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Abstract: There is a positive feedback loop driving tumorigenesis and tumor growth through
coordinated regulation of epigenetics, inflammation, and stemness. Nevertheless, the molecular
mechanism linking these processes is not well understood. In this study, we analyzed the correlation of
de-ubiquitinases (DUBs) expression with survival data from the OncoLnc database. Among the DUBs
analyzed, ubiquitin specific protease 4 (USP4) had the lowest negative Cox coefficient. Low expression
of USP4 was associated with poor survival among lung cancer patients and was inversely correlated
with expression of stemness and inflammation markers. Expression of USP4 were reduced at
more advanced stages of lung cancer. Mechanistically, expression of USP4 was downregulated in
snail1-overexpressing and stemness-enriched lung cancer cells. Snail1 was induced in lung cancer
cells by interaction with macrophages, and epigenetically suppressed USP4 expression by promoter
methylation. Stable knockdown of USP4 in lung cancer cells enhanced inflammatory responses,
stemness properties, chemotherapy resistance, and the expression of molecules allowing escape from
immunosurveillance. Further, mice injected with USP4 knockdown lung cancer cells demonstrated
enhanced tumorigenesis and tumor growth. These results reveal that the Snail1-mediated suppression
of USP4 is a potential mechanism to orchestrate epigenetic regulation, inflammation and stemness for
macrophage-promoted tumor progression.
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1. Introduction

Lung cancer is one of the most mortal cancers worldwide. Despite extensive research efforts to
improve diagnosis and treatment, more than 50% of lung cancer patients die within one year of diagnosis,
and the 5-year survival rate is lower than 18% [1,2]. Inflammation is a hallmark of tumor development,
and roughly 20–25% of risk factors are related to inflammation [3,4]. Chronic inflammation resulting
from viral infections, pneumonia, tuberculosis, and chronic obstructive pulmonary disease is associated
with lung cancer development [5,6]. The transcription factor NF-κB is the master regulator of
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inflammation [7,8]. Major inflammatory stimuli in the tumor microenvironment such as tumor
necrosis factor (TNF)-α, interleukin (IL)-1, and toll-like receptor (TLR) ligands released from dying cells
during cancer treatment activate NF-κB in surviving cancer cells [9–11]. Activation of the IL-1 receptor
(IL-1R) and TLRs triggers the sequential recruitment of MyD88, IRAK, and TRAF6 to form a complex
to activate TAK, which in turn leads to NF-κB activation [12,13]. Alternatively, NF-κB activation by
the TNF-α receptor (TNFR) involves the signaling molecules TRADD, RIP, and TRAF2 [14]. Ensuing
NF-κB activation regulates expression of multiple genes that can support tumor development through
suppression of apoptosis, enhanced angiogenesis, and promotion of cancer cell proliferation, migration,
and invasion [7,15,16].

Metastasis and recurrence are the major challenges in lung cancer treatment, and both are
associated with epithelial−mesenchymal transition (EMT) and acquisition of stemness in cancer cells.
EMT is a process by which epithelial cells lose their epithelial properties and gain the characteristics of
mesenchymal cells. In cancer development, EMT is regarded as an initial step for metastasis. In this
process, cancer cells lose cell−cell adhesion properties and gain migration and invasion capacities.
In addition, EMT has been shown to confer stemness properties to cancer cells [17,18]. Cancer stem-like
cells (CSCs) have capacities for both self-renewal and differentiation to promote tumor progression
and metastasis. Moreover, CSCs are less immunogenic, and so can evade immune surveillance and
ensuing destruction. These properties are responsible for cancer treatment resistance and relapse [19,20],
and NF-κB-mediated inflammation elevates the stemness properties of cancer cells. Moreover, CSCs
are known to exhibit higher constitutive NF-κB activity. Thus, these two bidirectional effects form
a positive feedback loop to further expand the CSC population in tumors, resulting in therapeutic
resistance and poor prognosis [21,22].

Dysregulation of genes involved in the inflammation and stemness properties of cancer
cells can lead to tumorigenesis and tumor progression [21,22]. Epigenetic regulation by promoter
methylation alters gene expression at the transcriptional level, and altered epigenomic characteristics
are associated with tumor inflammation and stemness, although the underlying mechanisms are not
well understood [23,24]. Snail1 is a member of the Snail family of zinc-finger transcription factors,
which also includes Snail2 (Slug) and Snail3 (Smuc). Snail1 plays a key role in regulation of EMT
and dedifferentiation of cancer cells into CSCs, at least in part by epigenetic silencing of E-cadherin
gene expression, resulting in reduced cell adhesion and increased cell migration. In this process,
Snail1 recruits multiple chromatin enzymes to the E-cadherin promoter in a highly orchestrated process
to form heterochromatin and facilitate DNA methylation of promoter DNA. Snail1 is expressed in
many different types of cancers and correlates with increased invasion and metastasis [25–29].

Ubiquitination is a multistep post-transcriptional modification process in which mono-ubiquitin
or poly-ubiquitin chains are attached to substrate protein. Ubiquitin contains 76 amino acid residues
of which 7 are lysines. A ubiquitin chain can be linked to a target protein through lysine residues at
different positions to determine the fate of the target protein. For example, a ubiquitin linked through
lysine 48 (K48) targets the protein for proteasomal degradation and an ubiquitin chain linked through
lysine 63 (K63) mediates protein−protein interactions for signal transduction [30,31]. The ubiquitination
process can be reversed by deubiquitinating enzymes (DUBs) that cleave ubiquitin off the substrate
protein. There are approximately 100 DUBs encoded in the human genome. An individual DUB can be
a positive or negative regulator of a specific signaling pathway depending on target protein and type
of ubiquitination [32,33]. For example, ubiquitin specific protease (USP)4 has been shown to act as a
negative regulator of TNFR-, IL-1R-, and TLR-mediated NF-κB activation and inflammatory responses
through removal of ubiquitin chains from signaling molecules, including TGF-β-activated kinase
1 (TAK1), receptor-interacting protein (RIP1), TNF receptor-associated factor (TRAF)2, and TRAF6,
thereby preventing protein-protein interactions for signaling transduction [34–36].

These DUBs are critical for maintaining multiple cellular functions, and dysregulation of DUBs
can result in numerous clinical disorders [37,38]. In this study, we analyzed an OncoLnc database
for correlations between lung cancer patient survival and the expression levels of different DUBs.
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Among DUBs analyzed, USP4 had the lowest negative Cox coefficient, suggesting a beneficial role of
higher USP4 expression on lung cancer outcome. Further, low expression of USP4 was associated with
poor prognosis. Thus, the mechanism for downregulation of USP4 and the functions of this DUB in
control of inflammation, stemness, and lung cancer growth were further investigated experimentally
both in culture and in mouse models of tumorigenesis and tumor growth.

