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Toxic tall fescue grazing increases 
susceptibility of the Angus steer 
fecal microbiota and plasma/urine 
metabolome to environmental 
effects
Ryan S. Mote1,2, Nicholas S. Hill3, Joseph H. Skarlupka   4, ViLinh T. Tran5, Douglas I. Walker5, 
Zachary B. Turner2, Zachary P. Sanders3, Dean P. Jones5, Garret Suen4 & Nikolay M. Filipov1,2*

Impaired thermoregulation and lowered average daily gains (ADG) result when livestock graze 
toxic endophyte (Epichloë coenophialum)-infected tall fescue (E+) and are hallmark signs of fescue 
toxicosis (FT), a disease exacerbated by increased temperature and humidity (+temperature-humidity 
index; +THI). We previously reported FT is associated with metabolic and microbiota perturbations 
under thermoneutral conditions; here, we assessed the influence of E+ grazing and +THI on the 
microbiota:metabolome interactions. Using high-resolution metabolomics and 16S rRNA gene 
sequencing, plasma/urine metabolomes and the fecal microbiota of Angus steers grazing non-toxic or 
E+ tall fescue were evaluated in the context of +THI. E+ grazing affected the fecal microbiota profile; 
+THI conditions modulated the microbiota only in E+ steers. E+ also perturbed many metabolic 
pathways, namely amino acid and inflammation-related metabolism; +THI affected these pathways 
only in E+ steers. Integrative analyses revealed the E+ microbiota correlated and co-varied with the 
metabolomes in a THI-dependent manner. Operational taxonomic units in the families Peptococcaceae, 
Clostridiaceae, and Ruminococcaceae correlated with production parameters (e.g., ADG) and with 
multiple plasma/urine metabolic features, providing putative FT biomarkers and/or targets for the 
development of FT therapeutics. Overall, this study suggests that E+ grazing increases Angus steer 
susceptibility to +THI, and offers possible targets for FT interventions.

As global consumer interest towards pasture-based finishing production systems for beef cattle rises, a recent 
study estimated that, in the United States (U.S.), the current beef production capacity could only support about 
27% of the current demand1. As such, a capacity increase of 30% would be required if there were a nationwide 
transition to grass-finishing production systems1. Considering the shift in consumer interest and the contribu-
tion of ruminant-derived methane to a warming environment, the detrimental impact of harsh environmental 
conditions (i.e., heat stress) on animal production efficiency, and the potential environmental impact of the nec-
essary increase of grazing beef herds to meet future agricultural demand, there is an urgent need to optimize 
animal health and performance under numerous physiological stressors, including those posed by the warming 
environment.

Tall fescue, Lolium arundinaceum, covers 14 million hectares across the Southeastern U.S., and is used widely 
as a pasture forage in beef production systems. Wild-type tall fescue is commonly infected with the endophytic 
fungus Epichloë coenophialum, which produces secondary metabolites that improve plant vigor, thereby allowing 
the plant to be more tolerant of external environmental stressors (e.g., grazing, heat stress, insects)2. While the 
endophyte-infected tall fescue provides increased plant biomass3, the endophyte also produces toxic metabolites 
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(e.g., ergot alkaloids). These have been linked to decreases in grazing animal health and performance, leading to 
a disease called fescue toxicosis (FT), which is exacerbated in harsh climates2,4. Thus, from an animal perspective, 
the wild-type endophyte-infected tall fescue is referred to as toxic (E+).

FT has multiple clinical signs, but the most economically costly, at about $1 billion per year to the U.S. beef industry,  
are decreased weight gain and reproductive insufficiencies5. Recent studies also estimate heat stress-related average 
annual economic losses to the U.S. animal agricultural sector at $2.4 billion, with $369 million of it accounted for 
by the beef industry6. Heat stress, however, does not act alone, and its negative effects are frequently compounded 
by underlying illness7 and/or malnutrition8. In this regard, important FT pathophysiological changes (e.g., impaired 
thermoregulatory capacity) become more profound under heat stress conditions9–12. This heat stress-FT interaction 
further complicates the development of production-restoring therapeutic and/or management strategies13.

Previous FT microbiota studies have focused on the effects of E+ on ruminal bacterial and fermentation pro-
files14,15. For example, one study identified ruminal hyper ammonia-producing bacteria capable of degrading the 
toxic ergot alkaloids16, indicating that these bacteria may be involved in the extensive metabolism of ergot alka-
loids occurring in the rumen17. As ergot alkaloids, the key etiological agents of FT, are heavily metabolized in the 
rumen, this suggests that they might affect animal performance indirectly, i.e., through ergot alkaloid metabolites 
(e.g., lysergic acid) or by targeting other downstream processes responsible for the decreased animal productivity 
associated with FT. In this regard, we recently found that E+ grazing alters the fecal microbiota, namely affecting 
the Ruminococcaceae and Lachnospiraceae bacterial families under thermoneutral conditions, while also leading 
to a highly correlated structure of hindgut microbiota specific to E+ grazing steers18. Separately, under ther-
moneutral conditions, we reported that E+ grazing perturbs the metabolome, mainly tryptophan and tyrosine 
metabolism, and it does so in opposing patterns in the plasma and urine19. The influence of E+ grazing on the 
microbiota-metabolome interaction, or how elevated environmental temperature and humidity might affect the 
grazing beef microbiota, metabolome, and their interactions, have not been assessed thus far.

Therefore, the goals of this current study were to assess the influence of E+ grazing under thermoneutral and 
harsher environmental conditions on the fecal microbiota, plasma and urine metabolomes, and on the way they inter-
act. We hypothesized that E+ grazing results in rapid and lasting perturbations of the plasma/urine metabolomes 
and fecal microbiota and the microbiota:metabolome interactions. As E+ steers have impaired thermoregulation,  
we also hypothesized that harsher environmental conditions would compound these perturbations.

Materials and Methods
Animal treatments and environmental conditions.  All animal handling and sample collection meth-
ods were approved in advance by the Institutional Animal Care and Use Committee of the University of Georgia 
(A2015 11-004) and were performed in accordance with all relevant guidelines and regulations. Animals were 
passed through animal handling protocols and selected based on temperament and weight. Post-weaning Angus 
steers (n = 12; BW = 311.3 ± 5.4 kg) were blocked by weight and randomly assigned to non-toxic (Max-Q; Jesup 
MaxQ AR542; n = 6; 3 paddocks, 2 steers per paddock) or toxic (E+; Jesup with wild-type endophyte; n = 6; 3 
paddocks, 2 steers per paddock) tall fescue treatments at the J. Phil Campbell Natural Resources Conservation 
Center of the University of Georgia (Watkinsville, GA) in the late Spring and early Summer of 2016 (May 11, 
2016–June 6, 2016). The temperature-humidity index (THI) was used as a predictor of heat stress risk and was 
calculated from temperature and humidity measurements as previously described20. Briefly, THIs were calculated 
using the equation: = . ∗ − ∗ − . +−( )THI T T1 8 ( 14 3) 32;RH100

100
 where T is the ambient temperature in 

degrees centigrade and RH is the percent relative humidity. Samples were collected before and at 1, 2, 12 (low 
THI; −THI), 16 (high THI; +THI), 20 (+THI), and 26 (−THI) days post pasture assignment. Low THI (no heat 
stress risk) dates were defined as THI < 72 on two successive dates, and high THI (mild-to-moderate heat stress 
risk) was defined as THI > 72 for two successive dates with sample collections occurring in the afternoon on the 
second day. Temperature and humidity measurements were recorded from 8:00 AM–8:00 PM daily and across 
sampling times (8:00–11:00 AM for −THI dates, 12:00–4:00 PM for +THI dates).

