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ABSTRACT The past century has seen substantial theoretical and empirical progress on the genetic basis of adaptation. Over this same
period, a pressing need to prevent the evolution of drug resistance has uncovered much about the potential genetic basis of
persistence in declining populations. However, we have little theory to predict and generalize how persistence—by sufficiently rapid
adaptation—might be realized in this explicitly demographic scenario. Here, we use Fisher’'s geometric model with absolute fitness to
begin a line of theoretical inquiry into the genetic basis of evolutionary rescue, focusing here on asexual populations that adapt
through de novo mutations. We show how the dominant genetic path to rescue switches from a single mutation to multiple as
mutation rates and the severity of the environmental change increase. In multi-step rescue, intermediate genotypes that themselves go
extinct provide a “springboard” to rescue genotypes. Comparing to a scenario where persistence is assured, our approach allows us to
quantify how a race between evolution and extinction leads to a genetic basis of adaptation that is composed of fewer loci of larger

effect. We hope this work brings awareness to the impact of demography on the genetic basis of adaptation.
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UR understanding of the genetic basis of adaptation is
improving rapidly due to the now widespread use of
genomic sequencing (see examples in Bell 2009; Stapley
et al. 2010; Dettman et al. 2012; Schlotterer et al. 2015). A
recurrent observation, especially in experimental evolution with
asexual microbes, is that the more novel the environment and
the stronger the selection pressure, the more likely it is that
adaptation primarily proceeds by fewer mutations of larger
effect (i.e., that adaptation is oligogenic sensu Bell 2009). An
extreme case is the evolution of drug resistance, which is
often achieved by just one or two mutations (e.g., Bataillon
et al. 2011; Pennings et al. 2014).
However, drugs, and other sufficiently novel environ-
ments, will often induce not only strong selection but also
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population decline. Such declines hinder both the production
and maintenance of adaptive genetic variation (Otto and
Whitlock 1997), thus impeding evolution and threatening
extinction. Drug resistance evolution is a particular instance
of the more general phenomenon of evolutionary rescue
(Gomulkiewicz and Holt 1995; Bell 2017), where persistence
requires sufficiently fast adaptive evolution.

Most theory on the genetics of adaptation (reviewed in Orr
2005) assumes constant population size, and, therefore,
does not capture the characteristic “race” between adapta-
tion and extinction that occurs during evolutionary rescue.
Many models have been created to describe this race
(reviewed in Alexander et al. 2014), but, so far, largely focus
on two extreme genetic bases, both already introduced in
Gomulkiewicz and Holt (1995): rescue is either caused
by minute changes in allele frequencies across many loci in
sexuals (i.e., the infinitesimal model; Fisher 1918) or by the
substitution of a single large effect “resistance” mutation
(e.g., one locus, two allele models). We therefore largely lack
a theoretical framework for the genetic basis of evolutionary
rescue that captures the arguably more realistic situation
where an intermediate number of mutations are at play
(but see exceptions below). The near absence of such a
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framework prevents us from predicting the number of muta-
tions that evolutionary rescue will take and the distribution of
their effect sizes. The existence of a more complete frame-
work could therefore provide valuable information for those
investigating the genetic basis of drug resistance (e.g., the
expected number and effect sizes of mutations) and would
extend our understanding of the genetic basis of adaptation
to cases of nonequilibrial demography (i.e., rapid evolution
and “eco-evo” dynamics).

Despite these gaps in the theory on the genetic basis of
evolutionary rescue, there is a wealth of data. For example,
the genetic basis of resistance to a variety of drugs is known
in many species of bacteria (reviewed in MacLean et al.
2010), fungi (reviewed in Robbins et al. 2017), and viruses
(reviewed in Yilmaz et al. 2016). This abundance of data
reflects both the applied need to prevent drug resistance
and the relative ease of isolating the genotypes that survive
(hereafter “rescue genotypes”), e.g., in a Luria-Delbriick
fluctuation assay (reviewed in Bataillon and Bailey 2014).
Assaying fitness in the environment used to isolate mutants
(e.g., in the drug) then provides the distribution of fitness
effects of potential rescue genotypes. Additional data on the
genetic basis of drug resistance arise from the construction
of mutant libraries (e.g., Weinreich et al. 2006) and the
sequencing of natural populations (e.g., Pennings et al.
2014). Together, the data show that resistance often ap-
pears to arise by a single mutation (e.g., MacLean and
Buckling 2009; Gerstein et al. 2012; Lindsey et al. 2013)
but not always (e.g., Bataillon et al. 2011; Pennings et al.
2014; Gerstein et al. 2015; Williams and Pennings 2019).
The data also indicate that the fitness effect of rescue geno-
types is more often large than small, creating a hump-
shaped distribution of selection coefficients (e.g., Kassen
and Bataillon 2006; MacLean and Buckling 2009; Gerstein
et al. 2012; Lindsey et al. 2013; Gerstein et al. 2015) that is
similar in shape to that proposed by Kimura (1983) [see Orr
(1998), for more discussion], but with a lower bound that is
often much greater than zero.

Theory on evolutionary rescue (reviewed in Alexander
et al. 2014) has focused primarily on the probability of rescue
rather than its genetic basis. However, a few studies have
varied the potential genetic basis enough to make some in-
ference about how evolutionary rescue is likely to happen.
For instance, in the context of pathogen host-switching, Antia
et al. (2003) numerically explored the probability of rescue
starting from a single ancestral individual when k sequential
mutations are required for a positive growth rate, each mu-
tation occurring from the previous genotype with the same
probability and all intermediate genotypes being selectively
neutral. The authors found that rescue became less likely as
the number of intermediate mutations increased, suggesting
that rescue will generally proceed by the fewest possible mu-
tations. This framework was expanded greatly by Iwasa et al.
(2004a), who allowed for arbitrary mutational networks
(ie., different mutation rates between any two genotypes)
and standing genetic variation in the ancestral population.
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Assuming the probability of mutation between any two ge-
notypes is of the same order, they showed that genetic paths
with fewer mutational steps contributed more to the total
probability of rescue, again suggesting rescue will occur by
the fewest possible mutations. Iwasa et al. (2004a) also found
that multiple simultaneous mutations (i.e., arising in the
same meiosis) can contribute more to rescue than paths that
gain these same mutations sequentially (i.e., over multiple
generations) when the growth rates of the intermediate mu-
tations are small enough, suggesting that rare large muta-
tions can be the most likely path to rescue when the
population is very maladapted or there is a fitness valley
separating the wild-type and rescue genotype. This point
was also demonstrated by Alexander and Day (2010), who
emphasized that multiple simultaneous mutations become
the dominant path to rescue in the most challenging environ-
ments. As a counterpoint, Uecker and Hermisson (2016)
explored a greater range of fitness values in a two-locus
two-allele model, showing that, with standing genetic varia-
tion, rescue by sequential mutations at two loci (two muta-
tional steps) can be more likely than rescue by mutation at a
single locus (one simultaneous mutational step), particularly
when the wild type is very maladapted, where the single
mutants can act as a buffer in the face of environmental
change. In summary, current theory indicates that the genetic
basis of rescue hinges on the chosen set of genotypes, their
fitnesses, and the mutation rates between them. So far these
choices have been in large part arbitrary or chosen for math-
ematical convenience.

Here, we follow the lead of Anciaux et al. (2018) in allow-
ing the genotypes that contribute to rescue, as well as their
fitnesses and the mutational distribution, to arise from an
empirically justified fitness-landscape model (Tenaillon
2014). In particular, we use Fisher’s geometric model to de-
scribe adaptation following an abrupt environmental change
that instigates population decline. There are two key differ-
ences between this approach and earlier models using Fish-
er’s geometric model (e.g., Orr 1998): here (1) the dynamics
of each genotype depends on their absolute fitness (instead of
only on their relative fitness), and (2) multiple mutations can
segregate simultaneously (instead of assuming only sequen-
tial fixation), allowing multiple mutations to fix—and in our
case, rescue—the population together as a single haplotype
(i.e., stochastic tunnelling, Iwasa et al. 2004b). In this non-
equilibrium scenario, variation in absolute fitness, which al-
lows population size to vary, can create feedbacks between
demography and evolution, which could strongly impact the
genetic basis of adaptation relative to the constant popula-
tion size case. In contrast to Anciaux et al. (2018), our focus
here is on the genetic basis of evolutionary rescue and we also
explore the possibility of rescue by mutant haplotypes con-
taining more than one mutation. In particular, we ask: (1)
how many mutational steps is evolutionary rescue likely to
take, and (2) what is the expected distribution of fitness
effects of the surviving genotypes and their component
mutations?



