN architectures are hierarchically organized
layers including a learning rule with nonlinear transformations!4.
The layers in a deep learning architecture correspond to concepts
or features in the learning domain, where higher-level concepts
are defined or composed from lower-level ones. Variational
autoencoders (VAEs) is one example of a DNN that aims to
mimic the input signal using a compressed representation, where
principal component analysis represents the simplest form of
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a shallow linear AE. Given enough data, deep AEs have the
advantage of being able both to create relevant features from raw
data and identify highly complex nonlinear relationships, such as
the famous XOR switch, which is true if only one of its inputs is
true (Fig. la).

Although omics repositories have increased in size lately, they
are still several orders of magnitude smaller compared to image
data sets used for ILSVRC. Therefore, effective DNNs should be
based on as much omics data as possible, potentially using
transfer learning from the prime largest repositories and possibly
also incorporating functional hidden node representation using
biological knowledge. The LINCS project defined and collected
microarrays measuring only ~1000 carefully selected landmark
genes, which they used to impute 95% of the remaining genes!.
Note that this compression can at best work for mild perturba-
tions of a cell for which the DNN has been trained to fit. Hence,
they may not generalize well on new knockdown experiments!®.

Although interesting and useful for prediction purposes, those
representations in a DNN cannot readily be used for data inte-
gration or serve as biological interpretation. For that purpose,
Tan et al. used denoising AEs derived from the transcriptomics
of Pseudomonas aeruginosa and discovered a representation
where each node coincided with known biological pathways!”.
Chen et al. used cancer data and showed that starting from
pathways represented as a priori defined hidden nodes, allowed
the investigators to explain 88% of variance, which in turn pro-
duced an interpretable representation!$. Recently a few authors
have shown that unbiased data-driven compression can learn
meaningful representations from unlabeled data, which predicted
labeled data of single-cells RNA-seq!%20 and drug responses?!-22.
These results demonstrate that AEs can use predefined functional
representations, and can learn such representations from input
data that can be used for other purposes in transfer learning
approaches.

However, a systematic evaluation of how to balance between
predefined features versus purely data-driven learning remains to
be determined. To address this question, the interpretation of the
representations within NNs is fundamental. The most commonly
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Fig. 1 Schematic diagram of interpreting an autoencoder and defining the disease modules. a Training an autoencoder. b The steps of light-up method
used for interpreting the hidden layer nodes in terms of PPl and pathways. ¢ Depicts the steps of predicting the disease gene using transcriptomics signals

and autoencoder.
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used tool for this purpose is the Google DeepDream?3. Briefly, the
output effect is analyzed using the light-up of an activation of one
hidden node, followed by a forward-propagation of the input to
the output. This allows the user to interpret the net effect of a
certain node and is referred to by us as light-up (Fig. 1b).

In this work, we investigated different AE architectures
searching for a minimal representation that explained gene
expression, which in our hands resulted in a 512-node wide and
three-layered deepAE capturing ~95% of the variance in the data.
Next, we derived a novel reverse supervised training-based
approach based on light-up of the top of the transferred repre-
sentations of the trained AE that defined the disease module
(Fig. 1c). Using the third layer of the AE we identified disease
modules for eight complex diseases and cancers which were all
validated by highly significant enrichment of GWAS genes of the
same disease. In order to understand the role of each of the
hidden representations we tested whether they corresponded to
genes that were functionally related and disease associated genes.
First, unsupervised analysis of the samples in the AE space
showed that disease cluster in all layers, while cell types clustered
only in the third layer. Then, we decoded the meaning of the
outputs from the nonlinear transformations that defined the
compressed space of the autoencoder. To this end we utilized
closeness and centrality of the PPI data in STRING?4, as a first
step to test if the derived gene-sets was linked to previous disease
module research. Conversely, we found that genes within the
same hidden AE node in the first layer were highly inter-
connected in the STRING network, which gradually vanished
across the layers. In summary, we believe that our data-driven
analysis using deepAE with a subsequent knowledge-based
interpretation scheme, enables systems medicine to become suf-
ficiently powerful to allow unbiased identification of complex
novel gene-cell type interactions.

