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Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder, affecting approx-

imately 100,000 patients in the U.S. and millions more worldwide. Patients with SCD expe-

rience a wide range of clinical complications, including frequent pain crises, stroke, and

early mortality, all originating from a single-point mutation in the b-globin subunit. The RBC

changes resulting from the sickle mutation lead to a host of rheological abnormalities that

diminish microvascular blood flow, and produce severe anemia due to RBC hemolysis, and

ischemia from vaso-occlusion initiated by sticky, rigid sickle RBCs. While the pathophysi-

ology andmechanisms of SCD have been investigated for many years, therapies to treat the

disease are limited. In addition to RBC transfusion, there are only two US Food and Drug

Administration (FDA)-approved drugs to ameliorate SCD complications: hydroxyurea (HU)

and L-glutamine (EndariTM). The only curative therapy currently available is allogeneic

hematopoietic stem cell transplantation (HSCT), which is generally reserved for individuals

with a matched related donor, comprising only 10–15% of the total SCD population.

Potentially curative advanced gene therapy approaches for SCD are under investigation

in ongoing clinical trials. The ultimate goal of any curative treatment should be to repair the

hemorheological abnormalities caused by SCD, and thus normalize blood flow and prevent

clinical complications. Our mini-review highlights a set of key hemorheological biomarkers

(and the current and emerging technologies used to measure them) that may be used to guide the development of novel curative

and palliative therapies for SCD, and functionally assess outcomes.
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Introduction

SCD is caused by a single missense mutation on the
b-globin chain that changes the amino acid at position 6
from a hydrophilic glutamine amino acid to a hydrophobic
valine amino acid.1 The most common SCD genotype is the
heterozygous HbSS; the compound heterozygous genotype
HbSb0 (Hemoglobin S-beta thalassemia zero), in which no
HbA is made on the non-sickle mutation beta globin allele,
is nearly identical clinically. This review will discuss the
hemorheology of these genotypes unless otherwise
stated.2 Under deoxygenated conditions, HbS polymerizes

into a 14-molecule fiber, which subsequently elongates
as the result of the interaction of the hydrophobic valine
residues with other hydrophobic residues (namely alanine,
phenylalanine, and leucine) on the ends of HbS molecules.3

Ultimately, these fibers alter the sickle RBC shape, and
render the cells more rigid.3 Healthy RBCs can squeeze
through capillaries as small as 3 mm, and generally do not
adhere to endothelial cells lining the vessels.4 In contrast,
sickle RBCs impede normal blood flow through direct
interactions with the endothelium and other blood compo-
nents, as well as through the formation of microvascular
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occlusions that promote vasculopathy and ischemic
damage.5–7 Unimpeded passage of RBCs through complex
networks of capillaries and larger vessels is crucial for
maintaining appropriate level of microvascular perfusion
and tissue oxygenation.8

Hemorheological abnormalities in SCD

The clinical complications of SCD can be linked to the
abnormal flow properties (blood rheology or hemorheol-
ogy) of SCD blood.1 High viscosity (or thickness) of SCD
blood contributes to pain crises and organ damage. Dense
cells, defined as having >1.11mg/mL of Hb, are more
likely to sickle. Whole blood viscosity and % dense RBCs
(%DRBC) have been used as classical indicators for the
severity of SCD.1,9 Blood viscosity is determined by the
hematocrit, RBC deformability, RBC aggregation, and
plasma viscosity.1,10 For a given hematocrit, SCD blood is
very viscous in deoxygenated conditions due to HbS sick-
ling: an individual with SCD with a hematocrit of 21%
would have a whole blood viscosity comparable to that of
a normal individual with a hematocrit of 45% even if their
blood viscosity is lower than a normal individual’s blood
viscosity in normoxic conditions.11,12 Another way of
describing viscosity, the hematocrit to viscosity ratio
(HVR), adjusts for differences in hematocrit between indi-
viduals, and correlates with oxygen carrying capacity;
higher HVR indicates improved oxygen carrying capacity,
and it is lower in patients with SCD compared to normal
individuals.13 In patients with SCD, low HVR was associ-
ated with recurrent leg ulcers.1 SCD patients with leg
ulcers, renal dysfunction, and priapism also have higher
%DRBC and decreased RBC deformability compared to
SCD patients without these complications.13,14 Therefore,
high viscosity and %DRBC correlate with SCD complica-
tions and disease severity, and suggests a role for measure-
ments of RBC rheology in disease and therapy monitoring
in patients with SCD.