2. Results

2.1. Downregulation of USP4 in Lung Cancer Is Associated with Poor Prognosis and High Expression of
Stemness and Inflammation Markers

OncoLnc contains survival data of more than 8000 patients from 21 cancer studies performed
by The Cancer Genome Atlas, and provides a tool for searching correlations between survival and
the expression levels of various mRNAs, miRNAs, and lncRNAs [39]. To identify DUBs that may
contribute to lung cancer development or suppression, we searched OncoLnc for the survival data of
lung adenocarcinoma patients with measured DUB expression. The Cox coefficients of 72 DUBs were
retrieved by this search, of which USP4 had a highest negative Cox coefficient (Figure 1A and Table S1).
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Figure 1. Inverse correlations of ubiquitin specific protease 4 (USP4) expression with stemness 
markers, inflammation markers, and lung cancer prognosis. (A) Heat map of Cox coefficients for 72 
deubiquitinase (DUB) genes according to OncoLnc database analysis. (B) Kaplan-Meier plot of the 
overall survival rate of lung cancer patients stratified by low (n = 246) and high (n = 246) USP4 
expression (from OncoLnc). (C) Inverse correlations between USP4 expression level and the 
expression levels of various inflammation and stemness markers (from OncoLnc). Sample numbers 
are shown in parentheses. (D) Relative expression levels of USP4 in normal tissues and different 
stages of human lung cancer. Patient data are summarized in Table S2. Expression of USP4 was 
analyzed by qPCR. Numbers in parentheses represent sample numbers for each cancer stage. * P < 
0.05; ** P < 0.01. 

This negative correlation suggests that USP4 expression is beneficial to lung cancer patient 
survival. These OncoLnc data were further stratified into high (top 50%) and low (bottom 50%) USP4 
expression subgroups, and subgroup survival compared by Kaplan-Meier analysis. The low 
expression subgroup demonstrated shorter overall survival compared to the high expression 
subgroup (Figure 1B), indicating that low USP4 expression is associated with poor lung cancer 
prognosis. Correlations between the expression levels of USP4 and various inflammation and 
stemness markers were also analyzed from OncoLnc data. Low expression of USP4 was associated 

Figure 1. Inverse correlations of ubiquitin specific protease 4 (USP4) expression with stemness
markers, inflammation markers, and lung cancer prognosis. (A) Heat map of Cox coefficients for
72 deubiquitinase (DUB) genes according to OncoLnc database analysis. (B) Kaplan-Meier plot of
the overall survival rate of lung cancer patients stratified by low (n = 246) and high (n = 246) USP4
expression (from OncoLnc). (C) Inverse correlations between USP4 expression level and the expression
levels of various inflammation and stemness markers (from OncoLnc). Sample numbers are shown in
parentheses. (D) Relative expression levels of USP4 in normal tissues and different stages of human
lung cancer. Patient data are summarized in Table S2. Expression of USP4 was analyzed by qPCR.
Numbers in parentheses represent sample numbers for each cancer stage. * P < 0.05; ** P < 0.01.

This negative correlation suggests that USP4 expression is beneficial to lung cancer patient
survival. These OncoLnc data were further stratified into high (top 50%) and low (bottom 50%) USP4
expression subgroups, and subgroup survival compared by Kaplan-Meier analysis. The low expression
subgroup demonstrated shorter overall survival compared to the high expression subgroup (Figure 1B),
indicating that low USP4 expression is associated with poor lung cancer prognosis. Correlations
between the expression levels of USP4 and various inflammation and stemness markers were also
analyzed from OncoLnc data. Low expression of USP4 was associated with high expression of the
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pro-inflammatory cytokine IL-8 as well as with upregulation of the stemness markers Sox2, ALDH1,
and CD117 (Figure 1C).

The expression levels of USP4 in tissues of normal and different cancer stages were then examined
by qPCR using an array with 48 cDNA samples from lung cancer patients (clinical data summarized in
Table S2). Consistent with OncoLnc results, the expression level of USP4 was significantly reduced
in stage II to stage IV lung cancer tissues compared to normal human lung tissue (Figure 1D).
USP4 expression levels in various normal and cancerous tissue types were further investigated by
analysis of data from Oncomine, which revealed lower USP4 expression in multiple head and neck,
breast, and lung cancers compared to matched normal tissues (Figure S1). Further analysis of data
from the GEO database also revealed that USP4 expression was downregulated in different head and
neck, breast, and lung cancer cells following enhancement of stemness by sphere formation, Bmi1 and
Snail overexpression, or chemotherapeutic treatments (Table S3).

2.2. Downregulation of USP4 in Stemness-Enriched Cancer Cells

The effect of stemness on USP4 expression was further investigated. The stemness of lung cancer
cell lines (mouse D121, Lewis lung carcinoma (LLC), and human H460, HCC827, and H1299) was
enriched by sphere formation. Gene expression analysis by RT-qPCR demonstrated lower USP4
expression in sphere cells than the parental cells for each line (Figure 2A). The expression levels of USP4
and different stemness-associated genes were then compared between parental D121 and LLC cells and
corresponding sphere-forming cells RT-qPCR (Figure 2B), which indicated increased expression levels
of stemness-associated genes Oct4, Sox2, ALDH1, ABCG2, and Snail1 in the sphere cells, while USP4
expression was reduced in spheroid cells compared to the parental cells (Figure 2B).
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Figure 2. Downregulation of USP4 in stemness-enriched lung cancer cells. (A) Top panels: Stemness
of mouse D121, LLC, and human H460, HCC827, and H1299 lung cancer cell lines was enriched
by sphere formation. Photos show sphere cells of each cell line. (B) Bottom panels: Expression of
stemness-associated genes in parental D121 and LLC cells and the corresponding sphere cells analyzed
by RT-qPCR. Data presented as mean ± SD of three independent experiments. ** P < 0.01.

These results are consistent with the results of OncoLnc database analysis (Figure 1C) showing
inverse correlations between expression levels of USP4 and different stemness markers as well as with
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the results of GEO database analysis demonstrating lower USP4 expression in stemness-enriched cells
(Table S3).