Results

A deepAE with 512 nodes explained 95% of variance. Training
neural networks requires substantial, well-controlled big data. In
this study we therefore performed our analysis using the 27,887
quality-controlled and batch-effect-corrected Affymetrix HG-
U133Plus2 array compendium, thus encompassing data from
multiple laboratories2®. Furthermore, the data had previously
been analyzed using cluster analysis and linear projection tech-
niques such as principal component analysis?>. The data set and
the ensuing analysis therefore constitute a solid reference point
based on which we are in a good position to ask whether suc-
cessive nonlinear transformations of the data would induce a
biologically useful representation(s). Specifically, we investigate
whether disease-relevant modules could be discovered by training
an autoencoder (AE) using this data set. The underlying
hypothesis being that an autoencoder compression represents a
nonlinear unbiased representation of the data. Similarly to the
knowledge-driven disease module hypothesis?, closeness within
the autoencoder space suggest functional similarity and could be
used to identify upstream disease factors.

To this end we partitioned the data into 20,000 training and
7887 test samples. We trained AEs of different widths from 64 to
1024 hidden nodes, incremented stepwise in powers of two, and
we contrasted two depths in our analysis, i.e., a single-layered
coded shallow AE (shallowAE) and a deep triple layered AE.
Depth refers to that the encoder and decoder both contains one
extra hidden layer generating two weight sets, respectively, in
contrast to the shallow AE which has only a single weight set for
encoder and decoder respectively?. We calculated the mean
squared training and test error (measured using error =1 — R?,
where R? is computed globally over all genes using a global data
variance (Fig. 2a) and locally for each gene individually using
gene-wise variances (Fig. 2b, ¢)). Comparing the reconstruction
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Fig. 2 Deep autoencoder (deepAE) outperformed shallow autoencoder (shallowAE) up to 512 hidden nodes in terms of accuracy. 1 — coefficient of
determination (R2), in training and validation set using the full data set variance (a) and the gene-wise variances (b, ). The left panel shows the mean
behavior of R? values on the full data set. The distribution of R2 values across each gene is shown for both models, shallowAE (b), and three-layer deepAE
(e), with increase in the number of hidden nodes in each layer from 64 to 1024.
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Fig. 3 Disease association enrichment of autoencoder (AE)-derived gene sets. a, b Enrichment score (—log10(P)) resulting from the hyper-geometric
test between disease gene overlap of the predicted genes by the deep neural network derived by first (green), second (blue), and third (violet) hidden
layers of the deep autoencoder (deepAE). As references, we show with a method based on a vanilla supervised neural network (orange) and also the

hidden layer of the shallow autoencoder 512 nodes (shallowAE; magenta). MS. ¢ The Fisher's combined p value across all eight diseases predicted by a
three-layer deep autoencoder. The dotted (brown) line corresponds to the p value, cut-off 0.05.

errors of the different AEs we found, not surprisingly, that the
shallow AE performed poorly (>15% error) whenever we used
less than 1024 hidden nodes, whereas increasing the number of
nodes to 1024, reduced the error threefold to ~5%. In contrast,
the deepAE performed well already for 64 hidden nodes (11%
error), which subsequently decreased following a power law up to
512 hidden nodes, best described by R2=0.89 x 20-028(x —64)
where x is the number of hidden nodes. Next, we analyzed the
gene-wise R? performances of the R? distributions (Fig. 2b, c),
which showed that the median gene error was also low (R? > 0.86)
already for the 512 deepAEs. In summary, we found that the
deepAE with 512 hidden nodes performed comparably to the
shallowAE with 1024 nodes, although the latter included almost
twice as many parameters. Since the purpose of our study was to
discover biologically meaningful disease module we proceeded
and analyzed the 512 deepAEs in the remaining part of the paper
as this architecture provided an effective compression of the data.

GWAS genes were highly enriched in the third hidden layer.
Our overarching aim was to assess to what extent the compressed
expression representation within a deepAE could capture mole-
cular disease-associated signatures in a data-driven manner. To
this end we downloaded well-characterized genetic associations
for each of the diseases in our data set?”. From this data we found
seven diseases in our gene expression compendium in which at
least 100 genes were found in DisGeNET, which we reasoned was
sufficiently powerful to perform statistical enrichment analysis.
These included asthma, colon carcinoma, colorectal carcinoma,
Crohn’s disease, nonsmall cell lung cancer, obesity and ulcerative
colitis. In order to associate the genes upstream of a disease we
designed a procedure which we refer to as reverse training

(“Methods”). Briefly, using our hidden node representation and
the phenotype vectors (represented as binary coded diseases) we
designed a training procedure to predict the gene expression,
referred to as ‘reverse’ since we explicitly used the hidden node
representation. This procedure was repeated three times using
one hidden layer as input at a time, and as a comparison we also
included the shallow AE.

