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ABSTRACT Codon usage bias (CUB), where certain codons are used more frequently than expected by chance, is a ubiquitous
phenomenon and occurs across the tree of life. The dominant paradigm is that the proportion of preferred codons is set by weak
selection. While experimental changes in codon usage have at times shown large phenotypic effects in contrast to this paradigm,
genome-wide population genetic estimates have supported the weak selection model. Here we use deep genomic population
sequencing of two Drosophila melanogaster populations to measure selection on synonymous sites in a way that allowed us to
estimate the prevalence of both weak and strong purifying selection. We find that selection in favor of preferred codons ranges from
weak (|Nes| � 1) to strong (|Nes| . 10), with strong selection acting on 10–20% of synonymous sites in preferred codons. While
previous studies indicated that selection at synonymous sites could be strong, this is the first study to detect and quantify strong
selection specifically at the level of CUB. Further, we find that CUB-associated polymorphism accounts for the majority of strong
selection on synonymous sites, with secondary contributions of splicing (selection on alternatively spliced genes, splice junctions, and
spliceosome-bound sites) and transcription factor binding. Our findings support a new model of CUB and indicate that the functional
importance of CUB, as well as synonymous sites in general, have been underestimated.
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THEdegeneracy of the genetic code leads to protein-coding
mutations that do not affect amino acid composition.

Despite this, such synonymous mutations often have conse-
quences for phenotype and fitness. The first evidence of the
functionality of synonymous sites came from the discovery of
codonusagebias (CUB),where, for agivenaminoacid, certain
codons are used more frequently in a genome than expected
by chance (Grantham et al. 1981; Ikemura 1981). While the
consensus in the field is that CUB is often driven by natural

selection, the nature and strength of natural selection acting
to maintain CUB is disputed.

The most common explanations for CUB postulate selec-
tion on either the rate or the accuracy with which ribosomes
translate mRNA to protein (Hershberg and Petrov 2008). The
existence of selection at synonymous sites at the level of
translation is supported by several key observations. First,
the preference toward particular “preferred” codons is con-
sistent across genes within a particular genome suggesting a
global, genome-wide process, and not preference for the use
of particular codons within specific genes (Grantham et al.
1980; Chen et al. 2004). Second, optimal codons tend to
correspond to more abundant tRNAs, suggesting a functional
relationship between translation and CUB (Post et al. 1979;
Ikemura 1981, 1982; Qian et al. 2012). Third, preferred co-
dons are more abundant in highly expressed genes than in
the rest of the genome (Gouy and Gautier 1982; Bulmer
1991; Novoa and Ribas de Pouplana 2012), consistent with
selection being proportional to mRNA transcript abundance.
Finally, constrained amino acid positions tend to contain pre-
ferred codons more frequently, suggesting a link between
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CUB and translational accuracy (Escherichia coli: Stoletzki and
Eyre-Walker 2007; Drosophila melanogaster: Akashi 1994;
mammals: Drummond and Wilke 2008). In addition to speed
and accuracy, there is evidence that other processes are af-
fected by codon composition, such as cotranslational folding
(Pechmann and Frydman 2013), RNA stability (Presnyak et al.
2015; Carneiro et al. 2019), and transcription (Carlini and
Stephan 2003; Newman et al. 2016; Zhou et al. 2016).

Beyond the level at which selection operates to generate
CUB, it is important to consider how strong selection at
synonymous sites is likely to be. This question has been
addressed with population genetics approaches introduced
by the seminal papers of Li and Bulmer (Li 1987; Bulmer
1991). The Li–Bulmer model proposes that the observed,
relative proportion of codons can be explained by the balance
of mutation, selection (in favor of preferred codons), and
random genetic drift. This model assumes a constant selec-
tion coefficient per codon or codon preference group, and
predicts that the strength of selection in favor of preferred
codons should be on the order of the reciprocal of the effec-
tive population size (Nes � 1). The predicted weak selection
should be detectable as a slight deviation in the site frequency
spectrum (SFS). Mutations from preferred to unpreferred
codons should reach comparatively lower frequencies in the
population than those in the opposite direction. Such devia-
tions have, in fact, been observed in many organisms that
show clear CUB (D. melanogaster: Zeng and Charlesworth
2009; Caenorhabditis remanei: Cutter and Charlesworth
2006; E. coli: Sharp et al. 2010), supporting the conclusion
that selection at synonymous sites is weak but detectable.

While weak selection driving CUBmaymatch the intuition
that a synonymous change should not have a large phenotypic
effect, there is abundant experimental evidence that this is not
always the case. For example, optimizing the codon compo-
sition of the viral protein BPV1 increases the heterologous
translation of the protein in humans by .1000 fold (Zhou
et al. 1999). In humans, a change in codon composition in the
gene KRAS, from rare to common codons, increases KRas
protein expression and is associated with tumorigenicity
(Lampson et al. 2013). In D. melanogaster, changing a small
number of preferred codons to unpreferred codons in the
alcohol dehydrogenase (Adh) gene resulted in substantial
changes in gene expression and in ethanol tolerance
(Carlini and Stephan 2003; Carlini 2004). The authors
estimated that such unpreferred codons are subject to
s . 1024—much larger than the Li–Bulmer predictions of
the strength selection strength on synonymous sites. The
Bulmer 1991 paper acknowledged this generally as a puzzle
in need of solving, as discrepancies between their theoretical
predictions of the strength of selection and that of mechanis-
tic models of CUB were already apparent.

We can characterize the selection acting on CUB using
population genetic data. One commonly used method of
estimating level of selection is to compare the SFS of a
putatively selected class of sites to that of a neutral reference.
This approach is powerful, as the neutral reference can make

the test independent of the demographic history of a pop-
ulation. These and similarly constructed tests have been used
to estimate the strength of selection on CUB in D. mela-
nogaster, and have typically failed to find any evidence of
strong selection on CUB (Singh et al. 2007; Zeng and
Charlesworth 2009, 2010; Clemente and Vogl 2012a;
Campos et al. 2013). However, strong purifying selection
results in an enrichment of very low allele frequency vari-
ants, requiring very deep population sequencing to allow for
the detection of its effects in SFS data. In the absence of very
deep and accurate population sequencing, an alternative
method is to utilize information about the proportion of sites
that are polymorphic (polymorphism level). Since both
strong purifying selection and a decreased mutation rate
can lower the polymorphism level, the selected class of sites
would have to be compared with a neutral reference that is
matched for mutation rate and levels of linked selection.
Thus, the limit of detection for strong selection in the afore-
mentioned studies, which either ignored polymorphism
level or did not have a control for it, was set by the lowest
allele frequency class in the dataset (set by the number of
individuals sampled).

Intriguingly, a study by Lawrie et al. (2013) that did in-
corporate polymorphism level and SFS with the use of
matched neutral controls did find evidence of strong purify-
ing selection in synonymous sites, but was unable to correlate
this substantial selection with CUB. As the authors did not
have enough variants in their study to test the SFS of pre-
ferred sites separately, they could not test for weak selection
on CUB or distinguish strong selection from lethal CUB-
associated mutations.

Here, we test the prevalence of strong purifying selection
on CUB in two distinct D. melanogaster populations (the
DGRP Freeze 2 dataset and a high diversity African popula-
tion). We accomplish this by comparing the polymorphism
level and SFS of fourfold degenerate synonymous sites in
preferred and unpreferred codons to that of a short intron
neutral reference. The neutral reference is produced by
matching each fourfold site to a short intron site that is lo-
cated within 1 kb and has the same nucleotide at the position
of interest and at the 59 and 39 neighboring sites. This creates
a neutral reference that is subject to the same mutation rate
and environment of linked selection as the fourfold sites. We
find evidence that there is a distribution of selection strengths
on CUB, ranging from weak to strong. Our findings of strong
selection on CUB directly conflict with previous models of
CUB that predict uniformly weak selection. Further, we find
that CUB explains a large proportion of the signal of strong
selection on synonymous sites, indicating that the functional
effects of CUB have been generally underestimated.