We first introduce the modeling framework before sum-
marizing our main results. We then present the mathematical
analyses we have used to understand these results, and end
with a discussion of our key findings.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article and Supplementary Material. Supplemen-
tary figures are provided in File S1. Code used to derive
analytical and numerical results and produce figures
(Mathematica, version 9.0; Wolfram Research Inc. 2012) is
provided as File S2. These files, as well as code used to run
individual-based simulations (Python, version 3.5; Python
Software Foundation), have all been deposited at figshare:
https://doi.org/10.25386/genetics.11343704. All these files,
as well as simulation data and freely accessible versions of
File S2 (CDF and PDF), are also available at https://github.com/
mmosmond/GeneticBasisOfRescue.

Model

Frequently used notation in our mathematical analysis are
listed in Table 1.

Fisher’s geometric model

We map genotype to phenotype to fitness using Fisher’s
geometric model, originally introduced by Fisher (1930, pp.
38-41) and reviewed by Tenaillon (2014). In this model, each
genotype is characterized by a point in n-dimensional phenotypic
space, Z. We ignore environmental effects, and, thus, the pheno-
type is the breeding value. At any given time, there is a phenotype,
0, that has maximum fitness, and fitness declines monotonically
as phenotypes depart from 6. We assume that n phenotypic
axes can be chosen and scaled such that fitness is described
by a multivariate Gaussian function, with variance one in
each dimension, no covariance, and height W}, (which can
always be done when considering genotypes close enough
to an nondegenerate optimum; Martin 2014). Thus the

2
fitness of phenotype 2z is W(2) = Wy exp(—||2—0| /2),

where ||Z2 — 0| = Z?Zl(zi—oi)z is the Euclidean distance

of z from the optimum, o. Here we are interested in absolute

fitness; we take In[W(2)] = m(2) = Mmax — HE—Z)HZ/Z to be
the continuous-time growth rate (m is for Malthusian fit-
ness) of phenotype z. We ignore density- and frequency-
dependence in m(2) for simplicity. The fitness effect, i.e.,
selection coefficient, of phenotype 2’ relative to z in a continuous-
time model is exactly s =In[W(2')/W(z)] =m(z') —m(z)
(Martin and Lenormand 2015). This is approximately equal
to the selection coefficient in discrete time (W(z')/W(z) — 1)
when selection is weak (W(z') — W(z) < 1).

To make analytical progress, we use the isotropic version
of Fisher’s geometric model, where mutations (in addition
to selection) are assumed to be uncorrelated across the
scaled traits. Universal pleiotropy is also assumed, so that

each mutation affects all scaled phenotypes. In particular
we use the “classic” form of Fisher’s geometric model
(Harmand et al. 2017), where the probability density func-
tion of a mutant phenotype is multivariate normal, centered
on the current phenotype, with variance A in each dimen-
sion and no covariance. Using a probability density func-
tion of mutant phenotypes implies a continuum-of-alleles
(Kimura 1965), i.e., phenotype is continuous and each mu-
tation is unique. Mutations are assumed to be additive in
phenotype, which induces epistasis in fitness (as well as
dominance under diploid selection), as fitness is a nonlinear
function of phenotype. We assume asexual reproduction,
i.e., no recombination, which is appropriate for many cases
of antimicrobial drug resistance and experimental evolu-
tion, while recognizing the value of expanding this work
to sexual populations.

An obvious, and important, extension would be to relax the
simplifying assumptions of isotropy and universal pleiotropy,
which we leave for future work. Note that mild anisotropy
yields the same bulk distribution of fitness effects as an iso-
tropic model with fewer dimensions (Martin and Lenormand
2006), but this does not extend to the tails of the distribution.
Therefore, whether anisotropy can be reduced to isotropy
with fewer dimensions in the case of evolutionary rescue,
where the tails are essential, is unknown. In the Discussion
we briefly explore the effects of non-Gaussian distributions of
mutant phenotypes.

Given this phenotype-to-fitness mapping and pheno-
typic distribution of new mutations, the distribution of
fitness effects (and therefore growth rates) of new muta-
tions can be derived exactly. Let m be the growth rate of
some particular focal genotype, and m’ the growth rate
of a mutant immediately derived from it. Then, let
So = Mmax — M be the selective effect of a mutant with the
optimum genotype and s = m’ —m the selective effect of
the mutant with growth rate m’. The probability density
function of the selective effects of new mutations, s, is then
given by Equation 3 in Martin and Lenormand (2015).
Converting fitness effects to growth rate (m' =s+m),
the probability density function for mutant growth rate
m’ from an ancestor with growth rate m is (¢f. Equation 2
in Anciaux et al. 2018)

ey

f(m'|m) = )%fxg (Z(mmax —m') 2Mmax m)> :

A ’ A

wheref, 2 (x, c) is the probability density function over positive
real numbers x of x2(c), a noncentral chi-square deviate with
n degrees of freedom and noncentrality ¢ >0 (Equation
26.4.25 in Abramowitz and Stegun 1972).

Lifecycle

We are envisioning a scenario where N, wild-type indi-
viduals, each of which have phenotype Zy, experience
an environmental change causing population decline,
mo =m(2o) < 0. Each generation, an individual with phenotype
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Table 1 Frequently used notation

Symbol Meaning

n Number of (scaled) phenotypic dimensions

A Variance in mutant phenotypes along each dimension

Mpmax Maximum growth rate

f(m'|m) Distribution of growth rates among mutants from a genotype with growth rate m (eq. 1)

u Per genome mutation probability

No Initial number of wild-type individuals

mo Wild-type growth rate

Po Probability a wild-type individual has descendants that rescue the population

P Probability of rescue (eq. 2)

p(m, A(m)) Probability a genotype with growth rate m, itself fated for extinction, has descendants that rescue the
population (eq. 3)

Pest(M) Probability a genotype with growth rate m establishes, i.e., rescues the population (eq. 4)

A(m) Probability that an individual with growth rate m produces a mutant that has descendants that rescue the
population

Ai(m) Probability that an individual with growth rate m produces a mutant that has descendants with i — 1
additional mutations that rescue the population

AL (m) Probability that an individual with growth rate m produces sufficiently subcritical (i = " — "), critical (/ = 0),
or supercritical (i =" + ") first-step mutants that eventually lead to two-step rescue (eq. 8)

¥ 2(1 = /1 =m/Mmax )

o 2(1 = /1 =mo/Mpax )

Pmax Mimax /A

a Pmaxlz’é/‘l'

Z produces a Poisson number of offspring, with mean exp[m(z)],
and dies. This process implicitly assumes no interaction be-
tween individuals, i.e., a branching process with density-
and frequency-independent growth and fitness and no
clonal interference. Each offspring mutates with probabil-
ity U (we ignore the possibility of multiple simultaneous
mutations within a single genome), and mutations are
distributed as described above (see Fisher’s geometric
model).

Simulation procedure

We ran individual-based simulations of the above process to
compare with our numeric and analytic results. Except where
noted, populations were considered rescued when there were
=100 individuals with positive growth rates (all other rep-
licates went extinct). The most common genotype at the time
of rescue was considered the rescue genotype, and the num-
ber of mutational steps to rescue was set as the number of
mutations in that genotype.

Probability of rescue

Let po be the probability that a given wild-type individual is
“successful”, i.e., has descendants that rescue the popula-
tion. The probability of rescue is then 1 minus the probabil-
ity that none of the initial wild-type individuals are
successful,

P =1 (1-po)™ ~ 1 —exp (~Nopo), 2
where the approximation assumes small py, and large Nj.
What remains is to find py.
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Results

We start with a heuristic explanation of our main results be-
fore turning to more detailed derivations in the next section.