In a result, we deciphered a gene ranking to each disease based
on our functional hidden node representation. Next, we assessed
the relevance of this representation by computing the overlap of
the top 1000 genes using hyper-geometric test for each disease
with GWAS (Fig. 3a, b) and as a complementary analysis using
disease ontology (Supplementary Fig. 1). Interestingly, we found a
highly significant disease association for at least one layer in all
tested diseases (Fisher’s exact 1078 < P < 0.05), and for four cases
the strongest association was found using the full model. In all the
cases, one of the deepAE layers showed higher enrichment than
shallowAE. In order to validate the generality of this procedure
we downloaded a new data set for MS on the same experimental
platform?8. For this data set we also performed a similar analysis
of the control samples with other neurological diseases (OND),
similar to the analysis performed in ref. 28. Reassuringly, we
found significant enrichment for MS patients in MS GWAS
(Fisher exact test P =1.1 x 105, odds ratio (OR) = 2.4, n = 30).
Comparing these patients with OND patients showed lower
enrichments (Fisher exact test P=8.6 x 103, OR=1.7, n = 22)
(Fig. 3b) and a similar amount of top ranked differentially
expressed genes between MS and OND showed no significance
(Fisher exact test P =0.50, OR = 1.03, n = 13). Lastly, to test that
the enrichment of GWAS in the third hidden layer was not due to
the batch effect and cell-type differences within the compendia we
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Fig. 4 Deep autoencoder (deepAE) representation clustering samples into cell types and diseases. a Significance score (—log10(p)) for first (green),
second (blue), and third (violet) deepAE layers are more coherent (measured by a high Silhouette index (SI)) with respect to cell types (lower) and
diseases (upper) than the standard principal component (PC) analysis-based approach. b S| defined by the two PCs for diseases and control samples on
compressed signals at the third hidden of deepAE with each of the three hidden layers having 512 nodes.

performed similar tests for the control samples. For each study of
the eight studied diseases we found higher enrichment than the
controls (binomial test P = 3.5 x 102, in Supplementary Table 1),
supporting the relevance of our disease signatures. Moreover, we
compared our unsupervised AE approach followed by reverse
training by a naive supervised neural network with 512 hidden
nodes (“Methods”). This showed for six out of eight diseases a
lower enrichment of GWAS with a tie on the colon carcinoma
and nonsmall cell lung cancer. Taken together, the high
enrichment of GWAS for the same disease supports our claim
that our unbiased nonlinear approach can indeed identify
relevant upstream markers, generally with a higher accuracy
than the shallower and narrower neural networks.

Functionally similar samples colocalized in the third layer.
Next, we asked why disease genes preferentially associate with the
third but not the other layers in a deepAE. However, to disen-
tangle what is represented by each layer in a deepAE is not
straightforward and has previously been the target of other stu-
dies?®. In order to provide insight into what each layer repre-
sented in our case, we performed unsupervised clustering of the
samples using the compressed representation. Since this was still
a 512-dimensional analysis we further visualized the deepAE
representation using the first two linear principal components
(PCs) of the compressed space. This representation is henceforth
referred to as the deepAE-PCA. Previously it has been shown that
classical PCA on the full ~20,000-dimensional gene space can
discriminate cell types and diseases very well, which we therefore
used as a reference in our analysis2.