Materials and Methods

Sequence data

We used sequence data from two D. melanogaster population
samples, one fromNorth America (DGRP Freeze 2), consisting
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of 200 inbred lines (Mackay et al. 2012), and one from Africa
(Zambia), consisting of 197 haploid embryos (Lack et al.
2015), downloaded from the Drosophila Genome Nexus
(http://www.johnpool.net/genomes.html). To reduce the
effect of sequencing and mapping error, for each individual
we filtered out all sites with low mapping quality (MAPQ
, 20). We also filtered out sites within 10 bp of an indel.
Since mapping errors are more common in regions around
indels, and since introns have a greater number of indels,
including these regions could have artificially inflated
the short intron polymorphism level. We also eliminated
polymorphic sites with more than two alleles (�1% of
polymorphisms).

Per population, we downsampled sites to a uniform cov-
erage of 160 haplotypes, and excluded sites with.160 hap-
lotypes. We considered only the four major autosomal
chromosome arms because of systematic differences be-
tween D. melanogaster autosomes and X chromosomes
(Singh et al. 2005), and polarized polymorphic sites by par-
simony, identifying the ancestral state as the allele found in
the D. simulans v2 reference genome (Hu et al. 2013). We
used the D. melanogaster reference allele for cases where the
ancestry was ambiguous, either because there was no direct
D. simulans alignment, or because neither allele was present
in D. simulans. While instances of mispolarization can occur,
we note that as the polarization is not used for unfolding
spectra, mispolarization has little to no effect on the shape
of the SFS (i.e., no exchange of mutations from low-to-high
frequency), and, therefore, will have little effect on the
maximum-likelihood (ML) estimates. Fourfold degenerate
synonymous (4D) sites and intronic regions were identified
from Flybase annotations (release 5.5; www.flybase.org).
The total number of 4D sites in our two datasets was
1,976,830 for DGRP and 1,862,290 for Zambia. We classi-
fied short introns (SI) as introns .86 bp in length, and ex-
cluded the first and last 8 bp of each intron, as these regions
are known to be under constraint (Haddrill et al. 2005;
Halligan and Keightley 2006; Clemente and Vogl 2012b).
The total number of SI sites was 550,587 for DGRP and
446,462 for Zambia.

We created the SI control dataset bymatching each 4D site
to a SI site. To control for mutation rate differences between
4D sites and their matched controls, we required each
matched SI site to have the same ancestral allele and the
same neighboring nucleotides (3 bp context) as the 4D site.
We matched blind to the direction or strand (i.e., matching
with the forward, reverse, reverse complement, or comple-
ment SI sequence). To control for the effect of linked selec-
tion on the level of 4D polymorphism, we also required each
matched SI site to be within 1000 bp of the 4D site, such that
SI control would be subject to the same linked selective pres-
sure from nonsynonymous sites as the 4D sites. We found
1000 bp to be a sufficiently small distance, as we found no
significant correlation between SI polymorphism and dis-
tance between the 4D sites and the matched intron over
the range of 0–1000 bp (Supplemental Material, Figure S1).

Weproduced200 suchmatched4D/SIdatasets, eachwith
the same 871,218 DGRP or 754,503 Zambia 4D sites, and an
average of 288K SI sites for DGRP and 244K SI sites for
Zambia (each SI site is matched to an average of 3 4D sites).
Note that we find this decision of SI re-use to be important.
For example, if we instead remove 4D sites for which there
is not a unique SI match, this results in a skew in the tri-
nucelotide composition, andhas a systematic effect on 4D/SI
polymorphism levels. Correcting for this skew by further
downsampling restores the polymorphism levels but results
in too few sites to perform the ML analyses (Figure S2). For
confidence interval estimation, each dataset was resampled
with replacement. When estimating selection parameters
and their confidence intervals on these resampled sets,
linkage between 4D sites within these sets would be a
violation of the SFS assumptions that posit independence
between sites. However, as a consequence of the structure of
the data, the above resampling schemeworkswell as linkage
in D. melanogaster breaks down across short distances
(Feder et al. 2012), and the 4D sites used (those with a
matching nearby SI site) are sufficiently sparsely populated
across the genome.

Maximum-likelihood estimation of selection parameters
from SFS

We employed a variation of the site SFS method described in
Lawrie et al. (2013). The method uses both SNP density and
frequency information of SFS to calculate the distribution of
fitness effects (DFE) for a test set of sites given a “neutral”
reference—in this case, the DFE for 4D synonymous sites
with SI sites as the reference. For the purposes of ML estima-
tion, the spectra are folded. The DFE itself is modeled as a
categorical distribution, where the program estimates effec-
tive selection coefficients (g = Nes) and the percentages of
sites ( f ) evolving under those selection coefficients for a pre-
determined number and type of selection categories. This has
the advantage of not assuming a particular distribution
shape, such as gamma or lognormal, but comes at the cost
of additional free parameters per additional categories. For
example, a three category model that has a neutral class
( f0) + a weak selection class ( fW, 0. gW.210) + a strong
selection class ( fS, 210 . gS . 2inf) requires four free pa-
rameters to fully describe it ( f0 = 1 2 fW 2 fS, g0 = 0). The
method also estimates the per site effective mutation rate,
u (4Nem), for the SI spectra. While estimating parameters
on SFS, the effective population size, Ne, is held constant,
allowing the other parameters to be fit to the data relative
to that Ne.

Demography, linked selection, and other forces affecting
both 4D and SI sites, can skew the spectra and bias the
estimation of the above DFE parameters. To compensate,
we used frequency-dependent correction factors, ax, which
adjusts the probability of seeing a site with a SNP at fre-
quency of x in the sample 2 p(x|model) (Eyre-Walker et al.
2006). The likelihood (l) of the SFS under the model’s
framework is shown below:
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lfullðSFS4D; SFSSI
��u; ⇀g; ⇀f ; ⇀aÞ ¼ lðSFS4D

��u; ⇀g; ⇀f ; ⇀aÞ3lðSFSSI
��u; ⇀aÞ (1)

lðSFS4D
��u; ⇀g; ⇀f ; ⇀aÞ¼pð0��u; ⇀g; ⇀f ; ⇀a; L;NsÞk0

Y1
2

x¼ 1
Ns

ðaxpðx
��u; ⇀g; ⇀f ; L;NsÞÞkx (2)

where: a 1
Ns
∶¼ 1; Ns∶¼ # of sample frequencies;

kx ∶¼ # of sites at frequency x; L ∶¼ P
x kx

pð0��u; ⇀g; ⇀f ; ⇀a; L;NsÞ ¼ 12
X1

2

x¼ 1
Ns

axpðx
��u; ⇀g; ⇀f ; L;NsÞ (3)

pðx��u; ⇀g; ⇀f ; L;NsÞ¼
X
c
½pcðxjNe;m; gc; Lc;NsÞþ pcðð12 xÞjNe;m; gc; Lc;NsÞ� (4)

where: Lc∶¼ fcL;pð0:5u;⇀g; ⇀f;L;NsÞ∶¼
P
c
pc 0:5jNe;m;gc;Lc;Nsð Þ

As in Lawrie et al. 2013, the likelihood of the model to
explain the full data set is the product of the likelihoods of the
model explaining the 4D and SI data independently (Equa-
tion 1). The model itself is defined by u, the array of g coef-
ficients for each selection class (c), the array of f fraction of
sites in each class, and the array of a demographic-correction
parameters. For each set of sites, the likelihood is calculated
using the multinomial distribution where the probability of
seeing a site at a given sample frequency, p(x|...), in the
population is modified by an a parameter and exponentiated
by the actual number of sites at frequency x (Equation 2). In
the analyses where all sites, including monomorphic, are in-
cluded in the analysis the probability of seeing a site in the
monomorphic, “zero”, class is 1—probability of seeing a poly-
morphism (Equation 3). Equation 4 shows the folded proba-
bility of finding a mutation at frequency x in the sample over
all selection classes. The likelihood equations for the short
intron sites are the same as Equations 2–4 above except that
the model is one of pure neutrality ( f0 = 1, g0 = 0), but it
shares the same u and a parameters.