Senicapoc: A cautionary tale

Another point to make in discussing the use of hemorheo-
logical measurements for assessing SCD therapies is the
importance of a multi-modal assessment. Measuring only
one aspect of the RBC rheology may miss a change in
another important metric that might signal potential
adverse events or lack of efficacy. For example, the drug
Senicapoc (ICA-17043), a Gardos channel blocker, was
investigated to decrease vaso-occlusive crisis (VOC) by
reducing RBC dehydration and hemolysis.15 Primary end-
points were changes in Hb level from baseline and %
DRBC, reticulocyte count, and indirect bilirubin were
used as secondary end points. While it was shown to
decrease hemolysis and was generally considered safe
and well tolerated during a phase II clinical trial
(NCT00040677),15 the drug increased instances of urinary
tract infection and nausea with no significant difference
in VOC frequency in a phase III clinical trial
(NCT000102791),16 which was ultimately terminated. It is
possible that despite a decline in %DRBC, whole blood

viscosity likely increased with the rise in hemoglobin,
which could have led to more instances of VOC.1

Additionally, it is known that a decrease in dense and
non-deformable RBCs leads to less hemolysis, but not
fewer frequencies of VOCs potentially due to high aggre-
gate strength and more adherent RBCs associated with an
increase in deformable cells.1,13,17,18 The lesson of the
Senicapoc trial is that perturbing only one aspect of RBC
rheology, even in an apparently favorable direction, may
worsen another hemorheological parameter and have a
detrimental effect on patient health.

Potential hemorheological biomarkers

Basic hematological parameters and observation of clinical
complications have traditionally served as clinical trial end-
points to assess the effectiveness of new SCD therapies.
While incredibly useful, this strategy has some limitations,
namely that clinical endpoints, such as the number of pain
events, may be difficult to define, subjective, and require a
lengthy observation period. Additionally, a change in clin-
ical laboratory values, like the total hemoglobin, may not be
consistent with the desired clinical improvement, as
the Senicapoc experience suggests. High levels of fetal
hemoglobin (HbF) are clearly desirable for patients with
SCD. However, it is not known what HbF level is uniformly
consistent with significant clinical improvement in all
patients.19 Furthermore, pharmacologically induced HbF
is typically unequally distributed throughout the RBC pop-
ulation, resulting in some cells still retaining the capacity to
sickle.19

Biomarkers that address RBC rheological abnormalities
could provide additional essential functional information
deepening our understanding of the total effects of novel
therapies. Emerging technology such as the LorrcaVR ekta-
cytometer with Oxygenscan (RRMechatronics, Zwaag, The
Netherlands) allow the measurement of RBC deformability
under a range of oxygen concentrations. %DRBCs, mea-
sured with a phthalate gradient, or an ADVIA hematology
analyzer, are present primarily in patients with hemoglo-
binopathies, and may be higher in patients with more pain
events; however, the relationship between %DRBC and
pain is inconsistent, showing different results at different
points in the pain cycle, possibly due to increased DRBC
destruction during a pain event.20 The usage of various
microfluidic systems may also provide multiple measures
of blood rheology simultaneously: adhesion, deformability,
and viscosity. Combining RBC rheological biomarkers with
currently used clinical endpoints and standard laboratory
testing would ultimately provide a more global picture of
the effects of novel therapies on SC patients.

All of these proposed biomarkers require clinical valida-
tion. A challenge in developing biomarkers to evaluate clin-
ical interventions is the clinical variability of SCD patients;
there may not be an absolute biomarker value indicating
improvement, given the variability between patient base-
lines. Longitudinal monitoring of biomarkers for each
patient, capturing pre-intervention baseline values and
values while undergoing an intervention may be necessary
to assess non-curative therapies. Below, we will describe
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the aspects of SCD pathology that our proposed hemorheo-
logical tests will measure.

RBC deformability: Point of sickling,
elongation indices

The normal RBC is a relatively simple structure, as it con-
tains no major organelles, no nucleus, and at rest assumes a
biconcave disk shape.21 The RBC shape and flexibility
allow it to undergo deformations in response to the varying
sheer stresses it will experience in large vessels, and the
narrow capillaries of the microvasculature.4,8 RBCs from
individuals with SCD are less deformable compared to
RBCs from normal individuals, even when fully oxygenat-
ed, when HbS polymerization is less likely to occur.22 Sickle
RBC deformability declines precipitously with deoxygen-
ation and polymerization.