2.3. Snail1 Promotes DNA Methylation of the USP4 Promoter and Suppresses USP4 Expression

Of these stemness-associated genes, Snail1 is known to function in epigenetic suppression of gene
expression by binding to the promoter E-box motif 5’-CANNTG-3’ and orchestrating the activities
of CpG island hypermethylation [25–29]. Thus, we investigated whether Snail1 also contributes to
the reduction of USP4 expression in lung cancer cells. First, we confirmed the presence 4 E-boxes in
the USP4 promoter at −453, −511, −533, and −679, as well as eight CpG-dinucleotides at (cytosine
position) −13, −42, −50, −86, −149, −238, −334, and −364 (Figure 3A–C). To investigate if Snail1 can
indeed bind and regulate the USP4 promoter, luciferase reporter constructs were generated in which
luciferase expression was controlled by the wild type USP4 promoter or promoters with the E-box
sequence mutations shown in Table S4 and co-transfected with Snail1 into HEK293 cells. Analysis of
the generated luciferase activities revealed that expression of Snail1 suppressed USP4 promoter activity
and that both E-box I and E-box IV were required for Snail1 activity at the USP4 promoter (Figure 3D).
The methylation status of the eight CpG-dinucleotides was investigated using bisulfite sequencing PCR.
Relative to control H1299 cells, cells stably overexpressing Snail1 exhibited greater DNA methylation
of these CpG-dinucleotides (Figure 3E). Subsequently, we assessed the regulation of USP4 mRNA and
protein expression by Snail1. Consistent with epigenetic suppression by hypermethylation of the USP4
promoter, overexpression of Snail1 in D121, LLC, and H1299 cells reduced USP4 expression at both
the mRNA and protein levels (Figure 3F,G). The relationship between Snail1 and USP4 expression
in lung cancer was further investigated through OncoLnc analysis, which revealed an association
between high Snail1 and low USP4 expression (Figure 4A). There was also a significant difference in
Snail1 expression between USP4 low (bottom 50%) and USP4 high (top 50%) lung cancer subgroups
(Figure 4B). These OncoLnc data were further stratified into high (top 50%) and low (bottom 50%)
Snail1 expression subgroups. The high Snail1 expression subgroup had shorter survival compared to
the low expression subgroup in the first 3000 days (Figure 4C), indicating that low USP4 expression is
associated with poor lung cancer prognosis. Consistently, there was a significant high and low USP4
expression in the Snail1 low and high groups respectively (Figure 4D). In addition, database searches
for promoter DNA methylation status using the UALCAN program [40], revealed significantly higher
methylation of the USP4 promoter in primary lung tumor compared to normal lung tissues (Figure 4E).

2.4. Macrophages Promote Snail1 Expression and USP4 Downregulation in Lung Cancer Cells

Infiltration of immune cells into the tumor microenvironment is associated with cancer stemness
and progression [41]. Macrophages are a major population of leukocytes that produce various cytokines
in the tumor microenvironment [5,6,42,43] and expression of Snail1 is regulated by a wide variety of
cytokines [25,26]. Therefore, we investigated whether macrophages regulate the expression of Snail1 in
lung cancer cells. The LLC lung cancer line was co-cultured with bone marrow-derived macrophages
(BMDMs) in two-chamber transwell plates (Figure 5A), and the gene expression profile compared to
LLC monocultures was analyzed by RT-qPCR and flow cytometry analysis. These comparisons revealed
greater expression of cytosolic stemness markers (Oct4 and Sox2) by co-cultured LCCs and a larger
proportion expressing the surface stemness marker CD117 compared to LCC monocultures (Figure 5B,C).
Further, these changes were associated with increased expression levels of the inflammatory cytokines
TNF-α, IL-1β, IL-6, and IL-8 (Figure 5D). In addition, RT-qPCR and immunoblotting revealed that the
presence of macrophages enhanced Snail1 expression and reduced USP4 expression in LCC cells at
both the mRNA and protein levels (Figure 5E,F). We then examined the direct effects of inflammatory
cytokines, which can be produced by macrophages, on USP4 and Snail1 expression levels. In line with
macrophage co-culture results, both TNF-α and IL-1β treatment downregulated USP4 and upregulated
Snail1 in D121 and H1299 cell lines as evidenced by immunoblot analysis (Figure 5G).
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HEK293 cells were co-transfected with expression vectors for Snail1 and a luciferase reporter gene 
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Figure 3. Snail1 enhances DNA methylation of the USP4 promoter and suppresses USP4 expression.
(A) Promoter region of USP4 was analyzed for Snail1 binding sites. The putative binding sites are
underlined. (B) Promoter region of USP4 was analyzed for GC rich (or CpG-rich) regions (potential
methylation sites). The histogram was adopted from the MethPrimer website. (C) Illustration of Snail1
binding sites and methylation regions in the USP4 promoter region. (D) The binding sites of the USP4
promoter required for transcriptional suppression by Sanil1 were identified by luciferase assay. HEK293
cells were co-transfected with expression vectors for Snail1 and a luciferase reporter gene controlled by
wild type (wt) mutated USP4 promoter sites. (E) DNA methylation of the USP4 promoter region in the
presence and absence of Snail1 as determined by bisulfite sequencing PCR. (F,G) Expression levels of
USP4 mRNA (F) and protein (G) in snail1-overexpressing D121, LLC, and H1299 cells. Data presented
as mean ± SD of three independent experiments (E,F). ** P < 0.01.
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methylation of USP4 promoter in lung cancers. OncoLnc data of lung cancer patients analyzed.
(A) Inverse correlation between USP4 and Sanil1 expression levels. (B) Snail1 expression compared
between subgroups stratified according to low and high USP4 expression. (C) Kaplan-Meier plot of
the overall survival rate of lung cancer patients stratified by low (n = 246) and high (n = 246) Snail1
expression. (D) USP4 expression compared between subgroups of low and high USP4 expression.
(E) Comparison of USP4 promoter DNA methylation level between normal tissue samples and lung
tumors analyzed using UALCAN. ** P < 0.01.
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Figure 5. Macrophages promote inflammation, stemness, and Snail1 expression, and downregulates
USP4 in lung cancer cells. (A) LLC lung cancer cells were co-cultured with or without bone
marrow-derived macrophages (BMDMs) in 0.4 µm transwell plates as illustrated. (B) Expression
levels of stemness-associated genes were analyzed by RT-qPCR. (C) Cell surface stemness marker
CD117 analyzed by flow cytometry. Left panels show a set of the histograms. (D) Expression levels of
inflammatory cytokines analyzed by RT-qPCR. (E,F) Expression of Snail1 and USP4 at the mRNA level
(E) and protein level (F) analyzed with RT-qPCR and immunoblotting, respectively. (G) Inflammatory
cytokines upregulate Snail1 and downregulate USP4 in lung cancer cells. D121 and H1299 were treated
with TNF-α (20 ng/mL) or IL-1β (20 ng/mL) for 48 h. Data presented as mean ± SD of three independent
experiments. * P < 0.05; ** P < 0.01.
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2.5. Downregulation of USP4 Increases Basal and Stimulus-Induced Expression of Pro-Inflammatory Factors by
Cancer Cells