Amajor difference fromLawrie et al. (2013) is in calculating
pc(x|...), the probability of seeing a mutation at frequency x in
the finite sample for a given selection class c. Lawrie et al. (2013)
used an approximation that resulted in the effects of finite sam-
pling being canceled out. This approximation allowed for the
faster calculation of probabilities andworkedwell for estimating
the number of sites in each selection category and for estimating
the strength of weak selection regimes. However, for strong pu-
rifying selection, the approximation causes our method to un-
derestimate the strength of selection by �10–30%. In our
current study, we calculated the probability pc(x|...), accounting
for the effects of finite sampling using the binomial distribution:

pcðx
��Ne;m;gc; Lc;NsÞ ¼

X2Ne21
2Ne

z¼ 1
2Ne

gcðz
��m;gc; LcÞ3 binompdfðNsx;Ns; zÞ (5)

gcðz
��m;gc; LcÞ ¼

2mLc 3
12 e24gcð12zÞ

zð12 zÞð12 e24gcÞ gc 6¼ 0

2mLc = z gc ¼ 0

8><
>:

(6)

In Equation 5, binompdf (k; Ns, z) is the binomial probabil-
ity of choosing k out of Ns derived alleles at a frequency z in
the population. Equation 6 is the standard Wright-Fisher
model for calculating, gc(z| . . .), the probability of finding a
mutation at a frequency z in a diploid population with co-
dominant alleles where the fitness of the derived, mutant
allele is 1+2s the fitness of the ancestral allele (Wright
1938).

Model parameters for demography and linkage

All inferencesweremadewith anNe of 2000. This parameter
was chosen to be big enough for the binomial sampling
assumptions to hold, while still being computationally trac-
table. Assuming a constant effective population size is con-
venient for generating theoretical spectra, but deviations of
the putatively neutral SI SFS from the theoretical neutral
SFS are expected to exist due to an organism’s demographic
history, as well as factors such as linkage to sites under
selection. While our paired-bootstrap method endeavors
to ensure a similar overall level of linked selection affecting
4D and SI spectra, any residual skew from linkage must still
be corrected for when estimating selection parameters.
To account for this deviation of the SI SFS from the theo-
retical neutral, we performed a ML fit of offsets (a values)
for each allele frequency bin. Frequency-dependent correc-
tion factors produce a fidelity in re-estimating statistics from
simulated spectra comparable to commonly used, computa-
tionally tractable, demographic models (Tataru et al. 2017).
The frequency spectra were divided, according to a power
law, into six separate allele frequency bins with the same ax

within each bin (Table S1). For speed, the demographic
parameters were first estimated on the SI data alone before
the rest of the model was estimated on the entirety of the
data set [tests did not reveal any significant differences be-
tween estimating the a parameters on the whole data set, vs.
on the SI data set (not shown)].

Model parameters for selection

We tested five different ML models: (1) neutral, (2) neutral
+ lethal, (3) neutral + 1 selection coefficient, (4) neutral +
selection+ lethal, and (5) neutral + 2 selection coefficients.
For ML estimation without polymorphism level data, see
Supplemental Material, Text S2. The neutral + 2 selection
coefficients model requires a parameter that is the boundary
condition between weak and strong selection classes. We
tested a broad range of boundary conditions and foundNes=
210 to permit all ML peaks to be reached for differentiating
strong and weak selection. Thus, selection categories with
Nes , 210 classify strong purifying selection. The lethal
class is defined purely by a drop in polymorphism density,
with no concomitant excess of rare alleles—essentially in-
finitely strong purifying selection. In practice, it represents
all selection effects stronger than what can be observed with
the SFS, and is indistinguishable from a drop in mutation-
rate relative to the neutral control. This latter property is
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why it is important to differentiate strong, but finite, puri-
fying selection from lethality.

The ML program requires seed values for selection
strength, selection proportion, lethal proportion, and theta.
To identify the highest likelihood model, we used the
Matlab function fminsearch, an implementation of the
Nelder–Mead simplex method (Nelder and Mead 1965),
with multiple seed values to bolster the chance of finding
the global maximum (see Table S2 for seed values). To
determine the best fit model, we performed a chi-squared
likelihood ratio test of the ML scores. Since the chi-squared
test is approximate for determining significance in a com-
posite-likelihood (Coffman et al. 2016), we also use confi-
dence intervals. To calculate 95% confidence intervals, we
performed a rank bootstrap, sampling with replacement
each of the 200 matched 4D and SI datasets, performing
our ML estimate of selection and using the 5th and the
195th rank values for each ML score, proportion of selec-
tion, and strength of selection.

Model interpretation

Our program takes a nonparametric approach to modeling
selection and demography. In the case of demography, the
frequency-dependent correction factors skew the mutation–
selection equilibrium SFS to fit the data. While in the true,
unknown, evolutionary history of the sites being studied,
the amount of effective selection on deleterious mutations
fluctuates over time due to demographic events and linkage,
the inferred Nes values returned by our method are the mu-
tation–selection balance equivalent—a single, constant Nes
value that captures the average amount of effective selec-
tion experienced by the typical deleterious mutation in
these sites.

For selection, there is some unknown distribution of
selection coefficients over the sites, referred to as the
Distribution of Fitness Effects (DFE), which we have rep-
resented with either one or two selection masses. ML in-
ference using this categorical model estimates what the
proportion of sites, and how strong the selection in each
category has to be in order to produce the same overall SFS
as the true, unknown DFE. It has been shown in the liter-
ature that the use of such point estimates to represent
the DFE provides an unbiased description for a range of
real underlying DFEs (Eyre-Walker and Keightley 2007;
Kousathanas and Keightley 2013). A simple example
of the behavior of our inference model can be found in
Figure S3. Here, we performed the ML inference using
only two selection categories (neutral and deleterious)
on simulated data with true underlying DFEs with three
selection categories: neutral,weakly deleterious, and strongly
deleterious. The lone inferred deleterious selection category
is forced to represent the total amount of selection in the
system with varying degrees of success for the different sce-
narios, but, in all cases, the interpretability of a single non-
neutral selection category can be problematic. In contrast to
parametric DFE inference, these inferred selection categories

should be viewed as descriptors of the true underlying DFE,
rather than a model of the DFE itself.

Power analysis and model validation

In order to assess our power in differentiating strong se-
lection from a lethal class or 4D/SI mutational differences,
weperformedpower analyses of ourMLmethodof selection
estimation. We did this by creating theoretical spectra
for a range of selection strengths and proportions with
theta values reflecting those we found in our ML inferences
for the DGRP (0.01) and Zambia (0.035) populations.
We then estimated selection for these spectra using a
theoretical neutral reference with the same theta value
and number of sites.We performed a chi-squared likelihood
ratio test with one degree of freedom comparing the
2-category selection model (neutral + one selection class)
with the neutral+ lethalmodel. This analysis demonstrates
how an increasing number of SNPs, increasing polymor-
phism level (e.g., larger theta), and a greater proportion
of sites under selection increase our power to distin-
guish strong selection from lethality/mutational differ-
ences (Figure S4, A and B).