Currently, deformability is typically measured by ekta-
cytometry andmicrofiltration techniques. Other techniques
such as atomic force microscopy (AFM) and micropipette
aspiration can also be employed for single cell analysis
although they are generally more time-intensive and
require specialized machinery and skilled workers to per-
form the measurements.23–25 Microfiltration techniques
measure how fast a set volume of a dilute RBC suspension
passes through a membrane with micron size pores.
Microfiltration techniques are not standardized across clin-
ics, however so their utility is typically reserved to research
settings.25 Additionally, microfiltration measurements are
highly sensitive to pore plugging (e.g. by residual leuko-
cytes), which may bias the deformability measurements
significantly.26 In ektacytometry, a small sample of whole
blood is mixed with a highly viscous polyvinylpyrrolidone
(PVP) solution, and loaded into the space between a rotat-
ing cup. A stationary bob is lowered into the rotating cup,
forcing the sample up the side of the stationary bob. As the
cup rotates, suspended RBCs experience varying shear
stresses depending on the speed of the cup rotation.
Because the viscosity of PVP solution is higher than that
of the Hb solution inside of the cells, normal, deformable
RBCs elongate and orient themselves in response to high
shear rates as they would in whole blood even at low
hematocrit suspensions.27,28 Light from a laser directed at
the suspension generates a diffraction pattern from which
the elongation index (EI) can be calculated (EI¼ (length –
width)/(lengthþwidth)), which is reported as a metric of
RBC deformability. It is important to note that ektacytom-
etry provides an average assessment of the hemorheologi-
cal properties of the RBC population as a whole, not the
deformability of individual RBCs as AFM andmicropipette
aspiration would.29

A higher EI indicates greater RBC deformability, and is
generally regarded as clinically favorable. This interpreta-
tion is supported by the observation that measurements
performed on the blood of SCD patients on HU exhibit an
increase in RBC deformability after 12months of therapy
(EI increases from 0.14� 0.05 to 0.22� 0.07 at 3 Pa).30 Red
cell deformability also improves significantly in patients on
chronic RBC transfusions compared to a non-transfused
group, likely through the dilution of sickle RBCs with

normal RBCs.31 Patients with less deformable cells also
commonly present with priapism, leg ulcers, and kidney
disease potentially brought on by increased hemolysis of
the rigid RBCs.18 Of note, deformable sickle RBCs have also
been shown to be more adherent to vascular endothelial
cells, contributing to the onset of crisis events and is also
associated with osteonecrosis; therefore, while increased
deformability is typically considered favorable, there are
still some instances where increased deformability are asso-
ciated with negative outcomes and care providers should
be observant of how deformability plays a role in each indi-
vidual patient’s symptoms.32,33

A new addition to the conventional LorrcaVR , the
Oxygenscan, changes the oxygen tension via deoxygen-
ation with nitrogen gas, thereby reducing the oxygen pres-
sure (pO2); this allows measurement of RBC deformability
in the oxygenated and deoxygenated state, and identifies
the pO2 at which the first RBCs begin to sickle, termed point
of sickling (PoS).22 The EI measured when RBCs are oxy-
genated, and therefore are less likely to have HbS polymers
present, corresponds to highest RBC flexibility (EImax).34

The EI measured when the RBCs are deoxygenated, at peak
HbS polymerization, corresponds to lowest RBC deform-
ability (EImin) (Figure 1(a)). The EImin, EImax, and PoS
vary from individual to individual, and can be changed
therapeutically. Figure 1 shows the components of a typical
LorrcaVR data read-out, sample curves by genotype (Figure 1
(b)), and the impact of HU and transfusion therapy on
EImin, EImax, and PoS (Figure 1(c) and (d)).

RBC ability to perfuse a capillary network

Artificial microvascular networks (AMVN) are an emerg-
ing new class of microfluidic devices and systems that
enable analysis of the ability of RBC suspensions to perfuse
complex networks of capillary-size microchannels.
AMVNs address some of the limitations associated with
conventional ektacytometry and the microfiltration
assays. A typical AMVN device consists of several net-
works designed to mimic the various vessel sizes and
branching patterns that occur in the microvasculature
(Figure 2(a)). RBCs are suspended in buffer or plasma at
a physiological hematocrit, then loaded into the AMVN
device, and allowed to perfuse the network at a specific
driving pressure. The bulk sample flowrate or the flowrate
in individual capillaries of the device is calculated using
image analysis.35–37 In the AMVN, RBCs must undergo a
wide range of deformations when passing through the net-
work that may contain channels as large as 70 mm, and
some as small as 3–5mm in width. Any lack in deformabil-
ity exhibited by RBCs will be observed as an overall
decrease in the measured flowrate. In addition to RBC
deformability, the AMVN perfusion rate is affected by
other hemorheological parameters, including hemato-
crit,38,39 RBC aggregation,39 and RBC shape.40