The functions of USP4 in regulation of cancer cell inflammatory status were then investigated.
Expression of IL-8 is known to be controlled by NF-κB activation [44,45]. Database analysis revealed
an inverse correlation between USP4 and IL-8 expression levels (Figure 1C), suggesting that USP4 may
negatively regulate inflammatory responses in cancer cells. To examine this issue, USP4 expression in
D121, LLC, and H1299 lung cancer cells was knocked down by stable transfection of a USP4-targeted
shRNA (Figure 6A). Phosphorylation of RelA was measured by flow cytometry as an indicator
of NF-κB activation. In all cancer cell lines, knockdown of USP4 increased intrinsic activation of
NF-κB (Figure 6B). Moreover, knockdown of USP4 enhanced both basal expression levels of the
NF-κB-controlled inflammatory cytokines TNF-α, IL-6, and IL-8 as well as induction of these cytokines
by TNF-α and TLR ligands (pam3Cys4 for TLR2, polyIC for TLR3, LPS for TLR4, R848 for TLR7,
and CpG-1826 for TLR9) (Figure 6C,E) as evidenced by RT-qPCR analysis. The cytokine inducing
capability of TNF-α and the enhancement effect of USP4 knockdown were blocked by treatment of the
cells with a NF-κB inhibitor, BMS345541 (Figure 6D). These findings suggest that USP4 is a negative
regulator of cancer cell inflammatory status.
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Figure 6. Stable USP4 knockdown increases inflammatory status in lung cancer cells. (A) Efficiency
of USP4 knockdown in lung cancer cell lines analyzed by immunoblotting. (B) NF-κB activation in
control and USP4 knockdown lung cancer cells as measured by flow cytometric analysis of RelA
phosphorylation. Left panels show representative histograms and right panels shows the quantitation
of results. (C–E) Expression of cytokines in control and USP4 knockdown lung cancer cells stimulated
with 10 ng/mL TNF-α with/without 1 µM BMS345541 (C,D) or 0.2 µg/mL Pam3Cys4, 5 µg/mL polyI:C,
0.2 µg/mL LPS, 2 µM R847, or CpG-1826 (E) for 24 h as analyzed by RT-qPCR. Data presented as mean
± SD of three independent experiments. * P < 0.05; ** P < 0.01.
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2.6. Downregulation of USP4 Promotes the Stemness and Therapeutic Resistance of Cancer Cells

According to database analysis, expression of USP4 was inversely correlated with expression of
stemness markers in lung cancers (Figure 1C). In addition, the USP4 gene was downregulated during
enrichment of stemness in cancer cells as evidenced by the sphere forming assays (Figure 2). Thus,
we investigated whether USP4 directly regulates stemness. Indeed, knockdown of USP4 in the cancer
cell lines D121, LLC, H1299, and HCC827 increased expression of the stemness genes Oct4, Sox2,
Nanog, KLF4, ABCG2, and ALDH1 in different degree in different cell lines as measured by RT-qPCR
(Figure 7A). Knockdown of USP4 expression also increased sphere formation by D121 and H1299 cells
(Figure 7B). This increased propensity for sphere formation was NF-κB dependent as it was markedly
reduced by pharmacological NF-κB inhibition (Figure 7C). The effect of USP4 downregulation on
the transforming capacity of lung cancer cells was further investigated using cell proliferation and
anchorage-independent growth assays.
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Figure 7. Stable USP4 knockdown increases the stemness, transforming ability, and therapeutic
resistance of lung cancer cells. (A) Expression of stemness-associated genes in control and USP4
knockdown lung cancer cells analyzed by RT-qPCR. (B) Control and USP4 knockdown D121 and H1299
cells were cultured in defined serum-free medium for 2 weeks to allow sphere formation. (C) Sphere
formation compared between control D121 cells and D121 cells with stable USP4 knockdown cultured
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in defined serum-free medium and treated with/without 1 µM BMS345541(NF-κB inhibitor) for
2 weeks. (D) Control and USP4 knockdown lung cancer cells were treated with the indicated
concentration of cisplatin or doxorubicin for 48 h and cell viability measured by MTS assay. (E) Control
and USP4 knockdown lung cancer cells were treated with/without 1µM BMS345541 for 24 h. Cell surface
expression of PD-L1 as analyzed by flow cytometry. Left panels: Representative histograms. Right panels:
Quantitation. Data presented as mean ± SD of three independent experiments. * P < 0.05; ** P < 0.01.

Downregulation of USP4 increased the proliferation rates of all cell lines examined after 48 h
(Figure S2) as well as the number of colonies produced by these lines in soft agar after 3 weeks
(Figure S3), indicating that USP4 downregulation enhances both the proliferative and transformation
capacities of lung cancer cells.

Database searches revealed higher expression of USP4 in therapy-resistant lung tumors (Table S3);
therefore, we further investigated whether downregulation of USP4 in lung cancer cells confers
chemotherapy and immunotherapy resistance. Consistent with this notion, USP4 knockdown LLC
and H1299 cells were more resistant to the cytotoxic effect of cisplatin and doxorubicin treatment for
48 h than corresponding control cells (Figure 7D). Cancer cells express programmed death-ligand
1 (PD-L1), which helps these cells to escape immunosurveillance by binding to PD-1 and reducing
T cell activation [46,47]. Both LLC and H1299 cells with USP4 knockdown demonstrated greater
surface expression of PD-L1 as analyzed by flow cytometry. Moreover, PD-L1 expression was
reduced by treatment with the NF-κB inhibitor BMS345541 (Figure 7E). These results suggest that
downregulation of USP4 enhances chemoresistance and helps lung cancer cells to evade destruction
by anti-tumor immunity.

2.7. Downregulation of USP4 Promotes Tumorigenesis and Tumor Growth in Mice

The influences of USP4 expression levels on tumorigenesis and tumor growth were further
investigated in mice inoculated with USP4 knockdown or control LLC cells. A higher tumor
development rate and a faster growth rate was observed for tumors derived from USP4 knockdown
cells (Figure 8A,B). These tumors also demonstrated higher expression levels of the inflammatory
cytokines TNF-α, IL-6, and IL-8 as well as the stemness-associated genes Oct4, Sox2, Nanog, KLF4,
ABCG2, ALDH1, CD117, and Snail1 compared to control cell-derived tumors (Figure 8C,D). In addition,
flow cytometry analysis showed greater accumulation of CD11b+ leukocytes and F4/80+ macrophages
in tumors derived from USP4 knockdown cells compared to control cell-derived tumors (Figure 8E).
In line with these, depletion of macrophages with clodrondate liposomes inhibited tumor growh of
LLC cells, reduced the expression of Snail1 and increased the expression of USP4 in tumors (Figure S4).

In summary, both in vitro and in vivo findings in this study reveal a critical mechanism for
regulation of lung tumorigenicity and aggression involving Snail1-mediated epigenetic downregulation
of USP4 triggered in part by tumor associated macrophages. In turn, downregulation of USP4 in
lung cancer cells further promotes inflammation, stemness, and therapeutic resistance of cancer cells
(Figure 8F).
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Figure 8. Downregulation of USP4 promotes tumorigenesis, tumor growth, tumor inflammation,
and tumor stemness in mice. (A) C57BL/6 mice were subcutaneously (sc) injected with varying numbers
of control and USP4 knockdown LLC cells. Number of tumors were counted at week six. (B) Mice
were injected with 2 × 105 cells. Tumor volume was measured at the indicated time points, and mean
tumor size plotted (mean ± SD, n = 5). Mice were scarified on day 20 and tumors were photographed.
(C,D) Expression of inflammatory cytokines (C) and stemness-associated genes (D) in tumors as
analyzed by RT-qPCR. (E) Relative numbers of CD11b+ leukocytes and F4/80+ macrophages compared
between tumors derived from control and USP4 knockdown cells by flow cytometry. Data presented as
mean ± SD, n = 5. * P < 0.05; ** P < 0.01. (F) Illustration of a pro-tumor mechanism involving epigenetic
silencing of USP4 by Snail1. Macrophages and inflammatory stimuli in the tumor microenvironment
promote expression of Snail1 in cancer cells, which epigenetically suppresses the expression of USP4,
leading to increased inflammation, stemness, and therapeutic resistance. The inflammatory cytokines
released from cancer cells can further recruit macrophages into the tumor microenvironment and
enhance expression of Snail1 to drive a positive feedback loop promoting tumor group.