We then tested the power and biases of using a categor-
ical DFE in combination with frequency-dependent correc-
tion factors to account for demography when demography
was complex. We simulated sites with two selection cate-
gories evolving both under mutation–selection equilibrium
and under a bottleneck/growth demographic scenario
which had been estimated for Zambia (Table 2 in Singh
et al. 2013: third codon model) and then attempted to
re-infer the simulation parameters. These Wright-Fisher
simulations were run using a modified version of the pro-
gram GO Fish (Lawrie 2017). In Figure S4, C–G, we find
that, overall, the estimation of the percentage of sites in the
non-neutral selection category is robust to demographic
effects. One exception is when the selected sites are very
weakly deleterious, in which case the proportion of such
sites is underestimated in the bottleneck/growth demo-
graphic model. Likewise, our estimates of the strength of
purifying selection become increasingly conservative
(underestimated) for simulations with stronger selection
against deleterious mutations. Further, we lose power to
distinguish finite strong purifying selection from lethality
quicker than when sites are evolving under mutation–
selection equilibrium. We also ran three selection category
simulations with similar results (not shown). The primary
cause for the increased difficulty in making these estima-
tions for the bottleneck/growth demography model with
respect to mutation–selection equilibrium is that muta-
tions in different selection regimes respond to the same
nonequilibrium demography differently, causing different
skews in the SFS for each. The frequency-dependent correc-
tion factors meanwhile infer a global skew that modifies the
spectra of all selection regimes the same way.

Most of the potential biases mentioned above are small,
and all of them are conservative. Supposing, for example,
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that the demographic model used above is indeed an accu-
rate reflection of the evolutionary history of the Zambian
population: as compared to what we report in Table 1 for
Zambia preferred 4D sites, the true strength of selection in
the strong categories may actually be underestimated;
meanwhile, the confidence intervals for the proportion of
sites in the weak selection category are already quite wide,
so a small underestimation of their tally does not change
much.

To further validate our methodology, we checked for
consistency between real Zambia and DGRP data sets and
the expected spectra generated from our model using an-
other SFS inference method, DFE-alpha (Eyre-Walker and
Keightley 2009). We find a good fit between DFE-alpha
parameter estimates for the observed spectra and our
model-generated spectra (see Supplemental Material, Text
S1).

Polymorphism ratio estimate of strong selection

In order tomake aprecise estimate of purifying selectionusing
our SFS-basedMLmethod, we require a large number of sites
(. 100K). When we have few sites, we can use alternative
methods for estimating purifying selection. One proxy for the
amount of strong purifying selection is the depletion of poly-
morphism in a selected class compared with a neutral class.
We quantified this depletion as the “polymorphism ratio”,
which is a variation of the classic statistic, PN/PS, for compar-
ing the density of neutral and selected segregating sites.
However, since polymorphism can at times be greater at
4D sites given certain selection scenarios, we opted to use
a statistic that was symmetric with regard to the 4D or
SI polymorphism depletion and use the log of this ratio:
log(PSI/P4D), where PSI and P4D are counts of the number
of polymorphic sites after the matching of SI and 4D sites.

Because strong purifying selection is expected to remove
polymorphismfromthedataset,we testedwhether this simple
polymorphism log-ratio statistic, which quantifies the deple-
tion of polymorphism in 4D sites relative to SI sites, can
capture the number of 4D sites under strong purifying selec-
tion. As we show using simulated data (Figure S5A), this
statistic provides a largely unbiased estimate of strong puri-
fying selection, even when the number of sites is significantly
less thanwhat is required for theMLestimates.Note that there
is only a roughly one-to-one relationship between polymor-
phism ratio and the amount of strong purifying selection, and
this varies with the strength of selection (Figure S5A). Weak
selection does affect the polymorphism ratio aswell; however,
it does so to a much lesser extent. In our datasets, the
correlation between our ML estimates and polymorphism
ratio measures most closely resembles the pattern predicted
by strong purifying selection (Figure S5B). We therefore use
this metric as a proxy for the proportion of sites under strong
purifying selection for subsets of sites, specifically when there
are too few sites to perform ML inference. It is important to
remember that the linear relationship betweenpolymorphism
ratio and proportion of sites under strong purifying selection

may not hold for all datasets. While we demonstrate that this
relationship does generally apply to our data, the linear re-
lationship, and, thus, this analysis may not be applicable to
other datasets (e.g., where there are large differences in se-
lection strengths across datasets).

Identification of putatively functional regions

Codon usage bias: We calculated the relative synonymous
codon usage (RSCU) for each codon as the observed fre-
quency of a codon in the dataset divided by the expected
usage if all four codons were used equally (0.25) (Sharp and
Li 1986). We classified each 4D site as being in a preferred
(highest RSCU for the amino acid) or unpreferred codon
(lowest three RSCUs for the amino acid). The amino acids
and their respective preferred codons are as follows: alanine
GCC, glycine GGC, leucine CTG, proline CCC, threonine
ACC, and valine GTG. For polymorphic 4D sites, we used
the ancestral allele to designate the codon and preferred
state. We identified a total of 850,973 (366,458 with SI
controls) and 794,471 (312,523 with SI controls) 4D sites
in preferred codons for DGRP and Zambia, respectively.
When analyzing sets of 4D sites, all sites with the same
ancestral codon are grouped together, regardless of any de-
rived polymorphism.

We additionally measured the polymorphism ratio for in-
dividual 4D mutations (e.g., CCC/CCA), and examined the
relationship between the resulting RSCU change and poly-
morphism ratio. In order to appropriately calculate the poly-
morphism ratio for each codon change, we matched 4D sites
to all SI sites with the same possible states. For example, for
the class of 4D sites of an ancestral “CCC” proline codon and a
derived “CCA” proline codon, we matched the 4D proline “C”
monomorphic sites and “C/A” polymorphic sites to either SI
“C” monomorphic sites or “C/A” polymorphic sites (or the
complement), as well as matching for distance and muta-
tional context.

Transcription factor binding sites: We used modEncode
chromatin immunoprecipitation sequencing (ChIP-seq) exper-
iments to assess the contribution of transcription factor binding
(TFB) sites to the signal of purifying selection on synonymous
sites (http://intermine.modencode.org). This dataset repre-
sents 25 experiments, testing 15 transcription factor targets
(antibodies: odg-GFP, anti-trem, Sin3A-RC, Su(var)3-9, KW4-
PCL-D2, KW3-D-D2, KW3-Trl-D2, bon (GP37), HP1 antibody
(ab24726), HP1-Covance, KW4Hr39-D1, KW3-Kr-D2, KW3-
CG8478-D1, KW3-hkb-D1, KNI-D2,KW3-Trl-D2; modENCODE
submissions 3229, 3230, 3232, 3234, 3237, 3238, 3239, 3240,
3241, 3242, 3243, 3245, 3390, 3391, 3392, 3393, 3394, 3395,
3396, 3398, 3399, 3400, 3401, 3402, 3403). We consider a
“transcription factor bound region” to be any region with evi-
dence for TFB in any of the noncontrol experiments (minimum
binding score: 50). We identified a total of 294,703 (129,611
with SI controls) and 289726 (118,463 with SI controls) tran-
scription factor (TF) bound 4D sites for DGRP and Zambia,
respectively.
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Spliceosome binding: We used modEncode RNA immuno-
precipitation sequencing (RIP-seq) experiments targeting pu-
tative spliceosome proteins to assess the contribution of
spliceosome binding to the signal of purifying selection
(http://intermine.modencode.org). The experiments tested
for RNA-protein binding of a total of 30 putative splicing
proteins. We considered a region to be bound if it had a
binding score of 5 or greater in any of the experiments. This
left a total of 321,290 (153,037 with SI controls) and
316,740 (137,967 with SI controls) spliceosome-bound 4D
sites for DGRP and Zambia, respectively.

Alternative splicing: We distinguished between genes with
and without alternative splicing using the analysis in
Brown et al. (2014). We considered any gene with more
than one transcript as alternatively spliced. We found a
total of 1,196,063 (635,814 with SI controls) and 1,136,535
(556,673 with SI controls) 4D sites in alternatively spliced
genes for DGRP and Zambia, respectively.

Splice junctions: We used the splice junctions identified by
Brooks et al. (2015). We found 18,410 (13,447 with SI con-
trols) and 17,528 (11,920 with SI controls) 4D sites in splice
junctions for DGRP and Zambia, respectively.