Date selection for assessment of environmental influences.  To determine the effects of E+ grazing 
and THI on the microbiota, metabolome, and the microbiota:metabolome interactions, Day 12 (lowest −THI) 
and Day 20 (highest +THI) sampling dates were used as representative dates to assess potential effects of different 
ambient environmental conditions (i.e., −THI vs +THI) on Max-Q and/or E+ grazing steers. Further, detection 
of ergot alkaloids in the urine has been shown as an accurate and less variable ergot alkaloid exposure diag-
nostic tool21,22. The majority (94%) of ergot alkaloid excretion is in the urine, with ergot alkaloids appearing as 
early as 12 h post-exposure and concentrations being both exposure level- and duration-dependent21. Therefore, 
given that ergot alkaloids are considered the key etiological agents of FT and their urinary levels are a sensitive 
biomarker of ergot alkaloid exposure, in this study, ergot alkaloids in the urine reached a stable maximum and 
plateaued by 12 days. Urinary ergot alkaloid (UEAs) levels on Day 12 and Day 20 were significantly higher in E+ 
than Max-Q steers on both sampling dates (see results). Thus, Day 12 and Day 20 were used in our microbiota, 
high-resolution metabolomics (HRM), and the microbiota:metabolome integrative analyses to assess E+: THI 
interactive effects. These analyses are described later in this study.

Urinary ergot alkaloid analysis.  Total UEAs, a sensitive biomarker of exposure to E+23, were determined 
before pasture placement and at 1, 2, 12, 16, 20 and 26 days post-pasture placement via ELISA (Agrinostics Ltd. 
Co., Watkinsville, GA) as previously described4,19,23.

Sample collection and processing.  Steer body weights were recorded before pasture placement and 16, 20 
and 26 days post pasture assignment with a digital scale. Fresh fecal samples were collected by hand from inside 
the animal using new gloves for every collection. Plasma was collected via jugular blood draw and voided urine 
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was collected in freshly cleaned cups. Plasma, urine, and fecal matter were stored on ice for transport to the lab 
and long-term storage at −80 °C. Fecal, plasma, and urine samples were taken before pasture placement (Pre) and 
at 1, 2, 12, 16, 20, and 26 days post pasture assignment.

DNA extraction.  Fecal genomic DNA was extracted using a mechanical disruption and phenol extraction 
protocol established by Stevenson and Weimer24, with a 25:24:1 phenol:chloroform:isoamyl alcohol modifica-
tion21. All DNA samples were resuspended in TE buffer and quantified using a Qubit® Fluorometer (Invitrogen, 
San Diego, CA). For each set of DNA extractions, a negative control (TE extraction buffer) was included alongside 
each extraction and taken through the amplification and sequencing protocols described below.

DNA amplification and sequencing.  Samples were diluted to 1 ng/µL for amplification, and universal 
bacterial primers for the 16S rRNA variable region V4 were used in the amplification reaction as described by 
Mote, et al.18. After amplification, samples were equimolar pooled into the final library, and sequenced on an 
Illumina MiSeq using the 2 × 250 bp paired end MiSeq v2 sequencing kit (Illumina, San Diego, CA) using custom 
primers22. The sequenced control and sample DNA were subjected to quality filtering and normalization proce-
dures described next.

16S rRNA gene fecal sequence processing and bioinformatics analysis.  Raw sequence files were 
processed using mothur v.1.38.125 as in Mote, et al.18. After quality filtering, unique sequences were aligned to the 
SILVA version 119 reference alignment database26 with chimera removal (http://drive5.com/uchime). Bacterial 
sequences were classified using the Greengenes database v13.8 (http://greengenes.secondgenome.com)27. Good’s 
coverage was calculated in mothur, and the operational taxonomic units (OTU) were normalized for sequence 
depth and abundance filtered (>0.1% abundance; >50% of within-date samples) prior to statistical analysis. 
Community diversity was estimated using Chao1 richness28 and Simpson diversity index29; alpha diversity met-
rics were tested for E+ grazing and time effects utilizing the non-parametric Kruskal-Wallis test by ranks. The 
non-parametric permutational analysis of variance (PERMANOVA) was used to test for E+ grazing effects on the 
entire microbial community using both Bray-Curtis (abundance) and Jaccard (presence/absence) distance matri-
ces, with fescue treatment and time spent grazing set as the two factors alongside the treatment by time interaction 
term. The same analysis was performed on day 12 (−THI) and 20 (+THI) samples using fescue treatment and THI 
as the two factors. Partial least squares discriminant analysis (PLS-DA) were performed, with near zero variance 
filtering for predictors, using the mixOmics R package30,31 on the post-sequencing depth normalized OTU table; 
the sequences were log transformed, mean centered and Total Sum Scale normalized prior to these analyses30. 
Linear discriminant analysis effect size (LEfSe) was performed within the Huttnehower lab’s galaxy instance using 
the relative abundance table (https://huttenhower.sph.harvard.edu/galaxy/; 93), with Kruskal-Wallis (P < 0.05), 
Pairwise Wilcoxon (P < 0.05), and logarithmic LDA score (>2.0). All included OTU analyses presented here were 
determined at a 97% sequence identity, allowing for genus-level resolution32, as determined using the furthest 
neighbor clustering algorithm. Correlational analysis was performed using Hmisc R package33.

High-resolution metabolomics.  Metabolomics sample processing was performed similar to that 
described by Mote, et al.19. Briefly, 50 μl of urine or plasma were mixed with 100 μl acetonitrile and 2.5 μl of internal  
standard, kept on ice (30 min) and centrifuged (10 min at 14,000 rpm). Metabolomics samples (100 μL of the 
supernatant) were analyzed on the Orbitrap Fusion Mass Spectrometer (Thermo Fisher), with instrument settings 
at 120,000 resolving power, 5 min runs, and 10 μl injection. Both reverse phase (negative mode) and hydrophilic 
liquid interaction chromatography (HILIC; positive mode) columns were used for each sample in triplicate. Peak 
detection, noise filtering, m/z and retention time alignment, feature quantification, and quality filtering were done 
using xMSanalyzer v2.0.7 with apLCMS v6.1.334,35, running all samples (i.e., plasma and urine) simultaneously 
so any unique feature (i.e., unique m/z and retention time) identified would be the same regardless of biological 
matrix. Data were extracted as HRM features, and the average of three technical replicates were log2 transformed 
with a +1 pseudocount and quantile normalized prior to bioinformatics analysis.

HRM data analysis.  Feature intensity tables were analyzed in R. Circular Manhattan plots were generated 
using the CMplot R package36. PLS-DA were performed using the mixOmics R package v6.3.2., with near zero 
variance predictor filtering30. Pathway analysis was performed using mummichog within each date and for the 
entire grazing trial using the FDR corrected p-value and t-scores as input values, with respective ionization mode 
and [M + H] adduct matching37; all pathways presented herein are the −log10 mummichog corrected p-value.