3. Discussion

Epigenetic regulation of gene transcription plays a crucial role in maintaining normal cellular
homeostasis, while dysregulation of this process can result in the onset and progression of diseases
including inflammation related cancers. Inflammation contributes to the initiation of epigenetic
alteration and enhances the stemness of cancer cells. Conversely, epigenetic modification and
inflammation are elevated in stemness-enriched cancer cells [23,24]. These observations indicate that
the presence of a positive feedback loop driving tumorigenesis and tumor growth through regulation
of epigenetics, inflammation, and stemness. Nevertheless, the molecular mechanism linking these
processes is not well understood. In this study, we reveal a functional mechanism in which epigenetic
suppression of the de-ubiquitinase USP4 by the transcription factor Snail1 activates a positive feedback
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loop driving increased inflammatory cytokine production, stemness, chemical resistance, and immune
resistance of lung cancer cells, thereby accelerating tumor development.

In contrast to epigenetic regulation of gene expression, ubiquitination is a post-transcriptional
modification that reduces protein expression through targeted proteolytic degradation and in addition
can modulate protein−protein interactions for cell signaling [30,31]. By specifically disassembling
ubiquitin chains, DUBs help control both protein expression levels and cell signaling. Moreover,
dysregulation of de-ubiquitination by DUBs results in various clinical disorders [32,33]. In this study,
OncoLnc screening for DUBs potentially involved in lung cancer development revealed that USP4
has the strongest negative Cox coefficient, suggesting a protective effect of expression against lung
cancer. Further database analysis revealed an association between low USP4 expression and shorter
patient survival. In tissue samples from lung cancer patients, decreased expression of USP4 was
associated with advanced cancer stage. In line with these results, a protective effect of USP4 was
reported in lung adenocarcinoma and breast cancer patients, although distinct effects of USP4 have
been reported for other cancer types [48–53]. For instance, expression of USP4 was downregulated
in lung adenocarcinoma, and low USP4 expression was associated with poor overall survival and
recurrence-free survival [48]. Expression of USP4 was also significantly reduced in breast cancer tissue.
Moreover, expression of this DUB inhibited cell proliferation in vitro and suppressed tumor growth in
an animal model [49]. In contrast, increased expression of USP4 was found in tissue samples from
hepatocellular carcinoma, melanoma, esophageal cancer, and colorectal cancer, and USP4 was shown
to be oncogenic in these cancer cells [50–53]. These results suggest that the expression and tumor
promoting effect of USP4 may be cancer type specific and that aberrant expression of USP4 can either
increase or decrease tumorigenesis depend on the different cell contexts.

The low expression of USP4 in lung cancer cells and tumors results from Snail1-mediated
epigenetic suppression. In stemness-enriched sphere cells, downregulation of USP4 was associated
with upregulation of stemness-associated genes including Snail1. Expression of Snail1 was inversely
correlated with the expression of USP4 in lung tumors. Snail1 binds to the E-box motif of the promoter
of its target gene such as E-cadherin and epigenetically suppresses transcriptional expression. In this
process, Snail1 recruits multiple chromatin enzymes to facilitate methylation at CpG-dinucleotides in GC
rich regions of the promoter [25–27]. Analysis of the USP4 promoter region revealed multiple GC rich
regions and E-box motifs required for Snail1 binding. In addition, overexpression of Snail1 promoted
methylation of the USP4 promoter, suppressed promoter activity, and reduced USP4 expression in
cultured lung cancer cells. Further, we found elevated DNA methylation of the USP4 promoter in lung
tumor cells compared to normal tissue. Tumors with high Snail1 expression are usually more difficult
to eradicate by therapeutic treatments, and the expression of Snail1 is frequently associated with poor
prognosis. These effects of Snail1 involve regulation of its target genes, particularly suppression of
those involving in cell adherence such as E-cadherin, occluding and claudins, which enhances cancer
cell migration and invasion by increasing EMT [25–29]. The current study suggests that USP4 is a
novel target mediating the tumorigenic effect of Snail1 by controlling the signaling for inflammation
and stemness in cancer cells.

USP4 has been shown to modulate NF-κB dependent inflammatory responses through regulation of
key components in inflammatory signaling pathways. USP4 regulates both IL-1β- and TNF-α-induced
NF-κB activation through de-ubiquitination of TNF-receptor-associated factor (TRAF)2 and TRAF6,
and this de-ubiquitination can inhibit IL-1β- and TNF-α-induced cancer cell migration [34]. In addition,
USP4 was reported to block inflammatory responses induced by TLR− NF-κB and IL-1R− NF-κB
signaling pathways by targeting TRAF6 and TAK1 [35,36]. USP4 knockout mice displayed enhancement
of TAK1-NF-κB mediated liver inflammation in a hepatic ischaemia/reperfusion model [54]. Consistent
with these findings, we found that USP4 knockdown in lung cancer cells increased phosphorylation
of RelA, which is essential for NF-κB activation, and enhanced both basal and stimulus-induced
inflammatory cytokine production, including production evoked by TNF-α and TLR ligands.
In addition to acting as a master regulator of inflammation, NF-κB also regulates the stemness of
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cancer cells and promotes the shift to the CSC phenotype. Activated NF-κB can directly increase cancer
cell stemness through transcriptional upregulation of stemness-associated genes, as well as indirectly
through an autocrine pathway. For example, NF-κB activation in cancer cells by inflammatory stimuli
results in the production of IL-6, which in turn activates expression of stemness-associated genes through
a IL-6−JAK−STAT3 pathway [21,22,55,56]. In this study, UPS4 knockdown in multiple lung cancer cell
lines increased the production of IL-6 as well as stemness properties. Thus, suppression of USP4 could
increase cancer cell stemness both directly and indirectly through upregulated NF-κB activation.

The expression of Snail1 in cancer cells is regulated by multiple transcription factors and upstream
signals, including NF-κB [25,26]. The tumor microenvironment contains various cell types aside from
cancer cells, such as fibroblasts, endothelial cells, and leukocytes, most of which are macrophages [42,43].
In lung and other cancers, extensive macrophage infiltration is often associated with poor prognosis [5,6].
These tumor-associated macrophages (TAMs) release a wide variety of cytokines including TNF-α and
IL-1β to activate NF-κB in cancer cells and promote Snail1 expression, inflammation, cancer stem cell
niches, and all aspects of tumor progression [6,42]. Furthermore, a recent research suggested that NF-κB
signaling in cancer cells elicited by macrophages results in expending of PD-L1 positive cancer cells
and render these cells more resistence to conventional chemotherapy and cancer immunotherapy [57].
In line with these observations, this study showed that macrophages as well as the macrophage-derived
pro-inflammatory cytokines TNF-α and IL-1β upregulated Snail1 expression in lung cancer cells,
which in turn epigenetically suppressed USP4 expression. In addition to the increased inflammation
and stemness, knockdown of USP4 in lung cancer cells also increased resistence to chemotherapy drugs
and expressing with higher level of PD-L1. These findings suggest that epigenetic suppression of USP4
expression is a major functional mechanism underlying TAM-induced and microenvironment-induced
Snail1 overexpression in lung cancer cells.