Rescue by multiple mutations

A characteristic pattern of evolutionary rescue is a “U”-shaped
population size trajectory (e.g., Orr and Unckless 2014). This
is the result of an exponentially declining wild-type genotype
being replaced by an exponentially increasing mutant geno-
type. On a log scale, this population size trajectory becomes
“V”-shaped (we denote it a “V-shaped log-trajectory”). On
this scale, the population declines at a constant rate (produc-
ing a line with slope m < 0) until the growing mutant sub-
population becomes relatively common, at which point the
population begins growing at a constant rate (a line with
slope m; > 0). This characteristic V-shaped log-trajectory is
observed in many of our simulations where evolutionary res-
cue occurs (Figure 1A). Alternatively, when the wild type
declines faster, and the mutation rate is larger, we sometimes
see “U-shaped log-trajectories” (e.g., the red and blue repli-
cates in Figure 2A). Here there are three phases instead of
two; the initial rate of decline (a line with slope mg < 0)
is first reduced (transitioning to a line with slope m; <0)
before the population begins growing (a line with slope
my > 0)

As expected, V-shaped log-trajectories are the result of a
single mutation creating a genotype with a positive growth
rate that escapes loss when rare and rescues the population
(Figure 1B), i.e., one-step rescue. U-shaped log-trajectories,
on the other hand, occur when a single mutation creates a
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Figure 1 Typical dynamics with a relatively slow wild-type decline and a
small mutation rate (mg = — 0.1, U= 10"%). (A) Population size trajec-
tories on a log scale. Each line is a unique replicate simulation (100 rep-
licates). Replicates that went extinct are gray, replicates that were rescued
are in color (and are roughly V-shaped). (B) The number of individuals
with a given derived allele, again on a log scale, for the yellow replicate in
(A). The number of individuals without any derived alleles (wild type) is
shown in gray, the rescue mutation is shown in yellow, and all other
mutations are shown in black. Other parameters: n =4, A = 0.005,
Mmax = 0.5.

genotype with a negative (or potentially very small positive)
growth rate, itself doomed to extinction, which outpersists
the wild type, and gives rise to a double-mutant genotype
that rescues the population (Figure 2B), i.e., two-step rescue.
These two types of rescue comprise the overwhelming ma-
jority of rescue events observed in our simulations, across a
wide range of wild-type decline rates (e.g., Figure 3).

In the text, we focus on low to moderate mutation rates
affecting growth rate. With sufficiently high mutation rates,
rescue by three or more mutations comes to dominate (Figure
S1). It has recently been suggested that when the mutation
rate, U, is substantially less than a critical value, Uz = An?/4,
we are in a “strong selection, weak mutation” regime, where
selection is strong enough relative to mutation that essen-
tially all mutations arise on a wild-type background (Martin
and Roques 2016), consistent with the House of Cards ap-
proximation (Turelli 1984, 1985). Thus, in this regime, res-
cue tends to occur by a single mutation of large effect
(Anciaux et al. 2018). In the other extreme, when U > Ug,
we are in a “weak selection, strong mutation” regime, where
selection is weak enough relative to mutation that many
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Figure 2 Typical dynamics with a relatively fast wild-type decline and a
large mutation rate (mg = — 0.3, U = 1072). (A) Population size trajec-
tories on a log scale. Each line is a unique replicate simulation (500 rep-
licates). Replicates that went extinct are gray, replicates that were rescued
are in color. Note that the blue and red replicates are cases of two-step
rescue (and roughly U-shaped), while the yellow replicate is one-step
rescue (and therefore V-shaped). (B) The number of individuals with a
given derived allele, again on a log scale, for the red replicate in (A). The
number of individuals without any derived alleles (wild type) is shown in
gray, the rescue mutations are shown in red, and all other mutations in
black. Here, a single mutant with growth rate <O arises early and outlives
the wild type (solid red). A second mutation then arises on that back-
ground (dashed red), making a double mutant with a growth rate >0
that rescues the population. Other parameters: n =4, A = 0.005,
Mmax = 0.5.

cosegregating mutations are present within each genome,
creating a multivariate normal phenotypic distribution
(Martin and Roques 2016), consistent with the Gaussian ap-
proximation (Kimura 1965; Lande 1980). Thus, in this re-
gime, rescue tends to occur by many mutations of small
effect (Anciaux et al. 2019). As shown in Figure 3 (where
U = Uc¢/10) and Figure S1 (where U; = 0.02), rescue by a
small number of mutations (but >1) can become common-
place in the transition zone (where U is neither much smaller
or much larger than U¢), where there are often a considerable
number of cosegregating mutations (e.g., Figure 2B, where
U =Uc/2).

The probability of k-step rescue

Approximations for the probability of one-step rescue under
the strong selection, weak mutation regime were derived by
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Anciaux et al. (2018). Here, we extend this study by explor-
ing the contribution of k-step rescue, deriving approxima-
tions for the probability of such events, as well as dissecting
the genetic basis of both one- and two-step rescue in terms of
the distribution of fitness effects of rescue genotypes and
their component mutations.

Although requiring a sufficiently beneficial mutation to
arise on a rare mutant genotype doomed to extinction,
multistep evolutionary rescue can be the dominant form
of rescue when the wild type is sufficiently maladapted
(Figure 3 and Figure S1). Indeed, on this fitness landscape,
the probability of producing a rescue genotype in one mu-
tational step mutant drops very sharply with maladaptation
(Anciaux et al. 2018); the probability of multi-step rescue
declines more slowly as mutants with intermediate growth
rates can be a “springboard”—albeit not always a very
bouncy one—from which rescue mutants are produced.
These intermediates contribute more as mutation rates
and the decline rate of the wild-type increase (Figure 3
and Figure S1), the former because double mutants become
more likely and the latter because the springboard becomes
more necessary. With a large enough number of wild-type
individuals or a high enough mutation rate (Figure S1),
multistep rescue can not only be more likely than one-step,
but also very likely in an absolute sense.

Classifying two-step rescue regimes

Two-step rescue can occur through first-step mutants with
a wide range of growth rates. As shown below (see Ap-
proximating the probability of two-step rescue), these first-
step mutants can be divided into three regimes: “sufficiently
subcritical”, “sufficiently critical”, and “sufficiently supercrit-
ical” (we will often drop “sufficiently” for brevity; Figure 4).
Sufficiently critical first-step mutants are defined by having
growth rates close enough to zero that the most likely way for
such a mutation to lead to two-step rescue is for it to persist
for such an unusually long period of time, and accordingly
grow to such an unusually large subpopulation size, that it
will almost certainly produce successful double mutants. Suf-
ficiently subcritical first-step mutants are then defined by
having growth rates that are negative enough to almost cer-
tainly prevent such long persistence times. Instead, these
mutations tend to persist for an expected number of genera-
tions, proportional to the inverse of their growth rate (1/|m|),
while maintaining relatively small subpopulation sizes (on
the order of one individual per generation). Mutations con-
ferring a positive growth rate can also go extinct, and thus
can also act as springboards to rescue. Conditioned on extinc-
tion, supercritical mutations behave like subcritical muta-
tions with a growth rate of the same absolute value
(Maruyama and Kimura 1974). Sufficiently supercritical
first-step mutants are therefore defined analogously to sub-
critical first-step mutants, having positive (rather than
negative) growth rates that are large enough to prevent
sufficiently long persistence times once conditioned on ex-
tinction. Despite having similar extinction trajectories as
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subcritical mutations, “doomed” supercritical mutations arise
less frequently by mutation from the wild type but mutate to
rescue genotypes at a higher rate. Overall, they too can
contribute substantially to rescue. Note that supercritical
two-step rescue is not one-step rescue with subsequent ad-
aptation, as we condition on the first-step mutation going
extinct in the absence of the second mutation. However, em-
pirically, it will be impossible to tell if the first-step mutation
was indeed doomed to extinction if it is found to have a
positive growth rate in the selective environment.

The relative contribution of each regime changes with both
the initial degree of maladaptation and the mutation rate (Figure
5 and Figure S2). When the wild type is very maladapted (rel-
ative to mutational variance), most two-step rescue events oc-
cur through subcritical first-step mutants (Figure 5A), which
arise at a higher rate than critical or supercritical mutants,
and, yet, persist longer than the wild type. When the wild type
is less maladapted, however, critical and supercritical mutations
become increasingly likely to arise and contribute to two-step
rescue, both due to their closer proximity to the wild type in
phenotypic space as well as the slower decline of the wild type
increasing the cumulative number of mutations that occur. The
mutation rate also plays an interesting role in determining the
relative contributions of each regime (Figure 5B and Figure S2).
When mutations are rare, only first-step mutations that are very
nearly neutral (m ~ 0) will persist long enough to give rise to a
two-step rescue mutation. As the mutation rate increases, how-
ever, the range of first-step mutant growth rates that can persist
long enough to lead to two-step rescue widens because fewer
individuals carrying the first-step mutation are needed before a
successful double mutant arises.