HRM and 16S rRNA gene data integration.  For analyzing the interaction between the plasma/urine 
metabolomes and fecal microbiota, procrustes was performed on the Max-Q and E+ data independently 
(throughout the grazing trial and on Day 12 [−THI] and 20 [+THI]) with the vegan R package38, using the nor-
malized 16S rRNA and combined plasma and urine metabolomes prior to running the monoMDS command to 
generate ordination plots. After running the procrustes function, the protest function was used to perform permu-
tational Monte Carlo simulation to estimate the significance of the microbiota:metabolome correlation. Coinertia 
analysis (CIA) was performed on the Max-Q and E+ data independently (throughout the grazing trial and on 
Day 12 and 20) using the ade4 R package39 to estimate the covariance between the 16S rRNA OTUs and the 
plasma and urine metabolic features within a fescue cultivar. The CIA was done after combining the normalized 
plasma and urine metabolomes into one data frame prior to performing the dudi.PCA function. The cia function 
was used to perform the CIA with the OTU duality diagram as the X data matrix and the duality diagram of the 
HRM features as the Y data matrix. sPLS regression was done with the mixOmics R package v6.3.230, using two 
components in the canonical mode with the plasma and urine combined HRM datasets, subset to each feature 
present in at least 50% of samples throughout the trial as the X matrix and the normalized 16S rRNA OTU table as 
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the Y matrix. The Max-Q and E+ datasets were then separated and analyzed independently to assess relationships 
specific to fescue cultivar; correlation threshold was (|r| > 0.70). The resulting sPLS bipartite networks were saved 
in.gml format using the igraph R package40 for Cytoscape v3.6.0 visualization and differential network analysis.

Statistical analysis of non-‘omics data.  Statistical analyses of weight gains and urinary ergot alkaloids 
were done with Sigma Plot v12.5 (Systat Software, Inc., San Jose, CA) using two-way ANOVA (within-subjects 
design) with days of sampling and fescue treatment set as the two independent variables. If significant (P < 0.05) 
effects based on treatment or days spent grazing were observed, the Holm-Sidak post-hoc analysis was applied to 
separate significant differences. Graphs were generated with GraphPad Prism 5 (La Jolla, CA).

Accession number(s).  All DNA sequences are publicly available in the NCBI Sequence Read Archive and 
are accessible under BioProject accession number PRJNA603062.

Transparency document(s).  HRM feature intensity tables and metadata have been deposited in 
Metabolomics Workbench (www.metabolomicsworkbench.org).

Results
Environmental conditions, animal weight gains and urinary ergot alkaloids (UEAs).  THI values 
across sampling times were 69.9 (Day 0; Pre), 71.9 (Day 1), 70.8 (Day 2), 64.0 (Day 12; 1st −THI), 74.3 (Day 16; 
1st +THI), 78.7 (Day 20; 2nd +THI), and 74.0 (Day 26; 2nd −THI); of note, rain on sampling Day 26 increased 
the relative humidity (used in THI calculation), but the temperature on this day was 23.64 °C, similar to day 2 
(23.33 °C). E+ grazing steers had significantly (P < 0.05) lower average daily (0.5 ± 0.1 kg/day; ADG) and cumu-
lative weight gains (13.9 ± 4.7 kg; CWG) compared to steers that grazed the non-toxic endophyte-infected tall 
fescue (Max-Q; [0.9 ± 0.3 kg/day ADG; 23.2 ± 6.9 kg CWG]) after the 26-day grazing period. Prior to pasture 
assignment (Day 0), the steers had some UEAs (67.9 ± 14.4 ng/mg creatinine), likely due to fescue hay supple-
mentation. After pasture placement, UEAs in E+ animals were significantly (P < 0.001) increased beginning at 2 
days throughout the remainder of the study (Day 2 = 221.3 ± 53.3, Day 12 = 246.9 ± 56.3, Day 16 = 296.9 ± 29.1, 
Day 20 = 234.4 ± 31.1, Day 26 = 253.8 ± 38.1 ng/mg creatinine), with Max-Q steers levels precipitously dropping 
and becoming markedly lower as the grazing trial progressed (Day 2 = 64.4 ± 37.9, Day 12 = 19.9 ± 10.1, Day 
16 = 6.5 ± 4.8, Day 20 = 6.1 ± 4.2, Day 26 = 17.9 ± 6.9 ng/mg creatinine).

Microbiota Results
16S rRNA gene sequencing.  We generated 3,575,828 raw sequences, which resulted in 1,787,914 high 
quality sequences after filtering that clustered and aligned into 2,973 OTUs. The average number of paired 
sequences per sample was 21,285 (range: 7,035–60,852) and the average number of populated OTUs per sample 
was 954 (range: 493–1,298). The average Good’s coverage for the data set was 98.7 ± 0.6, indicating adequate 
sequencing depth and coverage to capture most of the species diversity in the samples.

Alpha diversity metrics.  Overall, both Chao1 richness and Simpson’s diversity had minor fluctuations 
throughout the trial. The highest diversity occurred between 2 and 16 days of grazing. Sample richness was 
slightly more variable, with the lowest richness being after 2 and 16 days and the highest richness being after 
20 days of grazing. Neither Simpson’s diversity (P = 0.11) nor Chao1 richness (P = 0.35) were affected by fescue 
treatment in this study.

The overall fecal microbiota profile was significantly affected by fescue treatment and grazing time using both 
Jaccard (Treatment: P < 0.01; Time: P < 0.001) and Bray-Curtis (Treatment: P < 0.01; Time: P < 0.001) distance 
matrices. When comparing Day 12 (−THI) and Day 20 (+THI), there was a significant effect of treatment and 
a trend for an effect of THI for both Bray-Curtis (Treatment: P < 0.001; THI: P = 0.06) and Jaccard (Treatment: 
P < 0.001; THI: P = 0.14) distance matrices, without any significant effect on Inverse Simpson’s diversity or Chao1 
richness measurements (P > 0.8).

Microbial data reduction analysis.  Partial least squares discriminant analysis (PLS-DA) showed that both 
Max-Q and E+ steer microbiota profiles shifted from the Pre steers in a distinct manner (Fig. S1A). Further, the 
samples later in the grazing period had shifted furthest from the Pre steers, with no significant specific shifts on −
THI and +THI sampling dates. PLS-DA at each sampling date indicated the Max-Q and E+ steers formed distinct 
clusters, with the separation and clustering occurring along the first principal component (Fig. S1A). Generally, 
clustering along the second principal component was only seen in Max-Q steers on Day 2, 20, and 26 (Fig. S1A) 
and E+ on day 20 (Fig. S1A). Overall, the first component explained >90% of the overall variance, with >99% 
of the cumulative variance explained when the second component was added for each sampling date (Fig. S1A).

From the PLS-DA loadings analysis, classified families that overlapped between sampling dates and had OTUs 
as drivers of the Max-Q and E+ separation included those in the families Erysipelotrichaceae, Lachnospiraceae, 
Ruminococcaceae, Rikenellaceae, Mogibacteriaceae, Coriobacteriaceae, Rikenellaceae and Clostridiaceae (through-
out the trial), the Paraprevotellaceae, Peptostreptococcaceae, candidate family BS11 (early to midtrial), and candi-
date S24-7 (late in the trial). A detailed list of all bacteria separated by sampling dates can be found in Table S1.