To analyze whether samples close in these spaces were
biologically more similar than two random samples, we computed
the Silhouette index (SI) for phenotypically defined groups,
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governed by their cell type and disease status, respectively (Fig. 4).
Note that SI =1 reflects a perfect phenotypic grouping and SI =
—1 indicates completely mixed samples. Next, the samples were
grouped based on the different cell types in the data (n = 56) and
tested to determine whether the deepAE-PCA or PCA had the
highest SI based on each of their respective, different hidden
layers (see “Methods”). We filtered the compressed coordinates of
normal cell types and found significantly more cell types having a
higher SI by at least 0.1 for the third hidden deepAE layer than
was the case in the PCA-based approach (n =38 out of 56, odds
ratio = 2.11, binomial test P = 2.28 x 10~3). Interestingly, smaller
enrichments were also found for the first (n =30, OR=1.15,
binomial test P = 0.25) and second (n = 31, OR = 1.24, binomial
test P=0.18) layers. Next, we repeated this analysis for the 128
diseases in our data-set, and we found again that the third layer
(n =86, OR = 2.05, binomial test P =6.27 x 10~5) exhibited the
strongest association with respect to first layer (n = 71, OR = 1.25
binomial test P=1.25x 10~!) and second layer (n =81, OR =
1.72, binomial test P=1.69 x 1073). These observations sug-
gested that samples originating from similar conditions and
phenotypes were automatically grouped according to the hidden
layers, most significantly for the third.

First layer associated genes colocalized in the interactome. In
order to further interpret the different layers and uncover their
role in defining disease modules, we proceeded to analyze the
relationship between the signature genes of each hidden node.
Since cellular function is classically described in terms of biolo-
gical pathways, or lately has also been abstracted to densely
interconnected subregions in the interactome (so-called network
communities) we analyzed the parameters in the deepAE and
their connection to the global pattern of expressed genes30-31.
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Fig. 5 Genes that co-localised in the first and seccond hidden layers also co-localised in the interactome. a The betweenness centrality behavior of the
top ranked genes on the basis of the first (green), second (blue), and third (violet) hidden layers of the deep autoencoder. b-d The distribution of harmonic
average distances of the top rank genes based on each hidden node of the first, second, and third hidden layers of the deep autoencoder, respectively. Also,
these results are robust across 256 and 1024 hidden nodes of the deep autoencoder (e, ).

There are different ways one could potentially interpret para-
meters in a deepAE. To this end, we created a procedure to
associate genes with hidden nodes, which we refer to as light-up.
Briefly, a light-up input vector was defined for each hidden node
by activating it to the maximum value of the activation function,
clamping all other nodes at the same layer deactivated by zero
values. Then we forward propagated this input vector through all
layers to the output pattern response on the gene expression space
(“Methods”). This resulted in a ranked list of genes for each
hidden node, identifying which genes were most influenced by
the activation of that node. We repeated this procedure for all
hidden nodes and layers. In order to test if these lists corre-
sponded to functional units, we analyzed their localization within
the PPI network STRING?% We hypothesized that genes co-
influenced by a hidden node could represent protein patterns
involved in the same function. Also, the STRING database cap-
tures proteins associated with the same biological function and
which are known to be within the same neighborhood of their
physical interactome. By first ranking the most influenced genes
we systematically analyzed the cutoffs thereby showing whether a
gene was considered as associated with the node by powers of two

from 100 to 10,000. Next, we calculated the average shortest path
distance between these genes within the STRING network, using
the harmonic mean distance to include also disconnected genes.

This analysis revealed that the top-nodes in the ranked lists of
the first hidden layer, had a high betweenness centrality (Fig. 5a)
while exhibiting a low average graph distance between each other
(Fig. 5b-d). Thus, highly co-localized genes were the most central
part of the PPI. Both findings were tested using several different
cut-offs (Fig. 5a-f), and the effect was most evident for the first
layer, appearing to a weaker extent for the second layer and fully
vanishing at the third layer. In order to assess the robustness of
these results, we investigated the effect of the selection of a
specific database and different variants of AE. Specifically, we
computed the similarity to our results in the case we used three
different annotation databases (BioSNAP, KEGG, REACTOME,
and GO, Supplementary Fig. 4 and 5) and compared our
approach against deepAE constructed by denoising, and sparse
AE as well as funnelings with similar results (Supplementary
Figs. 6-9). In all cases we found similar associations across the
layers. This analysis suggests that our interpretable gradients in
the different layers are robust across these variations.
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Fig. 6 Generalization of disease association enrichment results in the deep autoencoder (deepAE) of derived gene sets using RNA-seq data.

a Enrichment score (—log10(P)) resulting from the hyper-geometric test between disease gene overlap of the predicted genes by the deep neural network
derived by the first (green), second (blue), and third (violet) hidden layers, of the deepAE. b Fisher's combined p value across all five complex diseases
predicted by the three-layer deep autoencoder. The dotted (brown) line corresponds to the p value, cut-off 0.05.