The distribution of fitness effects among
rescue mutations

Mutants causing one-step rescue have growth rates that
cluster around small positive values (m = 0; blue curves in
Figure 6). Consequently, the distribution of fitness effects
(DFE) among these rescue mutants is shifted to the right
relative to mutations that establish in a population of con-
stant size (compare solid blue and gray curves in Figure 6),
with a DFE beginning at s = m — mg = — mgo > 0 rather than
s = 0 (Kimura 1983). As a result of this increased threshold,
the one-step rescue DFE has a smaller variance than both the
DFE of random mutations, and the DFE of mutations that
establish in a constant population (compare blue and gray
curves in Figure 6). Further, while the variance in the DFE of
random mutations and of those that establish in a population
of constant size increases slightly with initial maladaptation
(due to the curvature of the phenotype-to-fitness function),
the variance in the one-step rescue DFE decreases substan-
tially (compare panels in Figure 6), as rescue becomes re-
stricted to a rapidly decreasing proportion of the available
mutants.

The DFE of genotypes that cause two-step rescue (the
combined effect of two mutations) is also clustered at small
positive growth rates, but it has a variance that is less affected



by the rate of wild-type decline (red curves in Figure 6). This
is because double-mutant rescue genotypes are created via
first-step mutant genotypes that have larger growth rates
than the wild type (i.e., are closer to the optimum), allowing
them to create double mutants with a larger range of positive
growth rates.

Finally, we can also look at the distribution of growth
rates among first-step mutations that lead to two-step
rescue, i.e., “springboard mutants” (Figure 7 and Figure
S2). Here there are two main factors to consider: (1) the
probability that a mutation with a given growth rate arises
on the wild-type background but does not by itself rescue
the population, and (2) the probability that such a muta-
tion persists long enough for a sufficiently beneficial sec-
ond mutation to arise on that same background and
together rescue the population. Subcritical mutations con-
ferring growth rates closer to zero persist longer but are
less likely to arise from the wild type, creating a trade-off
between mutational input and the probability of rescue
that can lead to a wide distribution of contributing subcrit-
ical growth rates (blue shading in Figure 7). In contrast,
supercritical mutations with growth rates nearer to zero
are more likely arise by mutation, to go extinct in the ab-
sence of further mutation, and to persist for longer once
conditioned on extinction, together creating a relatively
narrow distribution of contributing supercritical growth
rates (yellow shading in Figure 7). As explained above,
increasing the rate of wild-type decline (or decreas-
ing the rate of mutation) increases the contribution
of subcritical first-step mutants, and the importance
of mutational input, lowering the mode and increasing
the variance of the first-step DFE (compare panels in
Figure 7).

Note that, given two-step rescue, the growth rate of
both the first-step and second-step mutation may be neg-
ative when considered by themselves in the wild-type
background. This potentially obscures empirical detec-
tion of the individual mutations involved in evolutionary
rescue.

Mathematical Analysis
The probability of k-step rescue

Generic expressions for the probability of one- and two-step
rescue were given by Martin et al. (2013), using a diffusion
approximation of the underlying demographics. The key
result that we will use is the probability that a single copy
of a genotype with growth rate m, itself fated for extinc-
tion, but which produces rescue mutants at rate A(m), res-
cues the population (equation S1.5 in Martin et al. 2013).
With our lifecycle this is (c¢f. equation A.3 in Iwasa et al.
2004a)

p(m,A(m)) =1—exp {|m <1 —4/1+ 21;5?”)} . 3)

We can therefore use po = p(mo, A(mop)) as the probability
that a wild-type individual has descendants that rescue
the population and what remains in calculating the total
probability of rescue (Equation 2) is A(mg). We break
this down by letting A;(m) be the rate at which rescue
genotypes with i mutations are created; the total proba-
bility of rescue is then given by Equation 2 with py =
p(mo, >-71Ai(mo)).

In one-step rescue, A1(myg) is just the rate of production of
rescue mutants directly from a wild-type genotype. This is the
probability that a wild type gives rise to a mutant with growth
rate m (given by Uf(m|my)) times the probability that a ge-
notype with growth rate m establishes. Again approximating
our discrete time process with a diffusion process, the prob-
ability that a lineage with growth rate m <« 1 establishes,
ignoring further mutation, is (e.g., Martin et al. 2013)

0 m=0

1—exp(—2m) m>0’ )

Dest(m) = {
This reduces to the 2(s 4+ myg) result in Otto and Whitlock
(1997), when m = s + mq is small, which further reduces
to 2s in a population of constant size, where my =0
(Haldane 1927). Using this, the rate of one-step rescue is

Mupax

A1(mo) =U | f(m|mo)pese(m)dm. (5)

Taking the first order approximation of p(mg, A1 (mo)) with
A1(mo)/m3 small gives the probability of one-step rescue
(Equation 5 of Anciaux et al. 2018), which effectively as-
sumes deterministic wild-type decline. For completeness
we rederive their closed-form approximation in File S2
(and give the results in the Appendix, see Approximating
the probability of one-step rescue).

The probability of two-step rescue is only slightly more
complicated. Here Ay(my) is the probability that a muta-
tion arising on the wild-type background creates a geno-
type that is also fated for extinction but persists long
enough for a second mutation to arise on this mutant
background, creating a double-mutant genotype that res-
cues the population. We therefore have

Mmax

f(m[mo)[1 = pest(m)|p(m, A1 (m))dm.
6)

AZ(mo) =U

—®

Following this logic, we can retrieve the probability of k-step
rescue, for arbitrary k = 2, using the recursion

Mimnax

Ak(mO) =U f(m‘mO)[l _pest(m)] @2

—®

p(mv Ak*l (m))dm:

with the initial condition given by Equation 5. The probability
of 1-, 2-, 3-, and 4-step rescue is plotted in Figure 3.
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Figure 3 The probability of evolutionary rescue as a function of initial
maladaptation. Shown are the probabilities of 1-, 2-, 3-, and 4-step res-
cue (using Equations 2-7), as well as the probability of rescue by up to
four mutational steps (“total”, using A(mg) = ZLA/(mo)). Circles are
individual-based simulation results (ranging from 10° to 10° replicates per
wild-type growth rate). Populations were considered rescued when there
were = 1000 individuals with positive growth rate. Open circles denote
the fraction of simulations where the rescue genotype (see Simulation
procedure) had a given number of mutations, and closed circles are the
sum of these fractions. Parameters: Ng = 10%, U=2X1073, n=4,
A = 0.005, Mma = 0.5.

Approximating the probability of two-step rescue

The probability of two-step rescue is given by Equation 2, with
Po = p(mop, A2(mp)) (Equations 3-6). We next develop some
intuition by approximating this for different classes of single
mutants.

First, note that, when the growth rate of a first-step mu-
tation is close enough to zero such that m? < A;(m), we can
approximate the probability that such a genotype leads to
rescue before itself going extinct, p(m, A;(m)), using a Taylor
series, as y/2A1(m) [¢f. equation A.4b in Iwasa et al. (2004a),
see also File S2]. We can also derive this result heuristically
by considering the probability that a lineage will persist long
enough that it will incur a secondary rescue mutation. As
shown in the Appendix (see Mutant lineage dynamics), while
t <1/|m|, a mutant lineage with growth rate m that is des-
tined for extinction persists for t generations with probability
~ 2/t (Equation 21), and in generation t since it has arisen
has ~ t/2 individuals (Equation 22). Thus, while T <1/|m|,a
mutant lineage that persists for T generations will have pro-
duced a cumulative number ~ T2/4 individuals. Such line-
ages will then lead to two-step rescue with probability
~ A1(m)T?/4 until this approaches 1, near T = 2//A;(m).
Since the probability of rescue increases like T? while the
probability of persisting to time T declines only like 1/T, most
rescue events will be the result of rare long-lived single mu-
tant genotypes. Considering only the most long-lived geno-
types, the probability that a first-step mutation leads to
rescue is then the probability that it survives long enough
to almost surely rescue, i.e., for T ~2/,/A;(m) genera-
tions. Since the probability of such a long-lived lineage is
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2/T ~ /A1(m), this heuristic result agrees with our Taylor
series approximation of Equation 5. Thus, for first-step mu-
tants with growth rates satisfying 2/1/A1(m) <1/|m|, imply-
ing m? < A1(m), with probability ~ /A;(m) persistence is
long enough to almost certainly ensure rescue. This same
reasoning has been used to explain why the probability that
a neutral mutation segregates long enough to produce a sec-
ond mutation is ~ /U in a population of constant size
(Weissman et al. 2009).