Day 12 (−THI) versus Day 20 (+THI) PLS-DA, irrespective of fescue treatment, revealed two distinct clus-
ters, with Component 1 explaining 83.58% and Component 2 explaining 15.40% of the cumulative variance for 
the analysis (Fig. S1B). The top OTU loading weights were aligned to the family Lachnospiraceae (6 OTUs), with 
all other classified families (e.g., Ruminococcaceae, Coriobacteriaceae, and Peptostreptococcaceae) only having 1 
OTU each.
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Similar analyses were performed within E+ to assess the specific effects of THI on the E+ microbiota profile. 
When comparing Day 12 (−THI) versus Day 20 (+THI), the Day 12 and Day 20 steers formed distinct clusters, 
with the first component contributing 82.50% and the second component contributing 16.70% of the explained 
variance (Fig. S1B). Ruminococcaceae and Lachnospiraceae were the two most prevalently classified families that 
were driving the THI-based separation in E+ steers. Seventeen of the top 50 OTUs driving the separation were 
unclassified at the order level. Mogibacteriaceae, Clostridiaceae, Coriobacteriaceae, and Porphyromonadaceae were 
among other classified families responsible for the E+ THI-based separation.

Linear discriminant analysis of effect size (LEfSe).  All effects listed as a result of the LEfSe met 
the following criteria for significance: Kruskal-Wallis P < 0.05; Pairwise Wilcoxon P < 0.05; logarithmic LDA 
score > 2.0. Overall, Max-Q grazing significantly increased the Lentisphaerae and Proteobacteria phyla (Fig. 1A). 
For the Actinobacteria, Max-Q grazing significantly increased the Coriobacteriaceae genus Adlercreutzia. From 
the class Bacilli within the phylum Firmicutes, Max-Q increased the Planococcaceae family and the Bacillus 
genus. Max-Q grazing also significantly increased the genus Dehalobacterium, the Lachnospiraceae genera 
Dorea and Blautia, and the Ruminococcaceae genera Ruminococcus and Oscillospira (Fig. 1A). Finally, within the 
Bacteroidetes phylum, the Rikenellaceae was significantly increased in Max-Q steers (Fig. 1A).

Overall, E+ grazing significantly increased the abundance of the Firmicutes, Chloroflexi, and Actinobacteria 
phyla. Within the Proteobacteria, the genera Ruminobacter and Suttrella were significantly increased in E+ steers 
(Fig. 1A). Further, E+ grazing significantly increased the candidate genus SHD-231 (of the family Anaerolinaceae 
and phylum Chloroflexi; Fig. 1A). For the Actinobacteria, E+ grazing increased Intrasporangiaceae and the 
Coriobacteriaceae genera Enterococcus and Olsenella (Fig. 1A). The families Mycoplasmataceae and candidate 
RFP12 of the Verrucomicrobia were significantly increased by E+ grazing. From the class Bacilli in the phylum 
Firmicutes, E+ grazing increased the genus Solibacillus of the family Planococcaceae. The Clostridium and candi-
date genera SMB53 of the family Clostridiaceae, the genus Coprococcus in the family Lachnospiraceae, the candi-
date genus rc4-4 of the family Peptococcaceae, and the genus Anaerovorax of the proposed family Mogibacteriaceae 
were all increased in E+ steers (Fig. 1A). Finally, within the Bacteroidetes, E+ grazing increased the genera 
Paludibacter and candidate CF231 (Fig. 1A).

Figure 1.  Linear discriminant analysis (LDA) effect size (LEfSe; Kruskall-Wallis [P < 0.05]; Pairwise Wilcoxon 
[P < 0.05]; logarithmic LDA score > 2.0) of the fecal microbiota of (A) Angus steers before (Pre) placement 
or across a 26-day grazing trial after placement on either a non-toxic (Max-Q; n = 6) or toxic (E+; n = 6) 
endophyte-infected tall fescue; (B) steers grazing Max-Q tall fescue on Day 12 (- temperature humidity index 
[−THI]) versus Day 20 (+THI); (C) steers grazing E+ tall fescue on Day 12 (−THI) versus Day 20 (+THI). (A) 
Blue, green, and red shading indicates greater abundance in Pre, Max-Q, or E+ steers, respectively (C) Green 
and red indicates greater abundance in E+ steers on Day 12 (−THI) and 20 (+THI), respectively. Taxonomic 
rank labels are provided before bacterial names: “p_; c_; o_; f_; g_” indicate phylum, class, order, family, and 
genus, respectively. Letters and numbers within the cladogram refer to bacterial names located in the keys below 
(panel A) and to the right (panel C) of the cladogram.
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When comparing Day 12 (−THI) and Day 20 (+THI) within Max-Q steers, there were no significant 
effects on any fecal bacteria in response to the different THI conditions (Fig. 1B). However, when comparing 
the E+ steers, we found that the genera Mycoplasma and Clostridium of the family Ruminococcaceae were sig-
nificantly decreased by +THI (Fig. 1C). Additionally, the Coriobacteriaceae genus Olsenella, Streptococcaceae 
genus Streptococcus, Turicibacteraceae genus Turicibacter, Clostridiaceae candidate genus SMB53, the genus 
Butyrivibrio, and the family Peptostreptococcaceae were all significantly increased in E+ steers under +THI con-
ditions (Fig. 1C).

Microbiota OTUs and THI/ADG correlation analysis.  These correlational analyses of bacterial OTUs 
were performed to test if OTUs within individual families have either a positive or negative correlation with 
the endpoint of interest. Overall, the Lachnospiraceae and Ruminococcaceae families, alongside the proposed 
family Mogibacteriaceae, had OTUs whose relative abundances were positively correlated with ADG (r > 0.3; 
P < 0.05). Further, Ruminococcaceae, proposed Paraprevotellaceae, Lachnospiraceae, and Bacteroidaceae families 
had OTUs whose relative abundance negatively correlated with ADG. The genus Prevotella had one OTU that 
negatively correlated strongly with ADG (r = −0.68; P < 0.001). Within E+ steers, the classified families with 
the greatest number of negatively correlated OTUs were the Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, 
Mycoplasmataceae, and Clostridiaceae (Table 1).

When considering all steers, five classified families had OTUs with relative abundances positively correlating 
(r > 0.3; P < 0.001) with THI. Within E+ steers, the same classified families, excluding the Peptostreptococcaceae 
and including the Ruminococcaceae, positively correlated with THI (Table 1). Many OTUs were classified at the 
genus level as well, with Olsenella having the highest number of OTUs.

Ruminococcaceae was the only classified family that had OTUs with relative abundances negatively correlating 
(r < −0.3; P < 0.001) with THI, regardless of fescue treatment. Within E+, the top classified families that nega-
tively correlated with THI were the Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, Mogibacteriaceae, and 
candidate family RFP12 (Table 1). For all analyses, numerous OTUs were classified at the genus level, and these 
genera are provided in Table 1.