Ribosomal occupancy: We estimated ribosomal occupancy
using the ribosomal profiling experiments conducted byDunn
et al. (2013).We first normalized each pooled experiment file
(GEO accession GSE49197) by dividing the number of counts
in each region by the total number of counts across regions.
All regions with zero counts for either the footprinting or
expression experiments were excluded. We estimated ribo-
somal occupancy by dividing the normalized ribosomal foot-
print values by the normalized expression values (for each
DNA strand separately). The top and bottom 1 percentile of
ribosomal occupancy scores were omitted from downstream
analysis, leaving translational efficiency scores for 1,391,585
4D sites. We defined high ribosomal occupancy as the
top 25% of values (represented by 116,645 and 104,168
SI-matched 4D sites for DGRP and Zambia, respectively).

Frequency of preferred codons:We calculated the frequency
of preferred codons (FOP) per gene. As before, preferred
codons were defined as the most frequent codon for a given
amino acid. The FOP was calculated with our 4D datasets,
such that codons that did not appear in our datasets (e.g.,
those without 4D sites) did not contribute to the FOP calcu-
lation. Sites were classified as being in genes with either low
(bottom quartile), medium (middle two quartiles), or high
(top quartile) FOP. The average proportion of preferred co-
dons for sites in low, medium, and high FOP genes was 28,
42, and 54%, respectively.

Estimating the number of sites under strong purifying
selection in functional class subsets: As most of the func-
tional class subsets have too few sites to perform the ML

estimate of purifying selection, we use the polymorphism
ratio to calculate a rough estimate the number of sites under
strong purifying selection in each subset. We estimate the
numberof sites under strongpurifying selectionby calculating
the increase in polymorphism ratio in a functional class above
the background polymorphism ratio (the polymorphism ratio
for sites in a functional classminus the polymorphism ratio for
the remaining sites), multiplied by the total number of sites in
the functional class (pre-SI matching).

Conservation scores

Wecalculated the level of conservation of each4D site across a
10-species Drosophila phylogeny. We excluded D. mela-
nogaster from the phylogenetic analysis in order to avoid a
confounding effect of D. melanogaster polymorphism on both
polymorphism ratio and phyloP score. The PRANK multiple
sequence alignments of the 10 species (D. simulans, D. sechel-
lia, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura,
D. persimilis, D. virilis, D. mojavensis, D. grimshawi) were gen-
erously provided by Dr. Sandeep Venkataram. We calculated
the probability of conservation for each 4D site using the
phyloP function of the PHAST software (method=“likelihood
ratio test”) (Cooper et al. 2005).

Recombination rate

We used D. melanogaster recombination rate estimates from
Comeron et al. (2012). The recombination rate used is the
mean across 100-kb windows, and is expressed in cM/Mb/
female meiosis. We split the 4D sites into three recombina-
tion rate categories: low [bottom third: (0–1.08) cM/Mb/
meiosis], medium [middle third: (1.08–2.71) cM/Mb/meio-
sis], and high [top third: (2.71–14.8) cM/Mb/meiosis].

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. All data used in this study are publicly
available, and are referenced in Materials and Methods. The
Supplemental Materials file, including Supplemental Text,
Figures and Tables, is available at FigShare. Matlab code
for the ML estimation of selection is available on Github:
https://github.com/DL42/SFS_DFE_categorical. The modi-
fied version of the GO Fish program used to generate the
Wright-Fisher simulations is also available on Github:
https://github.com/DL42/3P_custom_synonymous. Supple-
mental material is available at figshare: https://doi.org/
10.25386/genetics.11316794.

Results

Sequence data and neutral controls

We identified all 4D synonymous sites and putatively neutral
SI sites in twodatasets, oneofanAfrican(Zambia)andoneofa
North American (DGRP Freeze (2) D. melanogaster popula-
tion (see Materials and Methods). We used short introns as
our neutral reference, as D. melanogaster short introns have
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been previously found to be under minimal selective con-
straint (Haddrill et al. 2005; Parsch et al. 2010; Clemente
and Vogl 2012b). We matched 4D sites to SI sites based on
ancestral nucleotide, mutational context, and location (within
1000 bp). As the number of 4D sites was greater than the
number of SI sites, we allowed SI sites to be matched to
multiple 4D sites. We confirmed that our results are robust
to this matching strategy by also performing an analysis
matching only one 4D site per SI site, and found our results
to be qualitatively unchanged (but with decreased power,
Figure S2). We performed the 4D/SI matching 200 separate
times, producing 200 SI control sets.

Many synonymous sites in preferred codons are under
strong selection

In order to detect the presence of purifying selection on
synonymous sites, we compared the synonymous 4D SFS
andpolymorphism level (the proportion of polymorphic sites)
to that of the matched SI controls. Purifying selection will
affect the shape of the SFS and the polymorphism level in a
number of ways. First, purifying selection in general removes
genetic variation from a population, resulting in a decrease in
the polymorphism level. The effect of purifying selection on
the shape of the SFS is a function of the strength of selection.
Weak purifying selection (Nes . 210) decreases the den-
sity of the SFS at intermediate allele frequencies, and en-
riches low frequency variants. Strong purifying selection
(Nes , 210) results in an enrichment of very low allele fre-
quency variants, making a skew in the SFS detectable only
when a large number of individuals have been sampled. Very
strong selection (and lethal mutations: Nes = 2Inf) will not
affect the shape of the SFS, and will result primarily in a
decrease in the polymorphism level.

Reduced 4D polymorphism relative to SI polymorphism:
The decrease in 4D polymorphism compared with the SI
controls can be expressed as the “polymorphism ratio”, de-
fined as the natural logarithm of the SI polymorphism to 4D
polymorphism ratio. We find this statistic to correlate well
with the proportion of sites under strong purifying selection
estimated by our ML method (Figure S5; see Materials and
Methods for discussion). A positive polymorphism ratio is due
to decreased 4D polymorphism (relative to SI polymorphism)
and can be indicative of strong purifying selection. We found
a reduction in 4D polymorphism in both the Zambia and
DGRP datasets (polymorphism ratio = 0.10 and 0.14, for
Zambia and DGRP, respectively; Figure 1). We found an even
greater reduction in 4D polymorphism for preferred codons
(polymorphism ratio = 0.19 and 0.29 for Zambia and DGRP,
respectively), and almost no reduction in 4D polymorphism
in unpreferred codons (polymorphism ratio = 0.01 for Zam-
bia and DGRP), suggesting that preferred codons are under
more strong purifying selection than unpreferred codons.

ML estimates of purifying selection: The strong reduction in
4D polymorphism is suggestive of strong purifying selection
operating on 4D sites; however, this measure is (1) under-
powered indetectingweak selection, and (2)doesnotprovide
robust quantitation of selection strength or proportion of sites
under selection. We used a ML estimation to quantify the
strength and extent of purifying selection (see Materials and
Methods for discussion), testing five different selection mod-
els: (1) neutral, (2) neutral + lethal, (3) neutral + 1 selection
coefficient, (4) neutral + 1 selection coefficient + lethal, and
(5) neutral + 1 weak selection coefficient + 1 strong selec-
tion coefficient (Table 1 and Figure 1 and see Materials and
Methods). For the full Zambia dataset, the best fit model is the

Table 1 Nested maximum-likelihood models tested for the Zambia and DGRP datasets

Population Dataset Model Prop. S1 -Ns S1 Prop. S2 -Ns S2 Delta LL P

Zambia Full n — — — — — —

n + l 0.09 (0.09–0.10) Inf — — 255 1*102111

n + s 0.12 (0.11–0.14) 26 (14–44) — — 303 3*10222

n + s + l 0.10 (0.06–0.90) 14 (5–33) 0.03 (0–0.06) Inf 307* 3*1023

n + s + s 0.06 (0–0.158) 7 (0.1–10) 0.07 (0.03–0.13) 81 (18-Inf) 306 1
DGRP Full n — — — — — —

n + l 0.13 (0.12–0.14) Inf — — 239 1*102104

n + s 0.14 (0.12–0.15) Inf (75-Inf) — — 241* 0.04
n + s + l 0.11 (0–0.87) 166 (0-Inf) 0.03 (0–0.14) Inf 241 1
n + s + s 0 (0–0.01) 0.2 (0.1–6) 0.14 (0.12–0.15) Inf (76-Inf) 241 1