At the other extreme, when the growth rate of a first-step
mutation is far enough from zero such that m? >> A;(m), we can
approximate p(m, A;(m)), again using a Taylor series, with
A1(m)/|m| [cf. equation A.4c in Iwasa et al. (2004a), see also
File S2]. Conditioned on extinction such genotypes cannot per-
sist long enough to almost surely lead to two-step rescue. In-
stead, we expect such mutations to persist for, at most, ~ 1/|m
generations (Equation 21) with a lineage size of ~ 1 individual
per generation (Equation 22), and thus produce a cumulative
total of ~ 1/|m| individuals. The probability of two-step rescue
from such a first-step mutation is therefore A;(m)/|m|, and,
again, this heuristic argument matches our Taylor series ap-
proach. This same reasoning explains why a rare mutant geno-
type with selection coefficient |s| > 0 in a constant population
size model is expected to have a cumulative number of ~ 1/s|
descendants, given it eventually goes extinct (Weissman et al.
2009).

The transitions between these two regimes occur when
A1(m)/|Im| = \/2A1(m), ie., when |m|=+/A1(m)/2. We
call single mutants with growth ratesm < — y/A;(m)/2 “suf-
ficiently subcritical”, those with |m|<./Ai(m)/2 “suffi-
ciently critical”, and those with m > /A;(m)/2 “sufficiently
supercritical”. Given that U, and, thus, A;(m) will gener-
ally be small, m will also be small at these transition points,
meaning we can approximate the transition points as

m* = /A1(0)/2 and —m*. We then have an approximation
for the rate of two-step rescue,

Az(mg) = A (mo) + AY (mo) + A" (mo)

AL o) =0 [ stomimo) 20

N ®
A mg) = [ flmlmo) 1~ pec(m)] 2R (m)m
AG mo) =0 [ flmlmo)l1.  pee(m) 1 dm

where Ag)(mo) is the rate of two-step rescue through suffi-
ciently subcritical first-step mutants (i = “ —”), sufficiently
critical first-step mutants (i = 0), or sufficiently supercriti-
cal first-step mutants (i =“+"”). A schematic depicting
the one- and two-step genetic paths to rescue is given in
Figure 4.



Figure 4 One- and two-step genetic paths to evolutionary rescue. Here
we show an n = 2 dimensional phenotypic landscape. Continuous-time
(Malthusian) growth rate (m) declines quadratically from the center, be-
coming negative outside the thick black line. The gray zone indicates
where growth rates are “sufficiently critical” (see text for details). Blue
circles show wild-type phenotypes, red circles show the phenotypes of
intermediate first-step mutations, and yellow circles show the phenotypes
of rescue genotypes.

Closed-form approximation for critical two-step rescue

When U is small m* is also small, allowing us to use m = 0
within the integrand of A(20) (mp), which spans a range,
[-m*,m*], of width 2m* ~ /2A;(0), giving

AP (mo) ~ UF(0lmo)/2A1(0) 2m* ©)
= 2Uf(0|mo)A1(0).

We can then approximate A;(m) with A (m) (Equation
19), and take m—0 (Equation 20), giving a closed form
approximation for the rate of two-step rescue through
critical single mutants in Fisher’s geometric model,

AL (mo) ~ 4UF(0[mo) \/Mmaxh /7.

This well approximates numerical integration of A(ZO)(mo)
(Equation 8; see Figure 5 and File S2). In general, it will
perform better when the critical zone, and thus Uv/MyaA,
becomes smaller.

To get a better understanding of how the rate of two-step
critical rescue depends on the underlying parameters of Fish-
er’'s geometric model, we approximate f(m|mg), assuming
that the distance from the wild type to the optimal pheno-
type is large relative to the distribution of mutations (i.e.,
Pmax = Mmax/A is large), and convert this to a distribution

over y = 2(1 — /1 —m/Mpq ), a convenient rescaling (for

(10

details see File S2 and Anciaux et al. 2018). Evaluating this at
m = 0 gives

_ _ 2
AY (mo) ~ UA(1=4p/2) e 2 D)

where ¢, = 2(1 — \/ij) <Oand @ = p,¥5/4.

Closed-form approximations for noncritical
two-step rescue

We can also approximate A;(m) in A(z_) (mp) and A(2+) (mp) with
A1 (m) (Equation 19), leaving us with just one integral over the
growth rates of the first-step mutations. We then replace
f(m|mg) with its approximate distribution over s as above.

In the case of subcritical rescue, we can then make two
contrasting approximations (see File S2 for details). First,
when the ¢ (and thus m) that contribute most are close
enough to zero (meaning maladaptation is not too large rel-
ative to mutational variance), and we ignore mutations that
are less fit than the wild type, we find the rate of subcritical
two-step rescue is roughly

(1—9o/2)"™" _log(wo/y")

(=) ~ 772
Ay ' (mo) = U T go/d —— (12)
where " = 2(1— /1 +m" /Mpe ) <Oandm* = 1/A1(0)/2

(Equation 20). Second, when the mutational variance, A, is
very small relative to maladaptation, implying that mutants
far from m = 0 substantially contribute, we find the rate of
subcritical two-step rescue to be nearly

) (=2 1/2
Ay (mo) = — U0 (e (a/z)gﬂ) . a3

These two approximations do well compared with numerical
integration of Ag_) (mo) (Equation 8; see Figure 5 and File S2).
As expected, we find that Equation 13 does better under fast
wild-type decline, while Equation 12 does better when the wild
type is declining more slowly.

For supercritical two-step rescue, only first-step mutants
with growth rates near m* will contribute (larger m will rescue
themselves and are also less likely to arise by mutation), and so
we can capture the entire distribution with a small m approx-
imation (following the same approach that led to Equation
12). As shown in File S2, this approximation works well for
sufficiently small first-step mutant growth rates, < 1/2/ppax
beyond which the rate of two-step rescue through such first-
step mutants falls off very quickly due to a lack of mutational
input. Thus, considering only supercritical single mutants with
scaled growth rate m < /2/pq» OUr approximation is

(1=90/2)" " o 108 (¥max/ V)
1—4dp/4 ™ ’

with¢, =2(1 — /1 —m"/Mmaex ) and g = \/2/Prmax- This
approximation tends to provide a slight overestimate of
A(;)(mo) (Equation 8; see Figure 5 and File S2).

AL (mo) ~ U2 (14)
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Figure 5 The relative contribution of sufficiently subcritical, critical, and
supercritical single mutants to two-step rescue. The curves are drawn
using Equations 10-14 (Equation 12 is used for mg < 0.2 while Equa-
tion 13 is used for mp>0.2). The dots are numerical evaluations of
Equation 8. Parameters: n =4, A = 0.005, M = 0.5, (A) U= 1073,
(B) mg = —0.1.

Comparing two-step regimes: These rough but simple
closed-form approximations (Equations 11-14) show that,
while the contribution of critical mutants to two-step rescue
scales with U?, the contribution of noncritical single mu-
tants scales at a rate less than U? (Figure 5B), due to a de-
crease in " (decreasing the range of subcritical mutants)
and an increase in ', (decreasing the range of supercritical
mutants) with U. This difference in scaling with U is stron-
ger when the wild type is not very maladapted relative to
the mutational variance, i.e., when Equation 12 is the better
approximation for subcritical rescue. The approximations
also show that when initial maladaptation is small, the ratio
of supercritical to subcritical contributions (Equation 12 di-
vided by Equation 14) depends primarily on the range of
growth rates included in each regime, while with larger
initial maladaptation this ratio (Equation 13 divided
by Equation 14) begins to depend more strongly on initial
maladaptation and mutational variance («). The effect of
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maladaptation and mutation rate on the relative contribu-
tions of each regime is shown in Figure 5.

The distribution of growth rates among
rescue genotypes

We next explore the distribution of growth rates among rescue
genotypes, i.e., the distribution of growth rates that we ex-
pect to observe among the survivors across many replicates.