4. Materials and Methods

4.1. Reagents and Antibodies

Human recombinant tumor necrosis factor (TNF)-α, interleukin (IL)-1β, epidermal growth factor
(EGF), and basic fibroblast growth factor (bFGF) were purchased from Peprotech (Rocky Hill, NJ, USA).
Cisplatin, doxorubicin, BMS-345541, and anti-Flag M2 antibody were purchased from Sigma-Aldrich
Co. (St. Louis, MO, USA). The TLR agonists Pam3Cys, polyI:C, LPS, and R848 were purchased from
InvivoGen (San Diego, CA, USA) and CpG-ODNs was obtained from Invitrogen (Carlsbad, CA, USA).
Antibodies against human and mouse USP4 were purchased from Gentex (Taipei, Taiwan) and
Invitrogen, respectively, anti-PD-L1 from eBioscience/Thermo Fisher (Waltham, MA, USA), and rabbit
anti-snail1, anti-phospho-RelA (Alexa Fluor 647 conjugate), and rabbit IgG isotype control antibody
from Cell Signaling (Beverley, MA, USA). Reagents for MTS and luciferase assays were purchased
from Promega (Madison, WI, USA). A human lung cancer tissue qPCR array (TissueScan Lung Cancer
Tissue qPCR Panel III) was purchased from OriGene Technologies (Rockville, MD, USA).

4.2. Bioinformatics Analysis

The OncoLnc database (http://www.oncolnc.org) was searched for Cox coefficients between DUB
gene expression levels and survival according to Kaplan-Meier estimates. Cox coefficients of different
DUBs in lung adenocarcinoma were illustrated by heat maps generated using CIMminer software
(https://discover.nci.nih.gov/cimminer/). Gene expression levels were compared between cancer
stem-like cells and parental cancer cells by analyzing the GEO database. Expression fold-changes were
analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/). The Oncomine database (https://www.
oncomine.org/) was searched for gene expression profiles of normal tissues and tumors from patients.
Putative Snail binding sites in the USP4 promoter (E-Box sites) were identified using Consite software
(http://consite.genereg.net), while promoter GC rich (or CpG-rich) regions as potential methylation
sites were identified using MethPrimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi).

http://www.oncolnc.org
https://discover.nci.nih.gov/cimminer/
https://www.ncbi.nlm.nih.gov/geo/
https://www.oncomine.org/
https://www.oncomine.org/
http://consite.genereg.net
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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4.3. Cell Culture and Macrophage Co-Culture Assays

Human embryonic kidney (HEK) 293 cells, human H1299 lung cancer cells, murine D121
lung cancer cells, and LLC lung cancer cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS). Human H460 and HCC827 lung cancer
cells were grown in RPMI medium supplemented with 10% FBS. BMDMs were isolated from 6- to
8-week-old C57BL/6J mice by culturing extracted bone marrow cells in a 7:3 mixture of DMEM and
L929 conditioned medium supplemented with 10% FBS for 5 days. The BMDMs were then grown in
DMEM supplemented with 10% FBS. For macrophage co-culture assays, LLC lung cancer cells were
co-cultured with BMDMs in 0.4 µm transwell plates for 24 h with BMDMs on the upper chamber
surface and cancer cells on the lower chamber surface.

4.4. Plasmid Construction

Various luciferase reporter genes under control of the wild type (WT) or mutant USP4 promoter
were constructed to assess Snail1 binding and methylation sites. Briefly, a 969-bp USP4 promoter
region spanning from −926 to +43 relative to the start codon was PCR amplified from genomic DNA
of human H1299 lung cancer cells and subcloned into the pGL4.2 vector. DNA fragments containing
the USP4 promoter with the E-box mutations shown in Table S4 were generated by two-step RT-PCR
and subcloned into the pGL4.2 vector. A USP4 construct was generated through PCR amplification
from human cDNA, followed by cloning into the pCDH plasmid. For knockdown of USP4 expression,
shUSP4 plasmids were purchased from National Core Facility of RNA interference at Academia Sinica
(Taipei, Taiwan).

4.5. Generation of Lentiviruses and Stably Transfection

Lentiviruses were generated by transfection of lentiviral vectors and packaging plasmids into
HEK293T cells with PolyJet reagent (SignaGen Laboratories, Rockville, MD, USA). Viral supernatants
were collected 48 h following transfection. Cancer cell lines were spin-infected by plating cells in
12-well plates in the presence of 8 µg/mL polybrene (Sigma-Aldrich Co.) and lentiviral supernatants
followed by centrifugation at 1100× g for 30 min. The cells were subject to selection with puromycin
(3 ng/mL) to obtain stable cell lines.

4.6. SDS-PAGE and Immunoblot Analysis

Whole-cell lysates were prepared in modified RIPA buffer (Millipore, Burlington MA, USA)
containing 1x protease inhibitor cocktail (Roche, Basel, Switzerland). Total protein concentrations
were measured using Bio-Rad protein assay dye regent (Bio-Rad, Hercules, CA, USA). Proteins
were separated by SDS-PAGE and transferred onto PVDF membranes (Millipore). The membranes
were probed with specific antibodies as indicated, and then incubated with appropriate horseradish
peroxidase (HRP)-conjugated secondary antibody. Protein bands were visualized as an estimate of
expression level using enhanced chemiluminescence (ECL) reagent (PerkinElmer, Waltham, MA, USA)
and a UVP BioSpectrum Imaging System. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or
β-actin expression was also estimated as a gel loading control.

4.7. Flow Cytometry

For flow cytometric analysis, cells were suspended in PBS containing 2% FCS and incubated with
PE-conjugated anti-PD-L1 antibody at 4 ◦C for 30 min. For intracellular staining of phospho-RelA, cells
were fixed and permeabilized using a BD Cytofix/Cytoperm Kit (BD Bioscience, San Diego, CA, USA) for
20 min, washed and resuspensed in 1 × BD Perm/wash buffer, and incubated with anti-phospho-RelA
for 30 min. After washing, cells were analyzed on a FACS Calibur flow cytometer with CellQuest
software (Becton Dickinson, San Jose, CA, USA). For analysis of leukocytes in mouse tumors, excised
tumor masses were minced and digested in PBS containing 0.5% BSA, 0.25% collagenase II, 0.25%
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collagenase IV, and 0.05% deoxyribonuclease for 30 min. The reaction was stopped by adding DMEM
containing 10% FBS. The cell suspension was then strained through a 70-µM strainer and red blood
cells removed using RBC lysis buffer (eBioscience). The remaining tumor cells were incubated with
PE-conjugated F4/80 or CD11b antibody for 30 min and the populations of F4/80+ macrophages and
CD11b+ leukocytes were analyzed by flow cytometry.