Zambia Preferred n — — — — — —

n + l 0.18 (0.16–0.19) Inf — — 446 2*102194

n + s 0.30 (0.27–0.33) 7 (4–11) — — 669 9*10299

n + s + l 0.23 (0.18–0.28) 3 (1–6) 0.07 (0.03–0.10) Inf 691 1*10211

n + s + s 0.82 (0.19–0.86) 0.3 (0.2–2) 0.16 (0.10–0.20) 29 (15–75) 699* 9*1025

DGRP Preferred n — — — — — —

n + l 0.25 (0.24–0.26) Inf — — 512 2*102223

n + s 0.29 (0.27–0.31) 29 (12–57) — — 574 1*10228

n + s + l 0.14 (0.08–0.21) 3 (1–10) 0.15 (0.09–0.19) Inf 597* 2*10211

n + s + s 0.15 (0.11–0.79) 2 (0.1–5) 0.19 (0.14–0.24) 116 (52-Inf) 598 0.1

n: neutral; l: lethal; s: selection. Maximum-likelihood parameter estimates per model (median of 200 sets of matched 4D and SI sites). Values in parentheses are 95%
bootstrap confidence intervals. Model comparison was performed with chi2 goodness of fit test. *Best fit model with P , 0.05. The delta log-likelihood (Delta LL) is with
respect to the neutral model, while the P value is with respect to the nested model above.
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neutral + selection + lethal model, which inferred strong
selection (10% at Nes = 214) with a small lethal class. The
lack of a weak selection estimate for the full dataset is con-
sistent with previous findings that the signal of weak selec-
tion is too low for detection when including all sites.
Similarly, for the full DGRP dataset, our best-fit selection
estimate also inferred a strong selection class; however, the
bootstrap 95% confidence interval includes lethality, indicat-
ing that the neutral + 1 selection coefficient model was not
significantly better than the neutral + lethal model (13%
lethal). The DGRP dataset has half the number of polymor-
phisms as the Zambia dataset (�47K in DGRP), and, thus, the
strongest selection that can routinely be distinguished from
lethality is Nes � 260 (for power analyses, see Figure S4).
With fewer sites, the test lacks power in the DGRP data, but
its results are consistent with the presence of strong purifying
selection in 4D sites as found using Zambia data.

Whenwenarrowthe focus to4Dsites inpreferredcodons, a
classof sitesputativelyenriched forpurifyingselection, theML
analysis is able to discriminate more features of the distribu-
tion of selection coefficients operating on 4D sites. The best-fit
model forZambiapreferred codons is theneutral+2selection
coefficient model (82% at Nes = 20.3, 16% at Nes = 229),
indicating a range of weak and strong selection coefficients
acting at the preferred sites. The 95% confidence interval for
the proportion of sites in the weak selection category is large
(19–86%), but, importantly, both the weak and strong puri-
fying selection classes are distinguishable from each other,

from neutrality, and from lethality. The corresponding model
for DGRP likewise supports a range of selection effects in
preferred sites (15% at Nes = 22, 19% at Nes = 2116).
Estimating selection in the DGRP dataset is, again, hampered
by lower power as this model is not a significantly better fit
than the neutral + selection + lethal model, with the 95%
confidence intervals overlapping lethality for the strong se-
lection class. Though lacking power, these DGRP results pro-
vide independent support for the findings in Zambia of a wide
range of selection strengths affecting mutations in preferred
4D sites in D. melanogaster.

4D sites in unpreferred codons show a corresponding lack
of purifying selection, with the neutral model having the best
fit to the data. This is consistent with the low polymorphism
ratios for these datasets (0.01 for both Zambia and DGRP,
Figure 1). The enrichment of sites under selection in the set of
preferred codons and the lack of selection found in the set of
unpreferred codons indicates that selection on CUB is a major
component of the total amount of purifying selection on syn-
onymous sites, and that the identification of both a weak and
a strong selection class for preferred codons indicates that
selection on CUB may not be limited to weak selection.

Phylogenetic conservation scores support finding of
strong selection on CUB

If our ML and polymorphism ratio estimates truly do reflect
selection levels, we might also expect our estimates to corre-
late well with signatures of long-term selection, such as

Figure 1 Polymorphism and selection
estimates differ by CUB group. SFS
(cumulative), polymorphism ratio, and
best-fit selection estimates for fourfold
synonymous (4D) and matched short
intron control (SI) sites for the full
dataset (top), for preferred codons
(middle), and for unpreferred codons
(bottom). L: lethal.
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phylogenetic conservation. We calculated phyloP phylo-
genetic conservation scores across a 10-species Drosophila
phylogeny (excluding D. melanogaster). The phyloP score
measures the extent of conservation or divergence per site,
with positive values representing conservation and negative
values representing divergence. We asked if there was a cor-
relation between the proportion of sites we identified to be
under purifying selection and the level of phylogenetic con-
servation. We found a strong correlation between polymor-
phism ratio and phyloP conservation score of 4D sites
(Zambia: R2 = 0.96, P , 2*10216; DGRP: R2 = 0.94, P ,
2*10216; Figure 2). We also performed ML estimates of the
proportion of sites under selection for 4D sites in low (lower
quartile), medium (middle two quartiles), or high (upper
quartile) phyloP scores. Again, we observe the same relation-
ship of increasing purifying selection with increasing con-
servation (Figure 2). The correlation of phylogenetic
conservation with our estimates of purifying selection
supports the relevance of our estimates to long-term
constraint.

Level of preference for a codon predicts proportion of
sites under strong selection

Our findings suggested that a substantial proportion of synon-
ymous sites in preferred codons were under strong purifying
selection. Since the biased usage of codons actually exists on a
continuum, rather than binary designations of “preferred” and
“unpreferred”, we next askedwhether or not the level of biased
usage (for a particular codon) correlates with the amount of
strong selection observed. We used the relative synonymous
codon usage (RSCU) as a measure of the level of codon
preference (Sharp and Li 1986). We measured RSCU for
each 4D codon and compared that to the polymorphism
ratio. We found a strong positive relationship between
RSCU and polymorphism ratio (Zambia: R2 = 0.56, P =
4*1027; DGRP: R2 = 0.63, P = 4*1028; Figure 3).

We next asked if the change in RSCU, from ancestral to
derived, correlated with polymorphism ratio. We hypothe-
sized that mutations to a less preferred state (positive RSCU
change) would show evidence for strong purifying selection
(positive polymorphism ratio), whereas mutations to a more
preferred state (negative RSCU change) would be positively
selected for, and have an increased level of 4D polymorphism
relative to the SI control (negative polymorphism ratio). We
found a strong, positive relationship between RSCU change
and polymorphism ratio, with negative polymorphism ratios
for strongly preferred derived mutations on unpreferred an-
cestral codons (Figure 3). Under the assumption that SI
sites are neutral, negative polymorphism ratios (i.e., greater
levels of polymorphism at 4D than SI sites) can result from
particular mutation and selection regimes (McVean and
Charlesworth 1999; Lawrie et al. 2011), such as positive se-
lection on 4D sites increasing 4D polymorphism. Our results
support the hypothesis of purifying selection on the strongest
unpreferred changes and positive selection on the strongest
preferred changes.

More selection on synonymous sites due to CUB than
due to other processes

Several processes other than those related to CUB have also
been hypothesized to act on synonymous sites. In order to
assess the relative importance of various processes driving the
observed selection on synonymous sites, we tested several
putatively functional classes of sites for enrichment of puri-
fying selection. In addition to preferred codons, we tested TF
bound regions, alternatively spliced genes, RNA binding pro-
tein (RBP)boundregions, splice junctions, andhigh ribosomal
occupancy regions. We calculated the polymorphism ratio for
each functional class, and compared it to that of the set of sites
excluding the functional class—the latter providing the back-
ground level. We found a significantly elevated (above back-
ground) polymorphism ratio not only for preferred codons
but also for alternatively spliced genes, spliceosome bound
regions, splice junctions, and TF bound regions in both the
Zambia and the DGRP populations (Figure 4 and Figure S8).