We begin with one-step rescue. The rate of one-step rescue
by genotypes with growth rate m is simply Uf (m|mg)pest(m).
Dividing this by the rate of one-step rescue through any m
(Equation 5) gives the distribution of growth rates among the
Survivors

Uf (m|mo)pest(m)

15
A1(mo) ' (15)

g1(m) =

where the mutation rate, U, cancels out. This distribution is
shown in blue in Figure 6. The distribution has a mode at
small but positive m as a result of two conflicting processes:
smaller growth rates are more likely to arise from a declin-
ing wild type but larger growth rates are more likely to
establish given they arise. As the rate of wild-type decline
increases, the former process exerts more influence, caus-
ing the mode to move toward zero and reducing the
variance.

We can also give a simple, nearly closed-form approxima-
tion here using the same approach taken to reach Equation 19.
On the ¢ scale, the distribution of effects among one-step
rescue mutations is

i B exp(a)\/®Pmax o Pmac(W—10)* /4
sl = [exp(a)y/ma Erfe(v/a) — Lghy ' "

(16)

implying the ¢ are distributed like a normal truncated
below =0 and weighted by . This often provides
a very good approximation (see dashed blue curves in
Figure 6).

In two-step rescue, the rate of rescue by double mutants
with growth rate my is given by Equation 6, with A;(m)
replaced by Uf (mg|m)pest(mz). Normalizing gives the distri-
bution of growth rates among the double-mutant genotypes
that rescue the population

a7

Ama) = [ flmimo)[1 = pea(m)]

p(m, Uf (ma|m)pest (m2))dm.

This distribution, g,(m), is shown in red in Figure 6. Because
the first-step mutants contributing to two-step rescue tend
to be nearer the optimum than the wild type, this allows
them to produce double-mutant rescue genotypes with
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Figure 6 The distribution of growth rates among rescue genotypes under
one-step (blue; Equation 15 solid and 16 dashed) and two-step (red; Equation
17) rescue for three different levels of initial maladaptation. For comparison, the
distribution of random mutations (dashed gray; Equation 1) and the distribution
of beneficial mutations that establish in a population of constant size (solid
gray; Equation 1 times Equation 4 and normalized) are shown. Intervals (hor-
izontal lines) indicate the size of the most common fitness effect (s = mg — m)
in a population of constant size (gray) and in one-step rescue (blue). The
histograms show the distribution of growth rates among rescue genotypes
observed across (A) 104, (B) 10°, and (C) 108 simulated replicates. Other
parameters: No = 10*, U=2X 1073, n =4, A = 0.005, M = 0.5.

higher growth rates than in one-step rescue (as seen by
comparing the mode between blue and red curves in Figure
6). The fact that these first-step mutants are closer to the
optimum also allows for a greater variance in the growth

rates of rescue genotypes than in one-step rescue. Thus, the
two-step distribution maintains a more similar mode and
variance across wild-type decline rates than the one-step
distribution. Note that because g»(m;) depends on U, the
buffering effect of first-step mutants depends on the muta-
tion rate (see The distribution of growth rates among rescue
intermediates below for more discussion).

The distribution of growth rates among
rescue intermediates

Finally, our analyses above readily allow us to explore the
distribution of first-step mutant growth rates that contribute
to two-step rescue. Analogously to Equation 15, we drop the
integral in Ap(mo) (Equation 6) and normalize, giving

Uf (m|mo)[1 — pest(m)] p(m, A1 (m))

18
Az(mo) ’ (18)

h(m) =

where the first U cancels but the U within A;(m) does not.
This distribution is shown in black in Figure 7. At slow wild-
type decline rates, the overwhelming majority of two-step
rescue events arise from first-step mutants with growth rates
near 0. As indicated by Equation 8, the contribution of first-
step mutants with growth rate m declines as ~ 1/|m| as m
departs from zero, due to shorter persistence times given
eventual extinction. As wild-type growth rate declines, the
relative importance of mutational input, f(m|mg), grows,
causing the distribution to flatten, and first-step mutants with
substantially negative growth rates begin to contribute (com-
pare panels in Figure 7; see also Figure 5A). Decreasing the
mutation rate disproportionately increases the contribution
of first-step mutants with growth rates near zero (while si-
multaneously shrinking the range of growth rates that are
sufficiently critical; Figure 5B), making the distribution of
first-step mutant growth rates contributing to two-step res-
cue more sharply peaked around m = 0 (Figure S2). Corre-
spondingly, with a higher mutation rate, a greater proportion
of the contributing single mutants have substantially nega-
tive growth rates.

Discussion

Here, we have explored the probability and genetic basis of
evolutionary rescue by multiple mutations on a simple fitness
landscape. We find that rescue by multiple mutations can be
the most likely path to persistence under high mutation rates,
or when the population is initially very maladapted. Under
these scenarios, intermediate genotypes that are declining less
quickly provide a “springboard” from which rescue genotypes
emerge. In two-step rescue, these springboard single mutants
come from one of three regimes: those that have growth rates
near enough to zero (“sufficiently critical”) that rescue is
most likely when a mutation persists for an unusually long
period of time, and grows to an unusually large subpopula-
tion size; and those with growth rates that are either negative
or positive enough (“sufficiently subcritical” or “sufficiently
supercritical,” respectively) to restrict persistence times and
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Figure 7 The distribution of growth rates among first-step mutations
that lead to two-step rescue (black; Equation 18) for three different
levels of initial maladaptation. Shading represents our sufficiently sub-
critical approximation (blue; replacing p(m, A1(m)) with Ay(m)/|m| in
the numerator of Equation 18), our sufficiently critical approxima-
tion (red; using Uf(0]mg)+/2A1(0) as the numerator in Equation 18),
and our sufficiently supercritical approximation (yellow; replacing
p(m, A1(m)) with A1(m)/|m| in the numerator of Equation 18). The
histograms show the distribution of growth rates among first-step mu-
tations in rescue genotypes with two mutations observed across (A and
B) 10° or (C) 10° simulated replicates. We hypothesize that the over-
abundance of supercriticals (especially in panel (A)) is likely due to us
sampling only the most common rescue genotype in each replicate,
which is not necessarily the first genotype that rescues. See Figure 6
for additional details.
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subpopulation sizes, conditioned upon the loss of the first
mutation in the absence of a second, rescuing mutation.
The relative contribution of each regime shifts with initial
maladaptation and mutation rate; rare mutations that can
occasionally reach unusually large subpopulation sizes play
a larger role when the population is not severely maladapted
(e.g., Figure 7A) or mutation rate is high (e.g., Figure S2C). In
contrast, when populations are initially very maladapted
(e.g., Figure 7C), most first-step mutations are themselves
also very maladapted, and, thus, restricted in the subpopula-
tion sizes they are expected to reach before being lost. All
three regimes help to maintain the variance in the distribu-
tion of fitness effects among rescue genotypes as initial mal-
adaptation increases; meanwhile, in one-step rescue, the
variance declines due to ever more extreme sampling of the
tail of the mutational distribution (compare blue and red
curves in Figure 6).

Our prediction, that rescue by more de novo mutations
can be more likely than rescue by fewer, is novel. In previous
models (e.g., Antia et al. 2003; Iwasa et al. 2004a; Alexander
and Day 2010), the general conclusion has been that, since
the probability of rescue scales with U* (where U is the mu-
tation rate and k is the minimum number of mutations re-
quired for rescue), the probability of rescue declines with the
number of mutations. This assumes, however, that the prob-
ability of a mutation occurring, U, is the limiting factor. Here,
we have shown that, when the probability of a beneficial
mutation arising declines with its selective advantage, the
probability of sampling once from the extreme tail of the
DFE can be lower than sampling multiple mutations closer
to the bulk of the DFE, so that rescue via multiple mutations
can become the dominant path. Rescue by multiple muta-
tions may also be more likely with standing genetic variation,
as small-effect intermediate mutations may segregate at
higher frequencies than large-effect rescue mutations before
the environmental change (and also decline less quickly than
the wild type following environmental change); this is espe-
cially true with recombination, where rescue genotypes can
arise from segregating intermediate mutations without mu-
tation (Uecker and Hermisson 2016).