4.8. Enrichment of Sphere-Forming Cancer Cells

For enrichment of sphere-forming cells, parent cancer cells were cultured at the indicated density
on Costar Ultra-Low Attachment plates (Corning, Corning, NY, USA) or six-well plates coated with
poly (2-hydroxyethyl methacrylate) (polyHEMA; Sigma-Aldrich Co.) in defined medium consisting of
serum-free DMEM/F12-K, 1x ITS solution (Sigma-Aldrich Co.), 20 ng/mL human recombinant EGF,
and 20 ng/mL human recombinant bFGF. PolyHEMA-coated plates were prepared by adding 1 mL of
a 10 mg/mL polyHEMA solution in 95% ethanol to the six-well plates and incubating overnight in a
laminar flow hood at room temperature for air drying.

4.9. Transfection and Luciferase Reporter Assays

For luciferase reporter assays, cells were seeded on 24-well plates and allowed to adhere overnight.
Cells were then co-transfected with the indicated luciferase reporter and expression plasmids using
polyethylenimine, and luciferase activities were measured as fold-induction relative to the control
plasmid encoding the wild type promoter.

4.10. RT-qPCR Analysis of Gene Expression

Total RNAs were purified using TRIzol (Invitrogen) or a total RNA extraction kit (Favogen,
Ping-Tung, Taiwan) according to the manufacturers’ instructions. First-strand cDNA was synthesized
using the Super Script III first-strand synthesis system (Invitrogen) and oligo-dT primers for first-strand
cDNA synthesis. Quantitative PCR was performed with gene-specific primers (Tables S5 and S6) using
an ABI PRISM 7900HT sequence detection system (Applied Biosystems, Foster City, CA, USA) and
KAPA SYBR Fast qPCR Kit (KK4605) for gene expression analysis. The expression of target mRNA
was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

4.11. DNA Methylation Assay

Genomic DNA was extracted from control H1299 cells and H1299 cells stably expressing Snail1
using the QIAamp DNA Mini kit (Qiagen, Hilden, Germany) and subjected to bisulfite modification
using the EpiTect Bisulfite Kit (Qiagen) according to manufacture’s protocol. Bisulfate-treated DNA
was examined for methylation status of CpG islands in the USP4 promoter region. Briefly, 2 µg of
genomic DNA was incubated with Bisulfite Mix and DNA protection buffer. Bisulfite DNA conversion
was performed using a thermal cycler, and the converted DNA were purified using EpiTech spin
columns. The USP4 gene promoter was amplified from the bisulfite-modified DNA by PCR using the
primers specific to USP4 gene CpG island listed in Table S7.

4.12. Animal Experiments

Animal experiments were approved by the Institutional Animal Care and Use Committee of
the National Health Research Institutes, Taiwan. The approval number is NHRI-IACUC-107017A.
C57BL/6J mice were maintained and handled in accordance with the stated guidelines. Control LLC
cells or LLC cells with stable USP4 knockdown suspended in 100 µL PBS were subcutaneously injected
into C57BL/6 mice at 6–8 weeks of age. These mice were monitored for tumor growth. Tumor volume
was calculated using the following formula: Tumor volume (mm3) = (length ×width2)/2.
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4.13. Statistics Analysis

Data are expressed as mean ± SD. Three independent repeats were performed for each assay.
Treatment group means were compared by independent samples Student’s t test. A p < 0.05 (two-tailed)
was considered significant for all tests.

5. Conclusions

In summary, as illustrated in Figure 8F this study revealed a novel pro-tumor mechanism in
which TAMs and inflammatory stimuli of the tumor microenvironment promote expression of Snail1
and concomitant Snail1-mediated epigenetic UPS4 downregulation in cancer cells. This in turn
increases pro-inflammatory cytokine release, which recruits additional macrophages into the tumor
microenvironment, further enhancing Snail1 expression and suppressing UPS4. This positive feedback
loop drives the rapid proliferation, increased stemness, and chemoresistance characteristic of aggressive
tumor cells. Snail1 inhibitors are under investigation [25]. Agents which can block this Snail1 and USP4
mediated positive feedback loop might be able to inhibit tumor progression and therapeutic resistance.
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lung cancer cDNA array, Table S3: Downregulation of USP4 in stemness-enriched and therapy-resistant cancer
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Abbreviations

Abb. Full Name
USP4 Ubiquitin-specific peptidase 4;
DUB Deubiquitinase
NF-κB Nuclear factor-κB
TLR Toll-like receptor
IL Interleukin
TNF-α Tumor necrosis factor-α
TNFR Tumor necrosis factor receptor
TRAF TNFR-associated factor
MyD88 Myeloid differentiation primary response 88
IRAK Interleukin-1 receptor-associated kinase
TAK TGF-β-activated kinase
TRADD Tumor necrosis factor receptor type 1-associated death domain protein
RIP Receptor interacting protein
EMT Epithelial−mesenchymal transition
CSC Cancer stem-like cells
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ELISA Enzyme-linked immunosorbent assay
HEK Human embryonic kidney
FCS Fetal calf serum
PBS Phosphate buffer saline
GAPDH Glyceraldehyde 3-phosphate dehydrogenase

References

1. De Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung.
Cancer Res. 2018, 7, 220–233. [CrossRef] [PubMed]

2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer
J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

3. Perwez-Hussain, S.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J.
Cancer 2007, 121, 2373–2380. [CrossRef] [PubMed]

4. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
[PubMed]

5. Quatromoni, J.G.; Eruslanov, E. Tumor-associated macrophages: Function, phenotype, and link to prognosis
in human lung cancer. Am. J. Transl. Res. 2012, 4, 376–389. [PubMed]

6. Conway, E.M.; Pikor, L.A.; Kung, S.H.; Hamilton, M.J.; Lam, S.; Lam, W.L.; Bennewith, K.L. Macrophages,
inflammation, and lung cancer. Am. J. Respir. Crit. Care Med. 2016, 193, 116–130. [CrossRef] [PubMed]

7. DiDonato, J.A.; Mercurio, F.; Karin, M. NF-κB and the link between inflammation and cancer. Immunol. Rev.
2012, 246, 379–400. [CrossRef]

8. Mitchell, J.P.; Carmody, R.J. NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol.
2018, 335, 41–84.

9. Sato, Y.; Goto, Y.; Narita, N.; Hoon, D.S. Cancer cells expressing toll-like receptors and the tumor
microenvironment. Cancer Microenviron. 2009, 2, 205–214. [CrossRef]

10. Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013,
12, 86. [CrossRef]

11. Verstrepen, L.; Bekaert, T.; Chau, T.-L.; Tavernier, J.; Chariot, A.; Beyaert, R. TLR-4, IL-1R and TNF-R signaling
to NF-κB: Variations on a common theme. Cell. Mol. Life Sci. 2008, 65, 2964–2978. [CrossRef]