High-resolution metabolomics (HRM).  Descriptive statistics.  A total of 12,030 and 12,407 HRM unique 
features were detected in the, respectively, plasma and urine with C18-LCMS; 16,878 and 17,484 HRM features 
were detected using HILIC-LCMS. Overall, a large number of HRM features were significantly influenced by 
E+ grazing throughout the grazing trial in both plasma and urine (Fig. S2). More specifically, a total of 1,753 
(C18-LCMS) and 2,642 (HILIC-LCMS) HRM features were significantly (P < 0.05) affected by E+ grazing in the 
plasma, and 1,348 (C18-LCMS) and 3,250 (HILIC-LCMS) features were significantly (P < 0.05) affected by E+ 
grazing in the urine.

HRM data reduction analysis.  HRM PLS-DA revealed results similar to the microbial analyses for both plasma 
and urine, in that both Max-Q and E+ steers metabolomes distinctly shifted from the metabolome composi-
tion prior to pasture placement (Pre; Fig. S3). Plasma PLS-DA loadings were metabolites primarily involved 
in Vitamin A (retinol), amino acid (e.g., tryptophan, tyrosine), butanoate, and arachidonic acid metabolism 
(throughout the trial), glutathione metabolism (early in the trial [Day 1–2]), biopterin and energy related metab-
olism (e.g., TCA cycle; late in the trial [Day 12–26]). The urine loadings were putative metabolites primarily 
involved in glycolysis and gluconeogenesis, amino acid, leukotriene and arachidonic acid, C21-steroid hormone 
metabolism, prostaglandin formation from arachidonate, and urea cycle/amino group metabolism (through-
out the trial) and energy metabolism (e.g., fatty acid β-oxidation, etc.) and androgen/estrogen biosynthesis and 
metabolism (Day 16, 20, and 26).

When comparing Day 12 (−THI) and 20 (+THI) within E+ steers, we found that those HRM features that 
drove their separation were metabolites putatively involved in: prostaglandin formation from arachidonate, ara-
chidonic acid metabolism, C21-steroid hormone biosynthesis and metabolism (plasma and urine) leukotriene 
and biopterin metabolism (plasma) and bile acid biosynthesis, aspartate and asparagine metabolism, arachidonic 
acid metabolism, non-unsaturated fatty acid beta-oxidation, and Vitamin E metabolism (urine).

HRM pathway analysis.  The overall top three pathways influenced by E+ grazing throughout the trial, for both 
plasma and urine, were tryptophan, tyrosine, and biopterin metabolism (Fig. 2A,B). Further, a number of amino 
acid metabolic pathways were significantly altered by E+ in both plasma and urine (Fig. 2A,B). Other signifi-
cantly altered pathways in the plasma include lineolate metabolism and important energy producing pathways 
(e.g., TCA cycle and carnitine shuttle; Fig. 2A). In the urine, other metabolic pathways affected by E+ grazing 
include those involved in carbon fixation, drug, vitamin, lipid, and nucleic acid metabolism (Fig. 2B). Temporal 
merging of the mummichog activity networks resulted in clusters being formed around metabolites involved in 
amino acid and lipid metabolism, indicating these specific metabolic perturbations may be important for FT 
etiology (Fig. 2C,D).

There were a number of metabolic pathways that were significantly affected by E+ grazing on least (−THI) 
and most (+THI) harsh days of the grazing trial (Fig. 3). Overall, 24 metabolic pathways were significantly 
affected in both plasma and urine, whereas 36 and 7 were specifically affected in, respectively, the plasma or the 
urine (Fig. 3). Within the plasma, 30 of the resultant metabolic pathways were THI-independent, and 10 and 
20 metabolic pathways were affected on Day 12 or Day 20, respectively (Fig. 3). In the urine, only 7 metabolic 
pathways were significantly affected by E+ grazing independent of THI, with 10 and 12 being specific to Day 12 
and 20, respectively (Fig. 3). These data indicate that more metabolic pathways in the plasma than in the urine are 
affected by E+ and that the +THI conditions modify this effect.
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More specifically, in the plasma, tyrosine and tryptophan were the top two pathways significantly affected by 
E+ grazing, regardless of THI. Other highly affected metabolic pathways include chondroitin sulfate degradation, 
histidine metabolism, methionine and cysteine metabolism and aspartate and asparagine metabolism (Fig. 3). In 
the urine, the top altered metabolic pathways were biopterin and Vitamin B6 metabolism on both Day 12 and 
Day 20 (Fig. 3). Detailed list of metabolic pathways affected irrespective of THI or on either Day 12 or 20 can be 
seen in Fig. 3.

Plasma and urine sPLS networks.  For both Max-Q and E+ steers, sPLS variable selection resulted in two distinct 
clusters, one with plasma metabolites (orange) as the anchors and one where plasma and urine metabolites are 
dispersed evenly throughout the network (Fig. S4). The Max-Q Day 12 (−THI) and 20 (+THI) networks were 
similar to those of the overall network. On the other hand, while the E+ Day 12 was similar, the E+ Day 20 net-
work had urinary metabolites as the anchors of both clusters within the network (Fig. S4). In support, the metab-
olites involved in the Max-Q networks were putatively identified as involved in methionine and cysteine, tyrosine, 
and arginine and proline metabolism, regardless of THI. While the E+ metabolites in the overall and Day 12 

Family Genus Number of OTUs Spearman’s R P-value

ADG (+r)

Lachnospiraceae 13 0.458 0.027

Dorea 1 0.460 0.024

Ruminococcaceae 9 0.462 0.025

Oscillospira 1 0.454 0.026

Ruminococcus 1 0.426 0.038

Bacteroidaceae 3 0.499 0.023

5-7N15 3 0.499 0.023

Coriobacteriaceae 3 0.471 0.028

Erysipelotrichaceae 2 0.473 0.026

p-75-a5 1 0.412 0.045

ADG (−r)

Lachnospiraceae 5 −0.494 0.016

Butyrivibrio 2 −0.451 0.029

Ruminococcaceae 3 −0.440 0.033

Clostridium 1 −0.406 0.049

Ruminococcus 1 −0.480 0.018

THI (+r)

Lachnospiraceae 24 0.417 0.019

Butyrivibrio 3 0.394 0.018

Blautia 1 0.441 0.007

Dorea 1 0.550 0.001

Ruminococcaceae 12 0.395 0.023

Ruminococcus 6 0.400 0.020

Coriobacteriaceae 9 0.417 0.019

Olsenella 4 0.455 0.015

Enterococcus 1 0.393 0.018

[Mogibacteriaceae] 7 0.446 0.016

Mogibacterium 3 0.395 0.020

Clostridiaceae 3 0.453 0.011

Clostridium 2 0.399 0.016

SMB53 1 0.600 0.0003

THI (−r)

Ruminococcaceae 15 −0.470 0.010

Oscillospira 2 −0.386 0.020

Papillibacter 1 −0.362 0.030

Lachnospiraceae 12 −0.423 0.016

Clostridium 2 −0.425 0.009

[Mogibacteriaceae] 2 −0.382 0.024

Table 1.  Top classified families and genera correlating with average daily gains (ADG), urinary ergot alkaloids 
(UEAs) and temperature humidity index (THI) in steers grazing toxic (n = 6; E+) tall fescue for a 26-day 
grazing trial. The number of OTUs within a family/genus, average Spearman correlation coefficients (|r| > 0.30), 
and average P-values (P < 0.05) are presented.
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networks were similar, the Day 20 E+ network had metabolites involved in multiple pathways only existent on 
Day 20 (e.g., pentose phosphate pathway, C21-steroid hormone biosynthesis and metabolism, and tryptophan, 
tyrosine, and xenobiotics metabolism) (Fig. S4).