How often rescue arises as a result of multiple mutations is
an open question. It is clear that more than one mutation can
contribute to adaptation to near-lethal stress, but experiments
are often designed to avoid extinction (reviewed in Cowen
et al. 2002), and, therefore, greatly expand the scope for
multiple mutations to arise on a single genotype. A few ex-
ceptions provide some insight. For example, populations of
Saccharomyces cerevisiae that survived high concentra-
tions of copper acquired multiple mutations (Gerstein et al.
2015)—in fact, the authors argue for the “springboard effect”
discussed above, where first-step mutations prolong persis-
tence, and, thereby, allow further mutations to arise. In
Pseudomonas fluorescens, fluctuation tests with nalidixic acid
showed that nearly one-third of the most resistant surviving
strains were double mutants (Bataillon et al. 2011), which
were able to tolerate 10 times higher drug concentrations



than single mutants, suggesting two-step rescue might dom-
inate at high drug concentrations. While suggestive, it is un-
clear if our prediction—that rescue takes more mutational
steps with greater initial maladaptation—holds true gener-
ally. Verification will require more experiments that allow
extinction and uncover the genetic basis of adaptation at
different severities of environmental change (e.g., drug
concentration).

In describing the genetic basis of adaptation in popula-
tions of constant size, Orr (1998) showed that the mean
phenotypic displacement toward the optimum scales roughly
linearly with initial displacement. Converting phenotype to
fitness, this implies that the mean fitness effect of fixed
mutations (s =m —myg) increases exponentially as initial
Malthusian fitness (mg) declines (i.e., s ~ exp(—my)), which
is a roughly linear increase when initial fitness is small
(Imo| < 1). Here, we see that, under one-step rescue, the
mean fitness effect also increases roughly linearly as the ini-
tial growth rate declines (see horizontal blue lines in Figure
6). However, the rate of this linear increase in fitness effect is
much larger under rescue than in a population of constant
size (compare blue and gray horizontal lines in Figure 6),
where declines in wild-type fitness not only allow larger mu-
tations to be beneficial, but also require larger mutations for
persistence. Thus the race between extinction and adaptation
during evolutionary rescue is expected to produce a genetic
basis of adaptation with fewer mutations of larger effect.

While, under one-step rescue, the fitness effect of the first
mutation increases roughly linearly as wild-type fitness de-
clines, most rescue events will be two-step for wild-type
fitnesses below some value (e.g., at mp ~ — 0.25 in Figure
3; this threshold value of mg increases with mutation rate,
Figure S1). At this junction, the effect size of the first muta-
tion will no longer increase as quickly (and potentially even
decrease), as it switches from a rescue mutant to an interme-
diate mutant whose expected fitness begins to decline sub-
stantially with the fitness of the wild type (Figure 7). Thus,
as rescue switches from dominantly k-step to dominantly
(k 4+ 1)-step the genetic basis of adaptation becomes more
diffuse, with each mutation having a smaller individual fit-
ness effect as the contributing fitness effects spread over
more loci. In the limit of large k (due to large initial malad-
aptation or high mutation rates), the genetic basis of adap-
tation should, at some point, converge to many loci with
small effect, as would also be expected in a population of
constant size. Indeed, at very high mutation rates the rate
of adaptation (the change in mean fitness) is the same under
rescue as it is in populations of constant size (Anciaux et al.
2019), implying that the genetic basis of adaptation no longer
depends on demography:. It is therefore at intermediate levels
of initial maladaptation and low mutation rates, where rescue
primarily occurs from a few large effect mutations, that the
race between adaptation and persistence is predicted to have
the largest effect on the genetic basis of adaptation.

Fluctuation tests (Luria and Delbriick 1943) provide a
means to generate random mutations, and then isolate

potential rescue genotypes (typically assumed to be one-step
only), whose growth rates can be measured under the selec-
tive conditions. These experiments are designed such that
there is substantial standing genetic variation at the time of
exposure to the selective conditions, which should increase
the contributions of mutations with small growth rates (Orr
and Betancourt 2001), although these could be outcompeted
by mutations with higher growth rates and/or be under-
sampled. Regardless, consistent with our theory (Figure 6),
the resulting growth rate distributions in both bacteria
and yeast often find modes that are substantially greater
than zero (as opposed to, say, an exponential distribution;
Kassen and Bataillon 2006; MacLean and Buckling 2009;
Gerstein et al. 2012; Lindsey et al. 2013; Gerstein et al.
2015). A number of these conform even more closely to our
expected shape (Kassen and Bataillon 2006; Gerstein et al.
2015), while others appear to be substantially more clumped
around the mode, perhaps due to a very restricted number of
possible rescue mutations in any one circumstance, the size of
the experiment, or the way in which growth rates are mea-
sured. Finally, Gerstein et al. (2015) not only provide the
distribution of growth rates among rescue genotypes, but
also the growth rates of individual mutations that compose
multi-step rescue genotypes. In four lines where multiple
mutations were detected and a segregation analysis per-
formed, one mutation in each line was inferred to have
a minor effect, and the other mutation was an amplification
of the copper metallothionein gene (CUP1) with a major fit-
ness effect. These results are consistent with the minor effect
mutations being subcritical mutations that provided a spring-
board for the larger CUP1 mutations.

Pinpointing the mutations responsible for adaptation is
hampered by genetic hitchhiking, as beneficial alleles elevate
the frequency of linked neutral and mildly deleterious alleles
(Barton 2000). The problem is particularly severe under
strong selection and low recombination, and therefore rea-
ches an extreme in the case of evolutionary rescue in asex-
uals, especially if many neutral and deleterious mutations
are segregating at the time of environmental change. To cir-
cumvent this, mutations that have risen to high frequency in
multiple replicates are often introduced in a wild-type back-
ground, in isolation, and sometimes also in combination with
a small number of other common high-frequency mutations,
and grown under selective conditions (e.g., Jochumsen et al.
2016; Ono et al. 2017). As we have demonstrated above (e.g.,
Figure 7C), however, under multi-step rescue, there may be
no one mutation that individually confers growth in the se-
lective conditions. Thus, a mutation that was essential for
rescue may go undetected, or be mistaken as a hitchhiker, if
the appropriate multiple-mutation genotypes are not tested.
Unfortunately, reverse engineering all combinations of muta-
tions quickly becomes unwieldy as the number of mutations
grows, and thus this approach will not be practical under
severe initial maladaptation and high mutation rates, where
we predict rescue to occur by many mutations. Interestingly,
our simulations show that the population dynamics themselves
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may help differentiate how many mutations contribute to
rescue (e.g., V- vs. U-shaped log-trajectories; Figures 1 and
2), and fitting models of k-step rescue could produce esti-
mates for growth rates of the k genotypes.

Environmental change often selects for mutator alleles,
which elevate the rate at which beneficial alleles arise, and,
subsequently, increase in frequency with them (Tenaillon
et al. 2001). When beneficial alleles are required for persis-
tence, as in evolutionary rescue, mutator alleles can reach
very high frequencies or rapidly fix (e.g., Mao et al. 1997).
Consistent with this, mutator alleles are often associated with
antibiotic resistance in clinical isolates (see examples in Bell
2017). Further, the more beneficial mutations available, the
larger the advantage of a mutator allele; for a mutator that
increases the mutation rate m-fold, its relative contribution to
the production of n beneficial mutations scales as m"
(Tenaillon et al. 1999). Thus, conditions that cause multi-
step rescue to be more likely than one-step rescue should also
impose stronger selection for mutator alleles. There are a
number of examples where lineages with higher mutation
rates acquired multiple mutations and persisted at higher
doses of antibiotics (Couce et al. 2015; San Millan et al.
2016). The number of mutations required for persistence is,
however, often unknown, making it difficult to compare
situations where rescue requires different numbers of muta-
tions. Experiments with a combination of drugs may provide
a glimpse; for instance, Escherichia coli populations only
evolved resistance to a combination of two drugs (presum-
ably through the well-known mutations specific to each
drug) when mutators were present, despite the fact that
mutators were not required for resistance to either drug in
isolation (Gifford et al. 2019). In cases where we have less
information on the genetic basis of resistance, our model
suggests that mutators will be more advantageous when ini-
tial maladaptation is severe (e.g., higher drug concentrations
or a larger number of drugs), as rescue will then be domi-
nated by genetic paths with more mutational steps.