Abnormal adhesion of sickle RBCs to vessel walls also
plays an important role in obstructing blood flow in SCD
patients. The shape change of sickle RBCs changes the
normal flow patterns and encourages RBC interactions
with endothelial cells. Additionally, all components of
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blood flow in SCD—RBCs, white blood cells (WBCs), and
endothelial cells—express pro-adhesion markers.
Examples are Lu/BCAM and phosphatidylserine (PS) on
RBCs,41,42 P-selectin on activated platelets,43 and L-selectin
on WBCs.44 These adhesion molecules interact with
exposed sub-endothelial laminin and fibronectin on the
surface of endothelial cells lining the vasculature.45 This
increased adhesion promotes vaso-occlusion in SCD, as it
slows blood flow, leading to deoxygenation of the RBC and
potentiating sickling. Even RBCs with normal deformabil-
ity, but increased adhesiveness, increase vascular resistance
by 35% compared to the control group.46 This exemplifies
how altering one aspect of SCD pathophysiology, such as
improving deformability, may not be sufficient if adhesion
remains unchanged.

The AMVN devices, as well as other types of microflui-
dic technologies,47–51 can be coated in relevant adhesion
molecules to observe the differences in flow rate between
non-adhesive and adhesive networks, to better model the
in vivo environment (Figure 2(b)). These protein-lined devi-
ces also allow for the concurrent assessment of the effect
of both deformability, by examining flow through capillary-
sized channels, and adhesiveness, through adhesion mole-
cules lining the channel walls, on microvascular blood
flow dynamics (unpublished from the Shevkoplyas Lab).
Importantly, the AMVN perfusion measurements are per-
formed using RBC samples at physiological hematocrits,
which accounts for the influence of sub-populations

(permanently sickled and/or DRBC), and verifies that
deformability of both adherent and non-adherent cells con-
tributes to the measurements.

RBC morphology

Sickle RBCs exhibit a high level of morphological hetero-
geneity at the single-cell level. Therefore, it is important to
observe and monitor RBC shape at the single-cell level, as
well as in bulk volumes, like the AMVN and LorrcaVR read-
outs. In SCD, single cell morphology has traditionally been
examined using a simple peripheral blood smear made
under hypoxic conditions to potentiate sickling.52,53

Briefly, whole blood can be incubated at a low oxygen ten-
sion, fixed and preserved on a slide, and then observed
under a microscope to quantify sickled RBCs in hypoxic
conditions. This method typically relies on an expert
observer to manually count the individual cells, which
can be prone to human error and limits the sample size
that can be feasibly counted. Moreover, these protocols
can also be laborious and highly dependent on the skill of
the operator, making them difficult to standardize across
multiple centers. Therefore, quantifying via blood smear is
typically only performed in research settings and rarely
used in a clinical setting.

Automated classification of RBC morphologies has been
performed to investigate and quantify sickled RBCs.
Imaging flow cytometry (IFC) has been used to rapidly
enumerate sickled RBCs from a sample of RBCs fixed

Figure 1. Sample data from LorrcaVR with Oxygenscan. (a) EImax indicates deformability under oxygenated conditions; EImin under deoxygenated conditions; PoS is

the oxygen concentration at which deformability declines. (b) HbAA RBCs are unaffected by hypoxia while HbAS shows a slight reduction in deformability at low pO2

and HbSS RBCs deformability declines precipitously with hypoxia. (c,d) Hydroxyurea and transfusion improve deformability of the RBC populations.22 (A color version

of this figure is available in the online journal.)
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after being allowed to sickle in hypoxic conditions.54–56 To
that end, Fertrin et al. further evaluated the concentration of
intracellular HbF on morphology of individual sickle
RBCs.57 Deoxygenated sickle RBCs are first fluorescently
labeled against HbF and then imaged using IFC which
determines the HbF expression and morphology of the
cells.57 Automated classification of RBC morphologies can
also be accomplished by standardizing acquisition of high-
resolution microscopic images of individual RBCs using
microfluidic devices, and then automatically classifying
RBC shape using standard decision-tree-based algorithms
or novel approaches based on deep learning (Figure 3).40,58

These image analysis techniques can also be applied to a
variety of traditional protocols (such as basic peripheral
blood smears and sickling assays) as well as emerging
microfluidic technologies that investigate RBC sickling
behavior under hypoxia.59 Similar label-free classification
of cell types using machine learning has also been applied
to achieve highly accurate identification of Tand B lympho-
cytes.60 Employing such automated techniques to the iden-
tification of irreversible sickled versus normal RBCs would
create a more robust, standardized method for evaluating
the effect of novel therapies on morphology of individual
sickle RBCs.

% Dense red blood cells

Sickle RBCs are characteristically denser and more dehy-
drated than normal RBCs. The traditional approach to mea-
suring %DRBCs is via the phthalate-gradient method,
where two phthalate-oil esters are combined to produce
mixtures of precise, known densities.62 Washed RBC

Figure 3. Automated measurement of RBC morphology. A microfluidic device fabricated to allow RBCs to arrange in a single layer under flow is used to acquired

multiple images of sickle RBCs. The images are then classified as sickle RBCs, normal RBCs, or RBCs with other aberrant morphologies (e.g. echinocytes) using a pre-

trained convolutional neural network (AlexNet). Arrows indicate flow direction.61 (A color version of this figure is available in the online journal.)