Microbiota:metabolome integration.  Procrustes analysis revealed that the overall E+ fecal microbiota and the 
total metabolome are overall strongly correlated (Fig. 4A, Monte Carlo P = 0.04); but this is not the case for 
Max-Q steers (Fig. 4B, Monte Carlo P = 0.49). The inter-‘omic relationship was not apparent when the procrustes 
analyses was done on a subset of the data within −THI (Fig. 4C,D) or +THI (Fig. 4E,F). We found that the Monte 
Carlo simulation insignificance was similar for Max-Q (P = 0.13) and E+ (P = 0.14) steers under thermoneu-
tral conditions (Day 12) or during +THI (i.e., Day 20), although the E+ (P = 0.49) correlation was numerically 
stronger than the Max-Q one (P = 0.96).

Coinertia analysis (CIA) indicated that OTUs classified to the Firmicutes had strong inter-omic covariance in 
both Max-Q and E+ steers, but the magnitude of this covariance is higher in E+ steers (Fig. 5A,B). Further, the 
covariance (i.e., distance from the origin) for a number of Actinobacteria, Tenericutes, and Verrucomicrobia OTUs 

Figure 2.  Pathway analysis performed on the (A) plasma (red) and (B) urine (yellow) high-resolution 
metabolomics features using the mummichog python program that indicates putative metabolic pathways 
significantly (P < 0.05) affected by toxic tall fescue (E+) grazing in beef steers throughout the 26-day grazing 
trial (n = 12). The x-axis indicates the negative log of the FDR corrected p-value for each metabolic pathway 
indicated on the y-axis. The Venn Diagram details the number of metabolic pathways that were significantly 
affected by E+ grazing in the plasma (red), urine (yellow), or in both (overlapping). Red asterisk indicates 
production (i.e., weight gain)-related metabolic pathways. Temporally merged activity networks for the (C) 
plasma and (D) urine resultant from the mummichog pathway analysis detailing specific putatively annotated 
metabolites that were either significantly increased (red) or decreased (blue) in steers grazing E+ (n = 6) tall 
fescue when compared to steers grazing a non-toxic tall fescue (n = 6) over the course of a 26 day grazing trial.
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was higher in E+ steers (Fig. 5A,B). Finally, a number of low-level phyla (i.e., <10 OTUs; labeled as Other) had 
high covariance in E+ steers but not in Max-Q steers (Fig. 5A,B). Under thermoneutral conditions (Day 12), no 
significant shift between the microbiota-total metabolome covariance was observed between Max-Q (Fig. 5C) 
and E+ (Fig. 5D) steers. On Day 20, the Max-Q (Fig. 5E) CIA revealed a similar pattern to Max-Q Day 12, but the 
E+ (Fig. 5E) CIA revealed a distinct shift in the microbiota-metabolome covariance leading to a bi-modal distri-
bution of OTUs. Notably, the magnitude of Firmicutes OTUs covariance was greater, but this similar differential 
pattern was similar for almost all phyla, i.e., most OTUs had significantly shifted from the point of origin. This 
indicates that the overall E+ effect on CIA was driven by greater differences during +THI.

After sPLS variable selection using the data from all dates post pasture placement, Max-Q steers had signif-
icantly fewer OTUs and metabolomics features that had strong correlation (|r| > 0.7), supporting the results of 
the Procrustes and CIA analyses (Fig. 6A,B). Considering this, differential network analysis was performed. In 
the resultant E+ network, most of the selected HRM features that were highly correlated with fecal OTUs were 
urinary metabolites (orange; 486 features; Fig. 6C), but plasma metabolites were also part of the network (blue; 
30 features; Fig. 6C). Further, two distinct clusters were formed and most of the plasma HRM features were in 
the cluster on the right; most urine HRM features were in the left cluster (Fig. 6C). In the left cluster, the OTUs 
that correlated with urinary metabolites were mainly aligned in the Ruminococcaceae and Lachnospiraceae, with 
one OTU aligned in the candidate family S24-7 and one unclassified at the family level (Fig. 6C). The plasma 
metabolites in the left subnetwork mapped to C21-steroid hormone biosynthesis and metabolism, and tryp-
tophan and tyrosine metabolism (Fig. 6C). Similarly, in the right subnetwork, most OTUs also aligned to the 
Ruminococcaceae, Lachnospiraceae, and Erysipelotrichaceae families, with OTUs also aligning in the candidate 
RFP12 and Mogibacteriaceae families (Fig. 6C). The plasma and urinary metabolites were involved in tryptophan, 
tyrosine, and androgen and estrogen biosynthetic metabolic pathways (Fig. 6C). Finally, many of the urinary and 
plasma HRM features were unidentified, and many OTUs were unclassified at the family level.

Interestingly, one OTU (Otu00087) aligned to Peptococcaceae candidate genus rc4-4 within the sPLS network 
and was also significantly correlated (+r) with ADG and UEAs (−r) in E+ steers. Another OTU (Otu01305) 
aligned to the Clostridiaceae genus Clostridium and correlated with both ADG in E+ steers and THI (+r). Finally, 
a Ruminococcaceae OTU (Otu00042) correlated with THI and UEAs in E+ steers (+r). These three OTUs shared 
most of the highly significantly correlated plasma and urinary metabolites which were involved in tyrosine and 
tryptophan metabolism, valine, leucine and isoleucine degradation, and C21- steroid hormone biosynthesis. 
Otu01305 was also peripherally connected to metabolites involved in prostaglandin formation from arachidonate 
(Fig. 6D). Notably, these three OTUs were present when sPLS and differential network analysis was performed on 
Day 12 and Day 20 independently. So, although the abundance of these OTUs may be influenced by environmental  
conditions, as indicated by positive or negative THI correlations, these OTUs may also be robust predictors of E+ 
effects on the fecal microbiota:metabolome interactions regardless of environmental conditions.

Figure 3.  Top 15 pathways from pathway analysis performed on the (A) plasma and (B) urine high-resolution 
metabolomics features using the mummichog python program within Day 12 (−THI) and 20 (+THI), with 
putative pathways that are significantly affected by toxic tall fescue (E+) grazing solely on Day 12 (−THI; 
orange), only on Day 20 (+THI; gray), or on both dates (plasma = red; urine = yellow). The Venn diagrams 
detail the number of putative metabolic pathways that were affected in the plasma and/or urine (top) or in the 
plasma on Day 12 and/or Day 20 and (bottom left) or in the urine on Day 12 and/or Day 20 (bottom right).
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Discussion
The data presented herein provide important insights into the nature of the pathophysiological shifts that occur 
while beef cattle graze E+ tall fescue pastures and highlight the complexity of developing FT therapeutics, as both 
grazing and external (e.g., environmental) stressors influence the animal response to E+. In a 26-day grazing trial,  
we found that even relatively short-term grazing results in significant production deficits (i.e., significantly lower 
ADG) and rapid fluctuations in ambient environmental conditions modulate pathophysiological responses to 
E+ grazing. Although future evaluation of the ruminal microbiota, in addition to the fecal one as done here, to 

Figure 4.  Procrustes analysis performed using the vegan R package for steers grazing either a (A; Max-Q; n = 6) 
novel, non-toxic or (B; E+; n = 6) toxic endophyte-infected tall fescue over the course of a 26-day grazing trial; 
Max-Q steers on Day 12 (C; −THI) and Day 20 (E; +THI) and E+ steers on Day 12 (D; −THI) and Day 20 (F; 
+THI). The significance values were estimated using the protest function to perform permutational Procrustes, 
with the P values reported in the upper left hand side of each respective plot. The greater vector length is 
indicative of greater inter-‘omic variability.
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better understand FT development from a systemic level will be important moving forward, the results from the 
current study still have significant implications for future E+ therapeutic development and grazing management 
strategies that seek to help alleviate the economic and environmental burden of FT. As temperatures continue to 
rise, improving animal health and productivity for beef cattle grazing the predominant Southeastern U.S. pasture 
grass under environmentally stressful conditions is of great urgency.