Replications of interpretable gradients using RNA-seq. In order
to assess the generality and to increase the domain of applicability
of the AE approach to interpret emerging large RNA-seq data
sets, we identified a large publicly available body of RNA-seq
material®2, These data were divided into 50,000 training samples
and 9532 validation samples for 18,999 genes, and was used to
train a deep AE with similar hyperparameters as for the micro-
arrays, i.e., using a three-layered AE with 512 hidden nodes in
each layer. Unfortunately, this data did not contain sufficient
complex disease samples, and we therefore searched for addi-
tional RNA-seq data sets for our previously tested complex dis-
eases, namely asthma (GSE75011), Crohn’s disease, ulcerative
colitis (GSE112057), obesity (GSE65540) and multiple sclerosis®3.
Similar to the microarray AE we found a highly consistent sig-
nificant overlap between GWAS and the associated disease genes
derived from the third layer for each of the diseases (Fisher
combined P<10715), and to a lesser extent in the other two
layers, see Fig. 6. Next, we tested whether the hidden nodes
corresponded to close sets of interconnected protein-protein
interactions by repeating the light-up procedure. Interestingly, we
found that the top ranked genes in the first, and to a lesser extent
also in the second hidden layer, had low average betweenness
centrality and had low average distance. Strikingly, this associa-
tion was even stronger than in the analysis using the AE of the
microarrays. In order to understand the reason behind increase in
the interpretability level of the PPI association we trained the
deep AE on 20 K samples. We found similar association levels as
for the 50 K samples (Supplementary Fig. 8). Hence, we conclude
that the discrepancies between the microarray and RNA-seq
based AEs are not due to the training samples sizes. In summary,
our replication of our findings that the relationship between
disease gene and the protein interaction confirms our findings of
deep AEs as an unbiased estimator of functional disease asso-
ciations (Fig. 7).

Discussion

In summary, our study aimed at using deep neural networks for
identification of a new unbiased data-driven functional repre-
sentation that can explain complex diseases without the reliance
of the PPI network which is known to be incomplete’ and
strongly affected by the study bias of some early discovered
cancer genes. We showed, to the best of our knowledge, for the
first time a deep learning analysis do find disease relevant signals
and that the different layers capture gradients of biology. This
suggests that a data-driven learning approach could eventually
complement the findings and techniques derived from network
medicine for understanding complex diseases.

In order to find the similar inferences between structural fea-
tures of the PPI and the estimated parameters of neural networks,
we began a systematic demonstration of the light-up concept?3
motivated by the need to prioritize genes based on their con-
tributions in the compressed space of the deepAE. Furthermore,
we showed that the top genes prioritized by each node in the first
and middle layers are localized and belong to the core part of the
PPIL. Moreover, the third layer nodes possess long-range varia-
bility in showing the localization to delocalization of their top
genes compared to the random genes. This kind of gradient in
terms of interpretability with respect to localization within the
PPI network suggests that each layer indeed encodes different
types of biological information. These results also suggest that the
transformed signals in the compressed space first decode the
modular features of the underlying interactome which then
vanishes smoothly layer by layer as a deeper representation is
encoded. Concurrently, with such a decreasing protein-defined
modular gradient, an increase in disease-relevant genes and
modules thereof is progressively discovered in the deepest layers
of the AE.

Next, we presented a novel method that uses a supervised
neural network to determine a disease-specific feature vector in
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Fig. 7 RNA-seq replicated gene co-localisation pattern from micro-array data. a Betweenness centrality behavior of the top ranked genes on the basis of
the first (green), second (blue), and third (violet) hidden layers of the deep autoencoder trained on the RNA-seq data. b-d Distribution of harmonic
average distances of the top rank genes based on each hidden node of the first, second, and third hidden layers of the deep autoencoder respectively.

the compressed space of the deepAE. The disease-specific feature
vector of the compressed space was transformed into a gene space
that defined the disease module. We compared different AEs and
found deepAEs using 512-state variables of ~20,000 genes at a
95% R? for microarrays and 80-85% for RNA-seq. Interestingly,
AE depth reduced the number of learnable parameters approxi-
mately twofold from shallow networks and the number of
required hidden units, similar to what was reported for a
microbiome!”, and also represented a two-fold compression in
number of latent variables compared to the number of variables
in the LINCS project. The high degree of compression for the
deep AE with fewer state variables suggests that this representa-
tion is indeed preferable compared to shallow representations.
One reason for the need of depth is that such AEs are theoreti-
cally capable of capturing more complex relations between genes,
such as the XOR relations?%3435, which shallow AEs cannot.
Importantly, our biological and disease interpretations of the
layers were robust w.r.t using microarray or RNAseq data; dif-
ferent data bases for interpretations, as well as different versions
of AEs.