Figure 2. Artificial microvascular network (AMVN). (a) Each AMVN device has

three identical capillary network units that meet at a single outlet. Up to three of

these network units can be made adhesive using relevant adhesion molecules

(e.g. laminin and fibronectin). (b) The perfusion rate of the RBC sample in either

an adhesive or a nonadhesive network is determined by image analysis of the

RBC flow in the post-capillary venules of the network unites (rightmost inset).

Arrows indicate flow direction. (A color version of this figure is available in the

online journal.)
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suspensions are introduced to the mixture, placed into a
small glass capillary tube for measuring spun hematocrit,
and centrifuged at high speeds. %DRBCs can be calculated
by quantifying the fraction of RBCs located above and
below the phthalate oil layer.62 Phthalate-gradients require
sickle RBCs to undergo multiple rounds of high-speed cen-
trifugation (to wash the RBC samples and to perform the
density gradient protocol), which can potentially selective-
ly lyse severely sickled RBC populations and thus effects
the measurements. Also, performing these density gra-
dients is a laborious and time-consuming task, making it
unattractive to use in a clinical setting. In contrast, the
ADVIA hematology analyzer (Siemens, Tarrytown, NY,
USA) measures %DRBCs, defined as the percentage of
RBCs with hemoglobin concentration of 41 g/dL or
higher, using only 200 mL of whole blood sample. RBC sam-
ples are placed in a hypotonic solution that forces normal
RBCs to swell. Sickle RBCs that are unable to become
spheres are considered dense cells as they exhibit a high
Hb concentration and a low volume. The ADVIA hematol-
ogy analyzer is used routinely in the clinical settings, and
therefore it can easily be adopted to also measure %DRBCs
on blood samples from SCD patients.

Role of hemorheological biomarkers
in evaluation of currently approved
therapies for SCD

Currently, there are only two drugs approved by the FDA
for use in SCD: HU and L-glutamine. Both of these drugs
have been shown to decrease VOC in patients in clinical
trials.63,64 HU ameliorates the complications of SCD by
inducing HbF, reducing the WBC count, reducing the
number of adhesive reticulocytes, and reducing inflamma-
tion.65,66 The HU-induced rise in HbF helps reduce poly-
merization of HbS, allowing sickle RBCs to survive longer
in the circulation. Patients who respond well to HU, which
include most pediatric patients and about half of adult
patients, may experience a 1 g/dL or higher increase
in Hb. While a rise in Hb typically increases whole blood
viscosity, the improvements HU makes to the quality, or
rheology of the blood offsets this, and patients do not typ-
ically show a rise in whole blood viscosity as measured by a
cone and plate viscometer ex vivo, despite a rise in Hb.29

HU has also been shown in vitro to decrease sickle RBC
adhesion to the endothelium, possibly through a reduction
in Lu/BCAM phosphorylation.41,67,68 Our own studies,
however, show that perfusion rate through an adhesive
AMVN for sickle RBCs does not reach the same level
as for normal RBCs, either for patients on HU or chronic
transfusion therapy. Interestingly, even with no significant
change in %HbF, HU-treated patients were shown to have
decreased %DRBCs after sixmonths post-treatment.14 HU
also has been reported to decrease the number of irrevers-
ibly sickled RBCs.69 Therefore, patients may still benefit
from HU-therapy even without significant HbF induction
if other hemorheological benefits are achieved, such
as reduced RBC adhesiveness,41,67,68 reduced RBC hemoly-
sis associated with less dense cells,17 and decreased robust-
ness of RBCs aggregates.20,29,32

A pivotal phase III clinical study (NCT01179217) con-
ducted by Emmaus Medical, Inc. showed that L-glutamine
resulted in a lower incidence of VOC as well as a lower rate
of hospitalizations and shorter hospital stays.70 However,
no changes in standard clinical laboratory values were
noted.71 The clinical improvements were believed to be
due to an increase in the proportion of the reduced form
of nicotinamide adenine dinucleotides in the RBCs of SCD
patients, which reduces the oxidative stress. While the
endpoints in the phase III study were clinically important,
it is essential that quantitative, objective biomarkers or
measurable laboratory changes be identified that can
serve as endpoints for future clinical trials assessing dose
optimization and the efficacy and safety of L-glutamine in
SCD individuals, including those with hepatic and renal
dysfunction. As stated, high whole blood viscosity, high
%DRBCs, and adherent RBCs are associated with higher
rates of VOC. Given the demonstrated reduction in pain
events, L-glutamine may be improving blood rheology by
altering an intrinsic property of the RBCs; it may also act
by reducing RBC adherence to the endothelium, often the
sentinel event preceding a VOC. For instance, sickle RBC
adhesion to endothelial cells has been shown to decrease
after patients received oral L-glutamine as treatment.70