Figure 5.  Coinertia analysis performed on OTUs for steers grazing either a (A; Max-Q; n = 6) novel, non-
toxic or (B; E+; n = 6) toxic endophyte-infected tall fescue over the course of a 26-day grazing trial; Max-Q 
steers on Day 12 (C; lowest −THI) and Day 20 (E; highest +THI) and E+ steers on Day 12 (D; −THI) and 
Day 20 (F; +THI). Each point is plotted based on the OTUs predicted covariance with the plasma and urine 
metabolomes (i.e., greater distance from the point of origin indicates a greater covariance) of the respective 
group of steers. Red = Actinobacteria, brown = Bacteroidetes, green = Firmicutes, teal = other (unclassified, 
Planctomycetes, Chloroflexi, and other low abundance phyla), blue = Proteobacteria, purple = Tenericutes, and 
pink = Verrucomicrobia.
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Figure 6.  Heat maps representing fecal 16S rRNA OTUs and plasma high-resolution metabolomics (HRM) 
features that were selected by sparse partial least squares regression (sPLS) and high correlation (|r| > 0.7) in 
steers grazing either a novel, non-toxic (A; Max-Q; n = 6) or toxic (B; E+; n = 6) tall fescue over the course 
of a 26 day grazing trial. Red and blue indicates positive and negative correlations, respectively. Select OTUs 
proposed as potential E+ -associated microbiota biomarkers are boxed in red on the x-axis of panel B. Bipartite 
network of fecal 16S rRNA OTUs (green circles) and plasma (orange rectangles) and urine (blue rectangles) 
high-resolution metabolomics (HRM) features that were selected by sparse partial least squares regression 
(sPLS; top 100 OTUs [X matrix] and 500 plasma and urine HRM features [Y matrix]) using the mixOmics R 
package and were highly correlated (|r| > 0.7) (C) throughout the grazing trial and (D) a subnetwork of selected 
OTUs (green circles) that correlated with average daily weight gains, urinary ergot alkaloids (biomarkers 
of exposure and key etiological agents of FT), and THI, with the plasma (blue rectangles) and urine (red 
rectangles) HRM features that were highly correlated (|r| > 0.7) with these OTUs in the original network. 
Red and blue edge indicates positive or negative correlations, respectively. Select OTUs proposed as potential 
E+ -associated microbiota biomarkers pointed to by red arrows as the anchors of the network in panel D. 
Select plasma (blue box and arrows) and urine (orange box and arrows) metabolic features identified in the 
subnetwork have been highlighted in panel D.
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We recently reported that E+ grazing significantly alters the fecal microbiota in grazing beef steers under ther-
moneutral conditions18. The data presented herein support the previous study, indicating Max-Q or E+ grazing 
results in rapid, endophyte-specific shifts in the fecal microbiota that persist throughout the grazing trial. In both 
studies, Firmicutes were the most prominently affected phylum by E+ grazing; however, here, we also found that 
E+ grazing results in a microbiota more sensitive to fluctuating environmental conditions. In this regard, it has 
already been shown that heat stress can influence the fecal microbiota in dairy cattle41. Recent evidence directly 
attributed heat stress to impaired bovine gut integrity and changes in the gut immune profile42. It has also been sug-
gested that these changes in gut permeability and immune status can influence enteric microbiota populations43,44.  
In our study, there were numerous bacteria that were increased in E+ steers under +THI. However, the number of 
Ruminococcaceae OTUs that were significantly increased by E+ grazing was lower under +THI conditions, indi-
cating that E+ -related Ruminococcaceae increases in the feces might be offset by harsh environmental conditions.  
Overall, these data indicate that the beef fecal microbiota is inherently dynamic, and it responds rapidly to both 
dietary and environmental exposures. While future studies assessing the ecological effects of E+ should further 
track ruminal and fecal OTUs associated with susceptibility/resistance to E+ production deficits and the environ-
ment, it may also be important to perform whole genome sequencing of the microbiome to assess whether there 
are characterized or novel bovine-specific small proteins that could have important regulatory or housekeeping 
functions for the microbiome, as was recently discovered for humans45.

HRM revealed that the most significantly affected metabolic pathways were the tryptophan, tyrosine, and 
biopterin metabolism in both the plasma and urine, supporting our previous metabolomics study with the more 
robust data being herein19. When we integrated the activity networks from sequential sampling dates, we found a 
highly interconnected network of metabolites anchored around amino acid metabolism. It is also noteworthy that 
metabolomics analyses were able to provide crucial insights into potential indirect effects on global metabolism 
resultant from ergot alkaloid and/or E+ exposure. Alkaloid biosynthesis II was one pathway significantly affected 
by E+ in the plasma. Of note, this pathway is not directly responsible for ergot or indole-alkaloid biosynthesis; 
however, through alterations in amino acid metabolism, it is likely the alkaloid biosynthetic pathway intersects 
with early steps of ergot alkaloid metabolism. Further, tryptophan and tyrosine metabolism, among other amino 
acids, are involved in numerous physiological processes, including skeletal muscle anabolism. For example, tryp-
tophan has been previously shown to stimulate the IGF-1/mTORC1/S6K1 skeletal muscle building pathway in 
mice46, with previous studies finding E+ tall fescue can reduce serum IGF-1 concentrations47,48. It is well known 
that proteins/amino acids are important for skeletal muscle accretion in growing cattle (i.e., lean growth)49. Of 
note, recent investigations are beginning to elucidate the mechanisms by which amino acids regulate skeletal 
muscle autophagy in response to stressors, i.e. one study reported that amino acid supplementation can reduce 
muscle loss (autophagic) in neonatal pigs during endotoxemia50, indicating that alterations in amino acid metab-
olism as a result of E+ grazing could be related to decreased lean weight gain not only by decreasing skeletal 
muscle accretion but also by promoting skeletal muscle autophagy.