Our findings suggest the usefulness of deep learning analysis to
decompose different hierarchy levels hidden within the relations
between genes. For example, the first layer encodes the modular
features belonging to the central part of the interactome. These
features are synonymously selected by the interactome-based
approaches to find the components that have control over the
entire system3®. In contrast, these features are not necessarily

transferable by cell type-specific transcriptomic signals. Next, the
third layer is close to the middle as well as output layer, hence it is
proximal in capturing the true cell-type as well as disease specific
signals that are coded in terms of interactome. More interestingly,
we showed that the third layer efficiently encodes cell type-specific
functional features; therefore, it might be reason to increase the
likelihood of mapping the disease-specific functional genes by
disease-related cell type signals in the light-up. Also, the presented
approach can play a crucial role in utilizing the resolution level of
the single cell transcriptomic signals in prioritizing genes that are
enriched with the upstream dysregulated genes and their rela-
tionship with causal genetic variants3”. Another important appli-
cation of our approach can indeed provide new insights in the
multiscale organization about disease-disease, disease pathways
disease—gene associationsS.

An alternative approach to the AE would be using NNs for the
particular disease of interest and thereby finding a best repre-
sentation of the disease. However, although potentially feasible
for some diseases, such an approach would in our opinion not
likely make best use of the existing compendia for forming latent
variables, suggesting that such a representation could fail in
generality. Instead, in using transfer learning, our AEs could
help stratify disease groups of limited samples as the number of
parameters could decrease by about ~40-fold (from ~20,000 to
512), which decrease the analysis complexity. Therefore, transfer
could be applied by other clinically interested researchers starting
from our derived representation, which could lead to increased
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power for building classification systems. We think that the
approach is applicable to other omics and using our derived single
omics representations together with others they open a door to
multi-omics neural networks using transfer learning, similar to what
is currently routinely done within the field of image recognition.

Methods

Data preparation and normalization. The available microarray data at Ref. 2°
represents normalized log-transformed values. Similarly, we normalized RNA-seq
data by the upper quantile method using the function uqua of the R package
NOISeq and log transformed the normalized gene expression values by log,(1 +
normalized expression value)3®. Also, we discarded the noisy log-transformed
expression values those are less than the 3.0. Next, we renormalized both micro-
array and RNA-seq data such that each ith gene mRNA expression level in the jth

sample E;;, across the samples to be in the range between zero and unit,.ie.,
_ E;;—min(E)
€ij = max(E)—min(E) *

Parameter optimization. The normalized expression matrix [e;;] is used both as
input and output for training the AE with sigmoid activation function. We have
chosen a dense layer so that the optimizer starts with an initial point that has
unbiased dependency among the data features. We used optimizer ADAM, with
learning rate = 1.0x 1074, 8; =9.0x 1071, $,=9.99 x 107}, e=1.0 x 1078 and
decay = 1.0 x 1079, to train the model which we have observed as an optimal
choice in predicting the high level of accuracy in both training and validation data
sets*0. The batch size was 256 for the training. In order to systematically investigate
the impact of number of hidden nodes on the prediction accuracy, we fixed the
number of hidden nodes in all the three hidden layers of the deep AE, termed as a
three-layer model (Fig. 1a). In our case, the three-layer model with 512 hidden
nodes was more suitable for capturing the biological features. This model has fewer
reconstruction errors in comparison with similar hidden node of the one-layer
model (shallow AE). Also for the denoising the deepAE, we corrupted the input
transcriptomics signals by adding the Gaussian distributed numbers with mean
zero and standard deviation 0.5. Next, we replaced the values which are less than
zero by zero and greater than 1 by 1. In order to sparsify the deepAE, we used the
weight parameter 1.0 x 108 in the L1 constraint to the kernel regularizer in keras.
We implemented our methods using the tensorflow backend (https://www.
tensorflow.org) and Keras (https://github.com/keras-team/keras) neural network

Python library.