However, it is important to note that these studies were
performed using static adhesion assays where RBCs were
allowed to sediment onto endothelial cell-coated wells
before removing non-adherent RBCs via aspiration, or by
inverting the well-plate.70 These methods do not accurately
replicate adhesion of sickle RBCs under the physiological
conditions in vivo, which occur under flow, in the presence
of cell-to-cell interactions and while cells navigate the con-
fined geometries of networks of microvessels. Moreover,
while the morphology of SCD RBCs was reported to have
generally improved with L-glutamine therapy, this appears
to be a qualitative observation by the authors. L-glutamine
did not improve the ability of deoxygenated sickle RBCs to
pass through uniform sieves (RBC filterability), a more
objective assessment of deformability.71 More sophisticated
testing of L-glutamine’s effects on hemorheological proper-
ties like RBC adhesiveness and deformability using novel
microfluidic tools such as the AVMN and the deep-
learning-enabled morphological assays are needed to vali-
date this therapy’s efficacy and mechanism of action.
Assessment of L-glutamine’s effects using the LorrcaVR

with Oxygenscan will allow evaluation of deformability
under both oxygenated and deoxygenated conditions, as
well as a determination of the oxygen tension at which
sickling occurs, the PoS. Such a comprehensive panel of
hemorheological tests could help address concerns about
the efficacy andmechanism of L-glutamine, and provide an
objective quantitative biomarker for use in future clinical
trials or to monitor patient response.

Allogeneic hematopoietic stem cell transplantation
(allo-HSCT) is the only curative treatment option currently
available for SCD, and under the most ideal conditions,
allo-HSCT patients have an overall survival rate higher
than 90%.72 However, the need for a matched donor
limits availability of allo-HSCT to only 10–15% of the
SCD patient population,73 and various complications can
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occur post-transplantation including: graft vs. host disease
(GVHD), graft rejections, possible sterility, and HSCT-
related organ toxicities. Furthermore, while allo-HSCT is
typically reserved for patients with severe SCD, successful
HSCT is also dependent on recipients being at good func-
tional baseline and without irreversible organ damage
prior to transplantation, further limiting the prospective
patient population.73 If at baseline, patients already suffer
from irreversible organ damage, then even successful
matched-donor allo-HSCT can still have irregular blood
flow. Therefore, patients should be closely monitored
post-transplantation for signs of hemolysis and indications
of abnormal hemorheology. Morphological analysis can
assess whether or not organ damage, particularly damage
typically seen in SCD like splenic damage, affects the qual-
ity of circulating RBCs.74 Even if patients present with
reduced pain events, they can still remain at risk of
SCD-related organ damage and early mortality if hemolysis
continues. A comprehensive panel of hemorheological tests
periodically assessed following allo-HSCT would help
monitor the long-term efficacy of this therapy.

Role of hemorheological biomarkers
in development of novel therapeutic
treatments for SCD

Novel therapeutic approaches for mitigating the symptoms
of SCD and improving clinical outcomes can be categorized
based on the SCD pathology they are designed to target.
One such class is Hb modifiers; the intent being to modify
the HbS so it cannot sickle. A promising example is
Voxelotor (GBT440-007; Global Blood Therapeutics, San
Francisco, CA, USA), a small molecule that modifies HbS
by stabilizing the R-state of Hb conformation, increasing
Hb oxygen affinity and reducing polymerization.75

A phase I/II clinical trial for Voxelotor showed it was
well tolerated and had a dose-dependent increase in
oxygen-affinity.76 Adolescents receiving Voxelotor had an
increase of 1.0 g/dL in their Hb level and a reduction of
both reticulocytes and indirect bilirubin, indicating a reduc-
tion in sickle RBC hemolysis (NCT02285088).77 A phase III
clinical trial investigating both safety and efficacy of
Voxelotor in adults found Voxelotor significantly increased
Hb levels and reduced markers for hemolysis for compared
to placebo (NCT03036813).77 Patients receiving Voxelotor
had a sustained decrease of approximately 70% in the
number of irreversibly sickled RBCs after 90 days of treat-
ment.78 Because of these positive findings, the FDA desig-
nated Voxelotor as a “breakthrough therapy” and granted it
priority review. Voxelotor also improved sickle RBC
deformability as observed using micropipette and filtration
techniques and blood viscosity in vitro.79 However, no tests
of the effect of Voxelotor on blood viscosity in vivo have
been reported. Hb rise typically increases blood
viscosity, which can be deleterious to patients with SCD
by promoting VOC, as seen with Senicapoc.1 However, it
seems likely that when Voxelotor is present and bound to at
least 30% of the Hb molecules, HbS is less likely to become
deoxygenated and sickle, analogous to HbF.80 Of greater
concern is viscosity rise in patients who stop taking