The data also showed that environmental conditions can modulate certain metabolic pathways that are sig-
nificantly affected by E+ grazing. sPLS network visualization of the plasma and urine metabolomes revealed that 
the metabolic features that best describe the variability in these physiologically important data matrices were only 
sensitive to −THI and +THI fluctuations in E+ steers, indicating that the E+ steer metabolomes are more sus-
ceptible to environmental stressors than non-toxic fescue (i.e., Max-Q) grazing steers. Notably, PLS-DA loadings 
analysis revealed that, in E+ steers, the main metabolites driving the separation between −THI and +THI condi-
tions were components of inflammatory metabolic pathways (e.g., arachidonic acid metabolism and prostaglandin 
formation). Previous studies found that moderate heat stress induces an immune/inflammatory response in dairy 
cattle51,52. As it relates to FT, steers on toxic tall fescue had greater serum TNF-α and cortisol levels than steers on 
endophyte-free tall fescue in response to LPS challenge47. Under stressful conditions, inflammation is just one 
factor contributing to alterations in global metabolism, and the animal will reprioritize important muscle building 
nutrients to meet allostatic load demand, ultimately resulting in decreased muscle accretion53. These data, coupled 
with impaired thermoregulation in E+ animals, indicate that under short-term E+ grazing, which is relevant to 
rotational grazing practices common to E+54, mild to moderate heat stress conditions could induce inflammatory 
responses, resulting in perturbed metabolism and increased nutrient demand to maintain thermoneutrality.

A noteworthy finding from the integrative analyses was that the non-toxic (Max-Q) steer microbiota had 
little predicted covariance with the plasma and urine metabolomes, but the fecal microbiota of E+ grazing steers 
significantly covaried with the metabolomes overall. Moreover, a number of urinary and plasma metabolites 
were significantly correlated with fecal OTUs and were involved in androgen/estrogen biosynthesis, C21-steroid 
hormone biosynthesis/metabolism, and fatty acid activation. As it relates to FT and animal productivity, a recent 
study has shown that androgen receptor signaling can influence myogenic differentiation through Wnt and 
TGF-β/Smad signaling55, potentially indicating that E+ grazing could result in perturbed muscle accretion by 
altering the microbiota-metabolome relationship. Also, the higher correlation and covariance of the E+ grazing 
steers, notably under +THI conditions, suggests decreased complexity of the host-microbe relationship. The 
microbiota:metabolome differences between Max-Q and E+ steers could be a result of changes in E+ gut micro-
bial metabolism leading possibly to increased gut permeability56 or E+ effects resulting in a heat stress-susceptible 
physiological and/or immunological background prior to +THI exposure. These data point to potential biomark-
ers, either in plasma or urine, that could be readily accessed and used to identify the presence of particular bacte-
ria associated with animal productivity in E+ grazing steers. As shown for necrotizing enterocolitis in humans57, 
these urinary biomarkers may be combined with other clinical signs (e.g., UEAs) to predict microbiota associated 
with low productivity, which is amenable to either dietary or therapeutic interventions.

We identified three OTUs that were unique to the E+ sPLS networks and were significantly associated with 
THI, UEAs, and ADG. These were Peptococcaceae candidate genus rc4-4, Clostridiaceae genus Clostridium, and 
one Ruminococcaceae OTU. Peptococcaceae rc4-4, which was significantly increased by E+, has been associated 
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with increased thermogenesis in cold environments in mice58 and was found to be negatively associated with 
circulating amino acids and choline compounds and positively associated with circulating cholesterol and fatty 
acids59. Although it is unlikely the sole factor, this particular bacteria could potentially contribute to altered 
amino acid metabolism we have found here and under thermoneutral conditions19. The Ruminococcaceae and 
Clostridiaceae families are bacteria we have previously found affected by E+ grazing, and deep sequencing of 
these two families would help delineate which specific species/strains of bacteria may be most relevant for FT 
etiology. Nonetheless, these OTUs, or perhaps more easily the urinary metabolites associated with these OTUs, 
can be further assessed for their utility to detect E+ exposure related microbiota presence that is indicative of 
decreased animal production efficiency regardless of environmental conditions.

The only study, to our knowledge, directly assessing the effects of E+ grazing on methane production 
found no difference in methane levels for steers grazing endophyte-free and endophyte-infected tall fes-
cue pastures60. Although we did not directly measure archaea, hydrogen-producing bacteria, such as the cel-
lulolytic Ruminococcous, are important for methanogens and other bacteria have been associated with 
low- or high-methane producing microbiota (e.g., other Ruminococcaceae, Lachnospiraceae, Prevotella, etc. for 
high-producers61). While utilizing fecal bacteria as easily accessible biomarkers of ruminal methane production 
has previously been proposed62, the data herein suggest the urinary metabolome could be indicative of specific 
endpoints of the fecal microbiota, such as E+ or ruminal methane production. In addition to possible dyshomeo-
stasis of methane production-related bacteria by E+, the decreases in animal productivity resultant from E+ graz-
ing will inherently lead to increased herd size to meet pasture-based agricultural demands1; therefore, E+ grazing 
will, at the least indirectly, result in a greater contribution of E+ grazing animals to methane emissions. This 
phenomenon has to be studied in detail in the future. Ultimately, multiple studies, like the one performed herein, 
are beginning to highlight the utility of top-down strategic approaches63 for improving animal health and welfare.

Conclusions
Overall, these data demonstrate that E+ grazing contributes to decreases in animal productivity through signif-
icant alterations in the microbiota and global metabolism. Further, E+ grazing results in greater susceptibility 
to environmental stressors such as increased heat and humidity, which are common in the Southeastern US and 
will become a greater burden on animal health and productivity as the climate continues to warm. As shown 

Figure 7.  Summary figure representing the study design and major results. Angus steers (n = 12) were allowed 
to graze either a toxic (E+; n = 6) or non-toxic (Max-Q; n = 6) tall fescue pastures throughout a 26-day grazing 
trial. Samples were collected on dates where there was no risk of heat stress (−THI) and where there was a 
mild-to-moderate risk of heat stress (+THI). Plasma and urine samples were analyzed by high-resolution 
metabolomics (HRM) and fecal samples were subjected to next-generation sequencing techniques targeting 
the 16S rRNA gene. With bioinformatics, we found significant perturbations of both the metabolome and 
the microbiota, which were modulated by +THI conditions only in E+ steers. Further, only E+ steers in 
thermoneutral conditions had a significant correlation/covariance between the microbiota and metabolome 
and sparse partial least squares regression revealed three OTUs that were predictive of E+, regardless of 
environmental conditions and were highly correlated with plasma/urine metabolites. We propose the further 
exploration of these as biomarkers of an E+ microbiota associated with production deficits that could possibly 
be targeted therapeutically.
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by our summary figure, E+ grazing resulted in significant metabolic and microbiota perturbations, while also 
increasing the susceptibility to +THI conditions (Fig. 7). As a result of this work, we were able to use bioin-
formatics techniques to identify important microbiota-metabolome relationships that could provide important, 
easily-accessible biomarkers for beef producers (Fig. 7). The increased susceptibility of E+ steers to +THI condi-
tions indicate that, even for rotational grazing production settings, accounting for both environmental and sea-
sonal changes will be important for developing efficacious microbial and/or metabolic-targeted FT interventions 
in the future. The data herein suggest that E+ grazing results in significant shifts in amino acid metabolism in 
the plasma, which could contribute to decreased skeletal muscle accretion by altering available amino acids or 
perturbing basal levels of skeletal muscle autophagy. Finally, the alterations in the microbiota-metabolome inter-
action could be used as biomarkers and as targets for management and/or therapeutic interventions.
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