Interpreting the trained AE with PPL. The preserved biology in the compressed
space is confined in each hidden layer. Therefore, our objective was to understand
the meaning of all the nodes in each hidden layer. For this objective, we computed
activations at the output layer for each node of a hidden layer. We recursively
forward propagated the maximum activation value of each node, while keeping
other nodes neutral by zero input, on the remaining portion. Finally, we prioritized
the genes on the basis of last layer activations. For simplicity, we mathematically
formulated these steps as follows (Fig. 1b). Suppose kth layer of an L layer AE, has

nodes. Here, N! and NI are the same as the number of genes in the profile
expression matrix. Also, the number of nodes in each hidden layer is H, i.c., N\= H
for ke {2, 3, 4, .... L—1}. The following equation recursively defines the activations,
xK, of the kth layer from the activations, x*~!, at (k - 1)th layer with the initial
activation vector xP (it consists of the maximum activation value at the corre-
sponding position of the hidden node and the rest of the elements are zero)
corresponding to the node in the pth hidden layer,

, 1
X ifp=k M

& {f"(W"xk’] +b) ifpek<L
where ¥, b, and W¥ are associated with the kth layer activation function, bias term
and weight matrix respectively. Note that the first input layer does not have an
activation function, bias term and weight matrix, so k € {2, 3, 4,...,L}. The Eq. (1)
defines the activations at the output layer,x! with dimension of gene size. We
prioritized the genes based on the vector, xL, to show the associations with the PPI
module.

Predicting disease genes. We derived a new approach for predicting a disease
gene that is explained in the following four steps (Fig. 1c), which were performed
three times in order to estimate mean values and standard deviation estimations:
(1) Compressing the expression profile at hidden layers using trained deepAE.
(2) Training a supervised neural network on the compressed representations in
reverse direction: We trained a one-hidden-layer supervised neural network,
having the same number of nodes in the second and third layers, with sigmoid
and linear activation function respectively. The input matrix [c;;] is followed by i
{1,2,3,...,P} and je {1, 2, 3,...,5} with dimension P x S, where P and S are the total
number of phenotypes and samples respectively. The matrix [c;;] is defined by
another identity matrix [8;,] of the Kronecker tensor as follows, ¢;; = §;, if the jth
sample is associated with the pth phenotype. The output matrix [s] is a profile

matrix of compressed signals at a hidden layer of dimension H x S, while H is the
number of nodes in the hidden layer.

(3) Stacking the supervised neural network with the left part of deepAE, in the
feed forward direction, from the layer at which the supervised neural network is
trained. We scaled the mean and the variance of the weight matrices and biases in
the consecutive layers where both networks are stacked.

(4) Finding the disease scores from the expression: The absolute value of scores
sP, for prioritizing the genes related to the pth phenotype are computed by the
parameters of a stacked neural network using:

N FEWEAT 4+ bF)  if 1<k<L —1
B ” ifk=1

SP _ WLXL—I

where r? = [8,},] is a one column vector for the pth phenotype followed by i € {1, 2,

3, ... PL

We compared our approach with naively training, i.e, training gene expression
profile as an input instead of the compressed representations, a neural network
with 512 hidden nodes and performing disease association as above.

Validation of predicted genes. We downloaded the curated disease SNPs from
the DisGeNET database and human genome reference consortium assembly, build
version 37 (GRch37, hgl9) from the UCSC database (https://genome.ucsc.edu/).
We computed the closest gene to each disease associated SNP, using Bedtools
under the default option. In this way, we defined disease-associated gene sets for
validating the neural network-based predicted genes. The performance of the
predicted genes was demonstrated in terms of Fisher p value from the hyper-
geometric test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The trained models and the normalized gene expression data used for defing the disease
modules are available at https://figshare.com/articles/ Autoencoder_trained_on_
transcriptomic_signals/9092045 The microarray and RNA-seq transcriptomics are taken
from the ArrayExpress database (accession number E-MTAB-3732) and https://amp.
pharm.mssm.edu/archs4/, respectively.

Code availability
The codes and the tutorial for using them is availiable at the gitlab page https://gitlab.
com/Gustafsson-lab/deep_learning_transcriptomics.
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