Voxelotor after experiencing a rise in Hb. Unlike HbF, the
HbS previously bound to Voxelotor will revert back to its
original state within hours, with a concomitant decrease in
oxygen affinity. The greater amounts of unmodified HbS
may significantly increase blood viscosity until the extra
HbS is removed through hemolysis in 14–20 days. If viscos-
ity does rise when Voxelotor is stopped, this would not
invalidate this potentially very useful drug; it would
instead prompt anticipatory guidance of patients to avoid
sudden cessation, and consideration of a drug wean.
However, an increase in deformability without the decrease
in RBC adherence could contribute to the onset of VOCs via
direct RBCs to endothelial interactions and increased RBC
aggregation. Studies on the adhesive properties of RBCs of
Voxelotor-treated RBCs would be pertinent to investigate
the potential for these events to occur. Morphology analysis
would also be an important metric to attain as less HbS
polymerization should lead to fewer irreversibly sickled
RBCs. Moreover, single cell analysis on deformability
using techniques like AFM andmicropipette can also quan-
tify to what extent Voxelotor inhibition of HbS polymeriza-
tion affects RBC deformability.

Another drug of interest is Crizanlizumab (SEG101;
Novartis, Basal, Switzerland), which has also been granted
priority review by the FDA for use in SCD. Crizanlizumab
is a P-selectin monoclonal antibody that blocks interaction
of P-selectins with leukocytes. A 12-month long clinical
trial (SUSTAIN Trial; NCT01895361) assessed the safety
and efficacy of Crizanlizumab for patients both on and off
HU therapy. Treatment with high-dose Crizanlizumab
resulted in reduced rates of VOC compared to placebo,
and increased the time to the first crisis.43 No significant
changes in Hb, lactate dehydrogenase, reticulocyte count,
and indirect bilirubin were observed between
Crizanlizumab and placebo groups.43 Therefore, it seems
that the benefits of Crizanlizumab are not related to intrin-
sic RBC changes or inhibition of hemolysis. At least four
more clinical studies are either recruiting or currently active
to investigate dose confirmation and safety with primary
end points being frequency of adverse events and organ
damage. It would be advantageous to study how
Crizanlizumab and similar agents affect blood flow
through the adhesive AMVN technologies, considering
the main target is the prevention of adhesive events.
AMVN technologies and other adhesion flow devices that
run whole blood can easily investigate the efficacy of the
drug by directly analyzing leukocyte rolling on devices
coated with P-selectins.81

Role of hemorheological biomarkers in the
development of potentially curative gene
therapies for SCD

Cellular- and gene-based therapies are an area of intense
investigation; they can provide means to extend stem cell
transplant to a larger number of SCD patients, as the patient
is their own donor. Hematopoietic stem and progenitor
cells are harvested from the patient, modified using lenti-
viruses or genome editing, and transplanted back into the
patient. Currently, there are a small number of clinical trials
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studying viable gene therapy (lentivirus based) and gene
editing (CRISPR/Cas9 based) approaches.

Lentivirus-based (LV) gene therapies have been used to
treat patients with b-hemoglobinopathies, with a number of
clinical trials performed around the world. For SCD,
LV-based therapies have two primary aims: increase the
induction of HbF by introducing LVs containing a c- or a
hybrid b-promotor/c-globin gene, or by introducingmutat-
ed b-globin that interferes with HbS and prevents polymer-
ization.82 The BB305 LentiGlobin (Bluebird Bio, Cambridge,
MA) is a self-inactivating lentivirus developed to encode an
“anti-sickling” b-globin. A published report of LentiGlobin
gene-based therapy in a 13-year-old with SCD showed
approximately 47% HbAT87Q and 2% HbF, and total Hb of
11.7 g/dL.83

Other gene editing therapy strategies include like zinc
finger nucleases, transcription activator-like effector nucle-
ases, and clustered regulatory interspaced short palin-
dromic repeats and associated Cas9 (CRISPR/Cas9).
CRISPR/Cas 9 system shows a promising editing rate of
85–90% after 16weeks in human bone marrow cells in pre-
clinical studies.84 CRISPR Therapeutics and Vertex
Pharmaceuticals are currently recruiting participants with
severe SCD for a clinical trial (NCT03745287) to be treated
with their novel CRISPR/Cas9 technology CTX001.