Here, we have investigated the genetic basis of evolution-
ary rescue in an asexual population that is initially genetically
uniform. Extending this work to allow for recombination
and standing genetic variation at the time of environmental
change—as expected for many natural populations—would
be valuable. The effect of standing genetic variation on the
probability of one-step rescue is relatively straightforward to
incorporate, depending only on the expected number of res-
cue mutations initially present and their mean establishment
probability (Martin et al. 2013). In the case of the fluctuation
tests discussed above, where mutations accumulated in the
short interval before the onset of selection are assumed to be
relatively neutral, the effect of standing genetic variance on
one-step rescue might be incorporated by a simple rescaling
of Ny, to account for the additional mutants present in the
standing variation. When considering longer periods of time
in populations that are not rapidly expanding, mutation-
selection balance may be reached before the onset of selection.
In this case, the probability of one-step rescue from standing
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genetic variance in Fisher’s geometric model was given by
Anciaux et al. (2018), whose Equation 3 and Equation 5
immediately give the distribution of fitness effects among
those that rescue. Allowing these standing genetic variants
to be springboards to multi-step rescue will help clarify the
role of standing genetic variation on the genetic basis of res-
cue more generally. Recombination can help combine such
springboard mutations into rescue genotypes but will also
break these combinations apart, as demonstrated in a two-
locus two-allele model of rescue (Uecker and Hermisson
2016). How recombination affects the genetic basis of evolu-
tionary rescue when more loci can potentially contribute
remains to be seen. Also left unexplored is the effect of density-
dependent fitness; for example, competition may reduce mu-
tant growth rates, and, thereby, increase the size of mutations
that are required for rescue, especially when the wild type
declines slowly. Combining density-dependence and standing
genetic variance is known to create complex dynamics in a
one-locus two-allele model of rescue (Uecker et al. 2014),
and adding more potential genotypes is sure to add yet more
complexity.

Many of our simple closed-form results rely upon knowing
the distribution of mutant growth rates (Equation 1), which
arises from the assumption that mutant phenotypes are dis-
tributed normally about their ancestor, and that Malthusian
fitness is a quadratic, on some scaled phenotypic axes. It is
clear that deviations from these assumptions will affect our
results, at least quantitatively. For instance, mutant pheno-
type distributions with truncated or fat tails are likely to lead
to smaller or larger mutational steps, respectively, with
downstream effects on the probability of rescue, the number
of contributing mutations, and the resulting DFEs. As a pre-
liminary investigation of this prediction, we performed sim-
ulations with mutant phenotype distributions having the
same expectation and covariances as assumed above under
normality, but with truncated (platykurtic) or fat (lepto-
kurtic) tails (Figure S3A). While our qualitative results above
hold, the probability of rescue declines slower with wild-type
maladaptation when the mutational distribution has fatter
tails (compare dotted and solid black in Figure S3C). Fatter
tails also reduce the number of mutations contributing to res-
cue (e.g., one-step rescue dominates for all wild-type decline
rates in Figure S3C). Finally, fatter tails cause the distributions
of rescue genotype growth rates following one- and two-step
rescue to have more variance and become more similar to one
another (Figure S4B), and also tend to increase the contribu-
tion of supercritical single mutants in two-step rescue (Figure
S5). All told, the genetic basis of rescue is expected to consist of
fewer mutations of larger effect, with less consistent effect
sizes across replicate populations, as the tails of the mutant
phenotype distribution become fatter.

In the numerical examples above, we have not varied the
number of scaled phenotypic axes, n, i.e., the dimensionality
of the phenotypic landscape (although the analytical results
apply for arbitrary n). Because increasing the number of di-
mensions changes the distribution of fitness effects, and, in



particular, decreases the proportion of mutations that are
beneficial (Fisher 1930), this may have cascading influences
on our results. As shown in Anciaux et al. (2018), the prob-
ability of one-step rescue by de novo mutation declines
with dimensionality, and is only weakly dependent on dimen-
sionality when initial maladaptation is small [such that
A1(mo) = — moUg(«), Equation 19]. Here, we show that
the distribution of fitness effects among one-step rescue mu-
tants is nearly independent of dimensionality for any degree
of initial maladaptation (Equation 16 and the blue curves in
Figure S6B). Further, as seen by comparing Equations 11-14
to Equation 19, the probability of two-step rescue depends on
dimensionality much like one-step rescue does, suggesting
that, while increasing dimensionality may decrease the prob-
ability of rescue, it may have little effect on the number of
steps rescue tends to take. This is demonstrated more gener-
ally in Figure S6A, where an order of magnitude increase in
the number of dimensions decreases the probability of rescue
by roughly an order of magnitude, but has little effect on the
relative rates of 1-, 2-, 3-, and 4-step rescue. Finally, Figure
S6, B and C shows that dimensionality has very little effect on
the distribution of fitness effects among two-step rescue ge-
notypes (Equation 17), and among first-step mutants leading
to two-step rescue (Equation 18). To conclude, while the
probability of rescue declines with the complexity of the or-
ganism and its environment, the genetic basis of rescue is
expected to be relatively invariant across complexity, as with
the genetic basis of adaptation in populations of constant size
(Orr 1998, see also gray curves in Figure S6, B and C).

In the numerical examples above, we have also focused on a
particular value of mutational variance, A. Clearly, since res-
cue relies on mutations of large effect, decreasing A should
decrease the probability of rescue, much like decreasing the
mutation rate, U, does (Figure S1). While our analysis (Equa-
tion 11-14 and Equation 19) and numerical results (see File
S2) show that this is true, we find that A and U have very
different effects on the genetic basis of rescue (File S2). In
particular, given a similar effect on the total probability of
rescue, decreasing U generally restricts rescue to fewer mu-
tational steps while decreasing A forces rescue to occur by
more mutations. Further, the distribution of fitness effects of
mutations contributing to rescue is nearly independent of U
but a decrease in A strongly reduces the mode of the DFE.
This demonstrates that populations with similar probabili-
ties of rescue can vary greatly in the way they achieve it
genetically.
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Appendix
Approximating the probability of one-step rescue

The probability of one-step rescue in this model has been derived by Anciaux et al. (2018). As replicated in File S2 and given by
their Equation 7, when p,,,,, = Mma/A is large a simple, nearly closed-form approximation is

(1= yg/2) /2
1—14y/4

A1(mo) ~ A1(mg) = —moU g(a), (19)

where iy = 2(1 — /1 — mo/Mmax ), &(@) = exp(—a)/\/ma — erfe(v/a ), and « = p,,, b3 /4, with erfe(.) the complimentary
error function. When the wild-type declines slowly m and thus ¢, is small and A;(mg) ~ Ug(e). In the limit my — 0, Equation
19 becomes

A1(0)= 1im0]\1(m0) = 2U~/Mpymax) /7. (20)

Mutant lineage dynamics

Here, we follow the lead of Weissman et al. (2010) and Uecker and Hermisson (2016) in approximating our discrete-time
process with a continuous-time branching process (see Chapter 6 in Allen, 2010). Consider a birth—-death process, where
individuals give birth at rate b and die at rate d. One can then obtain the probability generating function for the number of
individuals at a given time, n(t), given the initial number, n(0). We are primarily interested in new mutant lineages, n(0) = 1.
The generating function then allows us to calculate the probability that a lineage persists at least until time t, and the
distribution of n(t) given it does so (see below).

To convert between birth and death rates and our compound Malthusian parameter we follow Uecker and Hermisson (2016)
in equally distributing the growth rate m between birth and death, b = (1 + m)/2andd = (1 —m)/2, such thatm = b —d and
the continuous-time process exhibits the same amount of drift as the discrete time process (and matches discrete-time
simulations well; Uecker et al., 2014). We can now report the necessary results in terms of m (assuming |m| < 1).

Denoting the extinction time as T, the probability a mutant with growth rate m persists until time t is approximately (see File
S2 for derivation)

2/t t < |1/m|

—2m exp(mt) t> —1/m>0 2

P(T>t)z{

As pointed out in Weissman et al. (2010) (whose equation A2 differs from Equation 21 by a factor of two because they have
b+ d = 2), the distribution of persistence times has a long tail (like 1/t) until being cut off (declining exponentially) at
t=-1/m.

Given that a lineage persists until ¢, the distribution of n(t) is roughly (see File S2 for derivation)

201/01+2/6)" t< |1/m]|

Z 22
—2m(1+m" ' > —1/m>0 (22)

P(n(t) =nin(t) >0) ~ {

As pointed out in Weissman et al. (2010) (whose equation A3 only differs from Equation 22 by constants), the distribution of
n(t) is approximately geometric for small or large t, implying n(t) is very unlikely to be greater than the minimum of t and
-1/m.
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