We then estimated the relative contribution of each func-
tional class to the signal of strong purifying selection (see
Materials and Methods). We combined the three splicing-re-
lated classes (alternatively spliced genes, spliceosome bound
regions, and splice junctions), leaving three general groups
putatively under purifying selection: CUB, splicing, and tran-
scription factor binding. In the Zambia dataset, we estimated
there to be 150K sites under strong purifying selection asso-
ciated with CUB, 38Kwith splicing, and 4Kwith transcription
factor binding (Figure 4). The DGRP dataset showed similar
trends: 217K sites under strong purifying selection associated
with CUB, 100K with splicing, and 13K with transcription
factor binding. In summary, we found that CUB explained
the greatest number of 4D sites under purifying selection,

Figure 2 Phylogenetic conservation correlates with selection estimates.
Correlation between the phyloP conservation score across a Drosophila
phylogeny, and the proportion of sites under selection, as estimated by
the polymorphism ratio (lines) and the maximum-likelihood (ML) method
(triangles). Dark red: Zambia, light blue: DGRP. The polymorphism ratio
was estimated in sliding windows of 100K SNPs. The ML estimates were
made for three groups: the lowest quartile, the middle two quartiles, and
the highest quartile of phyloP scores. ML estimates are plotted against the
median phyloP score for each group.
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representing �2–4 times as many sites as splicing and tran-
scription factor binding combined.

Wealsomeasured thepolymorphismratio for the sites least
likely to be under selection. We excluded the two largest
contributors to selection on synonymous sites: preferred co-
dons and alternatively spliced genes. The set of unpreferred
codons in nonalternatively spliced genes consisted of 137K
sites in Zambia and 158K sites in DGRP, and represented the
4D sites least likely to be under strong selection. Interestingly,
we found that this set of 4D sites hadmorepolymorphism than
their SI matched control set (negative polymorphism ratio),
indicating greater purifying selection in short introns and/or
the presence of positive selection on these 4D sites.

Recombination rate does not influence strong selection
on CUB

Previous studies have found mixed evidence of a correlation
between recombination rate and CUB (Kliman andHey 1993;
Marais et al. 2001; Singh et al. 2005; Campos et al. 2012,
2013). We therefore tested for increased levels of purifying
selection on preferred 4D sites as a function of recombination

rate. While there is a greater proportion of preferred codons
in high recombination rate regions (42.1% and 42.6% for
Zambia and DGRP, respectively) than in low recombination
rate regions (40.1% and 41.2% for Zambia and DGRP, re-
spectively; both chi2 P , 10215), we found no evidence of
increased strong purifying selection on preferred codons in
high recombination rate regions compared with those in low
recombination rate regions (Figure 5), nor any general in-
crease in selection with recombination rate (Figure S7).

Features of strong selection on CUB by gene type or
genic location

Preferred codons may be under greater purifying selection in
some genes than in others.We asked if a greater proportion of
preferred codons were under strong purifying selection in
genes with high CUB compared to genes with low CUB. One
measure of the amount CUB in a gene is the FOP. We calcu-
lated FOP per gene and asked if, as expected, there was a
stronger signal of purifying selection on 4D sites in genes with
higher FOP. We found a trend toward a larger polymorphism
ratio for 4D sites in high FOP genes (Zambia: 0.103; DGRP:

Figure 3 Level of CUB correlates with
strong selection measurements. Top:
Polymorphism ratio for each codon
as a function of the level of bias for
the codon (relative synonymous codon
usage: RSCU) (median over 200 matched
controls). Bottom: Polymorphism ra-
tio for each ancestral/derived codon
pair as a function of the change in
RSCU.
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0.150) comparedwith lowFOPgenes (Zambia: 0.087; DGRP:
0.131), albeit the trendwas not significant (Zambia: t-test P=
0.19; DGRP: t-test P = 0.26; Figure S6).

We then evaluated the patterns of CUB-associated poly-
morphism by grouping 4D sites into three categories: pre-
ferred, unpreferred with mutations to another unpreferred
state, unpreferred with mutations to the preferred state. We
foundno trendofpolymorphismratio versesFOP forpreferred
codons, indicating that a similar proportion of preferred
codons were under strong selection in genes with low overall
biased codon usage compared with genes with high bias and
consequently, that a largernumber of preferred codons in high
FOP genes are subject to strong selection (Figure 6).

Interestingly,we foundapatternofnegativepolymorphism
ratios for unpreferred codons specifically in high FOP genes,
which was particularly pronounced for sites that were ances-
trally unpreferred with derived preferred mutations. This
pattern was much stronger in high FOP genes than low
FOP genes (Zambia: t-test P = 0.02; DGRP: t-test P =
3*1025). This is important for the interpretation of Figure
S6, as these negative polymorphism ratios at unpreferred
codons in high FOP genes lead to lower overall polymor-
phism ratios than would be expected given the larger number
of preferred codons subject to strong selection in such genes
(Figure S6). These patterns are generally consistent with
stronger positive selection in favor of preferred codons in
high FOP genes (Jackson et al. 2017).

CUBhas alsobeen shown tovarydependingon the location
in the gene (Plotkin and Kudla 2011). We first asked if pre-
ferred codons vary in the amount of strong purifying selection
that they are under as a function of the location in the exon.
We measured the polymorphism ratio for each class of codon
preference at the start (first quartile) of an exon, the middle
of an exon (second and third quartile), or the end of an exon
(fourth quartile). In preferred codons, we found a trend to-
ward increased polymorphism ratio at the start and the end
of exons, compared with the middle of the exons (Figure 7;
t-test start . middle: Zambia P = 0.1, DGRP P = 0.01; t-test

end . middle: Zambia P = 8*1025, DGRP P = 0.03). How-
ever, this pattern was also observed in unpreferred codons (t-
test start . middle: Zambia P = 0.05, DGRP P = 0.04; t-test
end . middle: Zambia P = 0.06, DGRP P = 0.5), indicating
that this effect may be unrelated to CUB. Alternatively, this
could be a result of purifying selection on synonymous sites
important for splicing. We next assessed polymorphism ratio
as a function of the exon position along the gene (either first
exon, last exon, intermediate exons, or exons of single-exon
genes). No consistent patternswere observedwith location of
the exon (Figure 7).

Discussion

Strong and weak purifying selection on CUB

We find evidence that selection on CUB is not limited to weak
selection, and find that 10–20% of 4D sites in preferred co-
dons are under strong purifying selection. Our study builds
on methodology developed in Lawrie et al. (2013), recapit-
ulating their major result of strong purifying selection on
synonymous sites, and extending the analysis to identify
functional associations. We were able to gain a finer view
by (1) use of multiple, deeply sampled datasets, (2) ancestral
polarization of alleles, and (3) strict filtering of sites with low
quality or near indels to reduce noise. Although Lawrie and
colleagues found evidence of strong selection on 4D sites, the
underlying processes examined could not account for this
signal. While our finding of strong purifying selection on
4D sites is consistent with the findings of Lawrie et al.
(2013), our study finds that CUB accounts for the majority
of this selection, and, in conjunction with splicing and TFB,
can fully account for the decreased levels of 4D polymor-
phism. In addition to finding that many 4D sites are subject
to strong selection, we also find evidence that a substantial
proportion of 4D sites are under weak purifying selection
on CUB, which is consistent with the signal of weak selec-
tion previously observed in D. melanogaster (Zeng and
Charlesworth 2009, 2010; Campos et al. 2013).

