Skip to main content
. 2020 Feb 6;11:63. doi: 10.3389/fphys.2020.00063

TABLE 1.

Antioxidant compounds used in the treatment of ALS.

Antioxidant Features Molecular mechanisms Curative effects and treatment object References
Vitamin E - Lipophilic antioxidant
- Ability to cross cell   membrane
- Protection against   lipoperoxidation
- Protection against ROS   and RNS
- Delay in the clinical onset of   the disease
- Increase GSH levels in   plasma
- Lower risk of dying by ALS
- Significant decrease in the   risk of the disease
- Lower ALS rates
Gurney et al., 1996; Desnuelle et al., 2001; Ascherio et al., 2005; Veldink et al., 2007; Wang H. et al., 2011
Carotenes - Natural pigments
- Different types:   ß-carotene, lutein,   astaxanthin and   lycopene
Antioxidant and neutralizing properties against ROS - Help prevention and/or delay   the onset of ALS
- Reduced risk of ALS
- Treating neuroinflammation   and apoptosis
Fitzgerald et al., 2013; Krishnaraj et al., 2016
Flavonoids - Natural substances of   fruits and vegetables
- Different types: 7,8-DHF,   fisetin and quercetein
- Protection against ROS
- Modulate metabolic   pathways
- Improve motor deficits and   enhance lower neuronal   survival
- Reduction of intracellular   ROS levels
- Reduction of motor neuron   loss
- Improve motor activity and   survival rate
- Inhibition of aggregation and   misfolding of SOD1
Korkmaz et al., 2014; Ip et al., 2017; Wang et al., 2018
Resveratrol - Natural polyphenolic   compound
- In grapes, peanuts and   berries
- Produced in plants in   response to mechanical   injury, fungal infection,   and UV radiation
- Scavenger of free   radicals
- Interacts with mutant   SOD1 (G93A) protein
- Up-regulates SIRT1
- Down-regulation of   AMPK/SIRT1 signaling in   bone marrow mesenchymal   stem cells
- Delays the onset of ALS
- Increases survival of spinal   motor neurons
- Preserves the function of the   lower and upper motor neuron
- Attenuates the loss of motor   neurons
- Improves muscle atrophy
- Improves mitochondrial   function of muscle fibers
Mancuso et al., 2014a, b; Song et al., 2014
Epigallocatechin
gallate
- Catechin present in   green tea
- Crosses the blood-brain   barrier
- Modulates mitochondrial   responses to OS
- Protection against   lipoperoxidation
- Changes intracellular   signals
- Reduces the   concentration of NF-kB   caspase-3 and iNOS
- Prevents OS-induced death
- Delays the outbreak or   progression of ALS
- Delays the onset of the   disease
- Prolongs useful life
- Increases the number of   motor neurons
- Decreases the activation of   microglia
Koh et al., 2004, 2006; Xu et al., 2006
Curcumin - Natural and liposoluble   dye
- Obtained from turmeric
- Chemical instability
- Low oral bioavailability
- Low water solubility rate
- Different types: DMC
- Activates Nrf2
- Decreases intracelullar   ROS levels
- Eliminates excitability   induced by TDP-43
- DMC decreases   mitochondrial dysfunction
- Improves survival
- Decrease in ALS progression   and reduction of oxidative   damage
Ahmadi et al., 2018; Chico et al., 2018
Co-enzyme Q10 - Endogenous antioxidant - Cofactor of the ETC
- Action in redox balance
- Improves mitochondrial   dysfunction
- Increases survival rate
Matthews et al., 1998; Beal, 2002
Melatonin - Amphiphilic molecule
- Potent antioxidant
- Antioxidant
- Regulator of mitochondrial   bioenergetic function
- Delays the progression of the   disease
- Increases the survival rate
Zhang et al., 2013
Weishaupt et al., 2006
Edaravone - Low-molecular-weight   antioxidant drug
- Intravenously   administered
- Free radical scavenger
- Safe
- Crosses the blood-brain   barrier easily
- High brain penetration   capacity
- Amphiphilic capacity
- Scavenges lipid and   water soluble peroxyl   radicals and chain-  carrying lipid peroxyl   radicals
- Enhances prostacycling   production
- Traps hydroxyl radical and   quenches active oxygen
- Deletes lipid peroxides and   hydroxyl radicals during   cerebral ischemia
- Protects nerve cells within or   around the ischemic region   from free radical damage
- Ameliorates OS and   suppresses degeneration of   spinal motor neurons
- Anti-inflammatory and   protective effects on neurons,   microglia, astrocytes and   oligodendrocytes
- Delays the progression of   functional motor disturbances
Ikeda and Iwasaki, 2015; Banno et al., 2005; Yoshino and Kimura, 2006; Miyamoto et al., 2013; Abe et al., 2014; Bailly, 2019