12. Cohen, P. The TLR and IL-1 signalling network at a glance. J. Cell Sci. 2014, 127, 2383–2390. [CrossRef]
[PubMed]

13. Narayanan, K.B.; Park, H.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways.
Apoptosis 2015, 20, 196–209. [CrossRef] [PubMed]

14. Wajant, H.; Scheurich, P. TNFR1-induced activation of the classical NF-κB pathway. FEBS J. 2011, 278, 862–876.
[CrossRef] [PubMed]

15. Park, M.H.; Hong, J.T. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches.
Cells 2016, 5, 15. [CrossRef] [PubMed]

16. Puar, Y.R.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Tergaonkar, V. Evidence for the involvement of the
master transcription factor NF-κB in cancer initiation and progression. Biomedicines 2018, 6, 82. [CrossRef]

17. Aiello, N.M.; Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 2019, 216, 1016–1026.
[CrossRef]

18. Cai, Z.; Cao, Y.; Luo, Y.; Hu, H.; Ling, H. Signalling mechanism (s) of epithelial–mesenchymal transition and
cancer stem cells in tumour therapeutic resistance. Clin. Chim. Acta 2018, 483, 156–163. [CrossRef]

19. Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell.
Physiol. 2019, 234, 8381–8395. [CrossRef]

20. Maccalli, C.; Rasul, K.I.; Elawad, M.; Ferrone, S. The role of cancer stem cells in the modulation of anti-tumor
immune responses. Semin. Cancer Biol. 2018, 53, 189–200. [CrossRef]

21. Yeh, D.W.; Huang, L.R.; Chen, Y.W.; Huang, C.Y.F.; Chuang, T.H. Interplay between inflammation and
stemness in cancer cells: The role of toll-like receptor signaling. J. Immunol. Res. 2016, 2016, 436810. [CrossRef]

22. Michael, S.; Achilleos, C.; Panayiotou, T.; Strati, K. Inflammation shapes stem cells and stemness during
infection and beyond. Front. Cell Dev. Biol. 2016, 4, 118. [CrossRef]

http://dx.doi.org/10.21037/tlcr.2018.05.06
http://www.ncbi.nlm.nih.gov/pubmed/30050761
http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1002/ijc.23173
http://www.ncbi.nlm.nih.gov/pubmed/17893866
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://www.ncbi.nlm.nih.gov/pubmed/23145206
http://dx.doi.org/10.1164/rccm.201508-1545CI
http://www.ncbi.nlm.nih.gov/pubmed/26583808
http://dx.doi.org/10.1111/j.1600-065X.2012.01099.x
http://dx.doi.org/10.1007/s12307-009-0022-y
http://dx.doi.org/10.1186/1476-4598-12-86
http://dx.doi.org/10.1007/s00018-008-8064-8
http://dx.doi.org/10.1242/jcs.149831
http://www.ncbi.nlm.nih.gov/pubmed/24829146
http://dx.doi.org/10.1007/s10495-014-1073-1
http://www.ncbi.nlm.nih.gov/pubmed/25563856
http://dx.doi.org/10.1111/j.1742-4658.2011.08015.x
http://www.ncbi.nlm.nih.gov/pubmed/21232017
http://dx.doi.org/10.3390/cells5020015
http://www.ncbi.nlm.nih.gov/pubmed/27043634
http://dx.doi.org/10.3390/biomedicines6030082
http://dx.doi.org/10.1084/jem.20181827
http://dx.doi.org/10.1016/j.cca.2018.04.033
http://dx.doi.org/10.1002/jcp.27740
http://dx.doi.org/10.1016/j.semcancer.2018.09.006
http://dx.doi.org/10.1155/2016/4368101
http://dx.doi.org/10.3389/fcell.2016.00118


Cancers 2020, 12, 148 18 of 19

23. Maiuri, A.; O’Hagan, H. Interplay between inflammation and epigenetic changes in cancer. Prog. Mol. Biol.
Transl. Sci. 2016, 144, 69–117. [PubMed]

24. Rajagopalan, D.; Jha, S. An epi (c) genetic war: Pathogens, cancer and human genome. Biochim Biophys Acta
Rev Cancer. 2018, 1869, 333–345. [CrossRef] [PubMed]

25. Kaufhold, S.; Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target
for therapeutic intervention. J. Exp. Clin. Cancer Res. 2014, 33, 62. [CrossRef] [PubMed]

26. Baulida, J.; Díaz, V.M.; García de Herreros, A. Snail1: A transcriptional factor controlled at multiple levels.
J. Clin. Med. 2019, 8, 757. [CrossRef]

27. Baulida, J. Snail1 controls cooperative cell plasticity during metastasis. Oncoscience 2015, 2, 898.
28. Lin, Y.; Dong, C.; P Zhou, B. Epigenetic regulation of EMT: The Snail story. Curr. Pharm. Des. 2014,

20, 1698–1705. [CrossRef]
29. Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through

epigenetic and post-translational modifications. Mol. Cancer 2016, 15, 18. [CrossRef]
30. Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014,

20, 1242–1253. [CrossRef]
31. Wu, Y.; Kang, J.; Zhang, L.; Liang, Z.; Tang, X.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Ubiquitination

regulation of inflammatory responses through NF-κB pathway. Am. J. Transl. Res. 2018, 10, 881–891. [PubMed]
32. Mevissen, T.E.; Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem.

2017, 86, 159–192. [CrossRef] [PubMed]
33. Leznicki, P.; Kulathu, Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function.

J. Cell Sci. 2017, 130, 1997–2006. [CrossRef] [PubMed]
34. Fan, Y.; Yu, Y.; Mao, R.; Tan, X.; Xu, G.; Zhang, H.; Lu, X.; Fu, S.; Yang, J. USP4 targets TAK1 to downregulate

TNF α-induced NF-κ B activation. Cell Death Differ. 2011, 18, 1547–1560. [CrossRef]
35. Xiao, N.; Li, H.; Luo, J.; Wang, R.; Chen, H.; Chen, J.; Wang, P. Ubiquitin-specific protease 4 (USP4) targets

TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem. J. 2012,
441, 979–987. [CrossRef]

36. Zhou, F.; Zhang, X.; van Dam, H.; ten Dijke, P.; Huang, H.; Zhang, L. Ubiquitin-specific protease 4 mitigates
Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J. Biol. Chem. 2012,
287, 11002–11010. [CrossRef]

37. D’Arcy, P.; Linder, S. Molecular pathways: Translational potential of deubiquitinases as drug targets.
Clin. Cancer Res. 2014, 20, 3908–3914. [CrossRef]

38. Heideker, J.; Wertz, I.E. DUBs, the regulation of cell identity and disease. Biochem. J. 2014, 465, 1–26.
[CrossRef]

39. Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci.
2016, 2, e67. [CrossRef]

40. Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.;
Chakravarthi, B.V.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and
survival analyses. Neoplasia 2017, 19, 649–658. [CrossRef]

41. Malta, T.M.; Sokolov, A.; Gentles, A.J.; Burzykowski, T.; Poisson, L.; Weinstein, J.N.; Kamińska, B.;
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