The challenges of these gene-based therapies are signif-
icant: potential off-target effects, the need for high levels of
correction, and need for effective engraftment. An addition-
al challenge is that we do not know what level of correction
of the sickle mutation or induction of HbF is curative.
Therefore, a comprehensive functional analysis of the
resulting blood, after a patient has undergone gene-based
therapy, is essential for further development of these novel
therapies, and verification that a cure has been achieved.
In order to consider a gene-based therapy as curative,
the patient should have rheology that has been normalized
to at least that of sickle cell trait (SCT) patient, who are
considered to have a relatively benign form of SCD when
compared to the HbSS variant. Clinically, this will be
observed as stiffened, less deformable RBCs in reduced
pH solutions, but with few if any sickling events in
deoxygenated conditions. Exercise-induced increases
in epinephrine could contribute to increased adhesion of
both SCD and SCT RBCs and should be investigated for
gene-edited RBCs as well.59,85

A battery of hemorheological tests reviewed in this
article—RBC deformability in oxygenated and de-
oxygenated conditions, perfusion of adhesive AMVN,
%DRBC and RBC morphology—are well-suited for com-
prehensive evaluation of whether or not a cure has been
achieved. Table 1 shows typical ranges of values for the
proposed battery of hemorheological tests for individuals
with HbAA, HbAS, and HbSS genotypes. There is no over-
lap between HbAS and HbSS for the values of EImin,
EImax, and PoS measured using LorrcaVR with
Oxygenscan. Since HbAA does not sickle, there is only
EImax, and no PoS; HbAS blood sickles minimally at very
low oxygen concentrations. Of note, the HbSS biomarker
values are from patients 1 to 21 years of age, on HU, and
chronic transfusion. While these therapies ameliorate the
symptoms of SCD, and some patients appear asymptomat-
ic, they do not constitute a cure, and none fall within the
range of HbAS. Whole blood viscosity measured 45 s�1 and
225 s�1 at 37�C, and the HVR values calculated using these
values showed significant overlap between the genotypes,
suggesting that viscosity and HVR cannot distinguish
between cured and not cured states. %DRBCs, as measured
by ADVIA, can distinguish between HbSS and HbAS,
although the overlap between HbAA and HbAS is notable.
Additional work is needed to further develop the adhesive
AMVN and morphology technologies and properly define
the reference ranges for each genotype. Another challenge
is the needed to strictly use the international guidelines
published on blood rheology and the specific guidelines
published in the field of SCD, in order to generate data
comparable across clinical sites and laboratories.

Conclusion

As we continue to expand the therapeutic and curative
treatment options for SCD, hemorheological biomarkers
serve as an important metric for analyzing the overall qual-
ity of the treatment. Reproducible assays that have a strong
association with SCD-related clinical complications should
also be incorporated into clinical trials to ensure a complete
picture of the effects of the novel therapies is being seen.
The goal of any novel SCD therapy should be to significant-
ly improve or normalize blood rheology. Measurements of
deformability, point of sickling, red cell density and adhe-
sion provide information about RBC function beyond that
of standard laboratory values such as %HbF, CBC,

Table 1. Typical ranges attained by the Sheehan and Shevkoplyas Labs for the panel of propose rheological biomarkers.

Biomarkers

HbAA HbAS HbSS

Range Mean SD Range Mean SD Range Mean SD

PoS (mmHg) N/A N/A N/A 5.0–12.1 6.7 2.4 17.0–85.4 41.7 9.961

EImax 0.6–0.62 0.61 0.006 0.6–0.63 0.61 0.12 0.22–0.59 0.48 0.082

EImin N/A N/A N/A 0.54–0.60 0.58 0.21 0.04–0.5 0.14 0.096

%DRBC 0.1–1.1 0.7 0.6 0.1–1.1 0.6 0.5 2.0–21.5 4.8 3.5

AMVN Adhesive (nL/s) 0.21–0.23 0.21 0.01 N/A N/A N/A 0.14–0.18 0.15 0.02

AMVN Non-Adhesive (nL/s) 0.22–0.26 0.24 0.02 N/A N/A N/A 0.18–0.21 0.19 0.02

RBC morphology 0% 0% 0% N/A N/A N/A 3–40% 23% 2.5%

The HbSS ranges for this proposed panel do not overlap either HbAA or HbAS ranges indicating the sensitivity of each test to differentiate between HbSS with HbAS

and HbAA. RBC morphology is presented as percentage of RBCs with irregular morphologies.
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reticulocyte count, and markers of hemolysis.
Hemorheological biomarkers must be evaluated in thera-
pies with curative intent; gene-based therapies that do not
achieve the hemorheological correction comparable to
HbAS should be optimized further.
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