Figure 4 (A) Extent of strong purifying selection as measured by the polymorphism ratio for each class of site (gray) and the dataset excluding the focal
class sites (white) (Zambia dataset). The number of sites in a focal class is listed below the corresponding bar. The red dashed line is the polymorphism
ratio for the full dataset. Error bars represent 2 SE. (B) Relative proportion of synonymous sites under strong purifying selection due to splicing, CUB, or
transcription factor (TF) binding.
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Formethodological reasons,many previousmethods iden-
tifiedonlyweak selectiononCUB.Strongpurifying selection is
not detectable with methods that use only the polymorphic
SFS,without sufficiently high depth of population sequencing
(Zeng and Charlesworth 2009, 2010; Campos et al. 2013) or
methods that incorporate polymorphism level, but assume a
DFE that can provide misleading biological inferences if the
assumed distribution does not match the true DFE, e.g., the
gamma distribution in Eyre-Walker and Keightley (2007),
Andolfatto et al. (2011) and Kousathanas and Keightley
(2013). Other inference methods that incorporate polymor-
phism level, but without making use of a neutral reference,
would also have difficulty detecting strong purifying selec-
tion (Zeng and Charlesworth 2009, 2010; Campos et al.
2013). In our analysis, we use the polymorphism level and
SFS to make point estimates of selection strengths, which is
robust to a range of real underlying DFEs (Eyre-Walker and
Keightley 2007; Kousathanas and Keightley 2013). This al-
lows us to detect selection occurring at both the weak and the
strong range of selection coefficients, such as in the set of
Zambia preferred codons, where we detect peaks of selection
coefficients at Nes =20.3 as well as at Nes=229. Thus, our
method is able to infer a wide range of selection strengths
operating in 4D synonymous sites.

Polymorphism ratio correlates with the level of CUB per
codon and per gene

Since we control for mutation rate and local determinants of
polymorphismsuchas linked selectionand recombination,we
find that the polymorphism ratio of the SI to 4D sites can be a
good proxy for the proportion of sites under strong purifying
selection, as seen in simulations as well as empirically in the
relationship between polymorphism ratio and both the ML
estimates of selection and the level of phylogenetic conser-
vation (Figure 2 and Figure S5). Further, the estimated pro-
portion of sites under strong selection is highly correlated
with the extent of CUB, as measured by the relative synony-
mous codon usage (RSCU) (Figure 3). The change in RSCU
from ancestral to derived also correlates with the proportion
of sites under strong selection. These results further support
our conclusion of strong purifying selection on CUB.

We also notice negative polymorphism ratios in the RSCU
analysis, where we find strongly negative polymorphism

ratios for codons thatwewouldexpect tobeunder thegreatest
amount of positive selection, i.e., codons with highly unpre-
ferred ancestral states and highly preferred derived mu-
tations. Positive selection could be driving an influx of
mutations that alter 4D sites from generally less-fit unpre-
ferred states to generally more-fit preferred states. The neg-
ative polymorphism ratios are also consistent with excess
purifying selection on the control SI sites relative to the tested
4D sites.

It is well established that certain genes, particularly those
with high expression, tend to have a greater proportion of
preferred codons (Gouy and Gautier 1982; Bulmer 1991;
Novoa and Ribas de Pouplana 2012). We measured the poly-
morphism ratio for sites in genes of low, medium, and high
FOP. From this analysis, we have three major findings: (1)
the proportion of preferred codons under strong purifying
selection is relatively constant across genes (Figure 6), (2)
there is evidence for increased positive selection for derived
preferred mutations in high FOP genes (Figure 6 and Jackson
et al. 2017), and (3) the contribution of excess 4D polymor-
phism from these derived preferred mutations in high FOP
genes is an example of how the polymorphism ratio measure
of strong purifying selection can be dampened by positive
selection. To more fully articulate the third point, polymor-
phism ratio in high FOP genes is the combination of two
competing processes: more ancestral preferred codons in-
creasing the polymorphism ratio, and more positive selection
for derived preferred codons reducing the polymorphism ra-
tio. The opposing actions result in no significant increase in
overall polymorphism ratio from low to high FOP genes (Fig-
ure S6), despite the expectation that a larger number of pre-
ferred codons should produce higher estimates of selection in
high FOP genes (Jackson et al. 2017).

Selection on other functional classes

We find splicing to be the second-most important process
underlying purifying selection on synonymous sites. We
tested three classes of sites putatively enriched for selection
due to splicing: alternatively spliced genes, spliceosome-
bound regions, and splice junctions. Of these three classes,
although alternatively spliced genes explain the greatest
amount of selection on synonymous sites (�90K sites), owing
to the large number of sites in alternatively spliced genes, we
find that splice junctions have the greatest proportion of sites
under selection (�45% under strong purifying selection),
followed by spliceosome-bound regions. Splicing is known
to be a critical function for proper development and function
of an organism. Similar research in humans has likewise
found evidence of widespread, strong evolutionary constraint
affecting 4D sites in exonic splice enhancers (Savisaar and
Hurst 2018).

There is also evidence for strong selection on TF bound 4D
sites. We estimate that �3K 4D sites are under strong selec-
tion due to TFB. To identify TF bound sites, we used ChIP-seq
experiments targeted at 16 different TFs. With a larger
breadth of TFB data, 4D sites in TF-bound regions may prove

Figure 5 Polymorphism ratio by codon preference and recombination
rate (RR). RR groups are classified into low (lowest third), medium (middle
third), and high (top third). U: unpreferred; P: preferred. Arrows separate
ancestral (pre-arrow) and derived (postarrow) states. Error bars are 2 SE.
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to be under a greater amount of selection than we can detect
here.

Wefind thatCUB, splicing, andTFBare sufficient toexplain
the polymorphism differences between 4D and SI control
sites, indicating that these processes also explain the bulk
of strong purifying selection acting on synonymous sites.
However, it is important to note that our measures are only
correlativewith the functional class being tested, such thatwe
cannot say that these processes directly underlie the selection.
In addition, there are likelymultiple other processes acting on
synonymous variants that we have not included. Other
processes that have been shown, or hypothesized, to act on
4D sites include transcriptional regulation (Newman et al.
2016), protein folding (Rodriguez et al. 2018), and RNA
transcript stability (Presnyak et al. 2015; Carneiro et al.
2019) and secondary structure (Gebert et al. 2019). Given
the explanatory power of our results, we suggest that these
other processes are either less affected by synonymous vari-
ation or that they are correlated with the processes already
tested.

Controlling for linked selection and mutation rate

One caveat to our polymorphism level based method of
estimating selection is that multiple processes can reduce
the observed level of polymorphism of a site. These include
linked selection, low recombination rate, a reduced mutation
rate or selection on the site itself. In order to isolate the effects
of selection on 4D sites, we controlled the distance between
matched 4D and SI sites so that, on average, the sites in the 4D
and SI site frequency spectra were experiencing the same rate
of recombination andmutation aswell as comparable levels of
linked selection.We found that,with an increasing distance of
up to 1000 bp from the focal 4D site to its SI control, there
was no systematic change in polymorphism in the SI control,
indicating that, overall, the matched controls were under a
sufficiently similar amount of linked selection (Figure S1). In
order to account for mutational differences, we added a fur-
ther requirement that matched controls have the same 3 bp
mutational context as the 4D sites. In Drosophila, there is a
significant effect of 3 bp context onmutation rate (Sharp and
Agrawal 2016). For polymorphic sites we used the ancestral
allele for matching (polarized from D. simulans), providing a

more appropriate match than if we had not polarized by
ancestral state. Since we match locally (, 1000 bp), 4D sites
and their matched SI controls will also be subject to the same
local mutation and recombination rate effects. Further, these
results should not be confounded by biased gene conversion
as this phenomenon appears to be absent in D. melanogaster
(Robinson et al. 2014; Jackson et al. 2017), and the local 4D/
SI matching would correct for it even if it were active. Finally,
we observe that our estimates of purifying selection in poly-
morphism correlate both with long-term signals of purifying
selection in divergence (Figure 2), and with the putative
functionality of a class of sites (Figure 4), such as preferred
codons, splice junctions, RBP bound regions, and alterna-
tively spliced genes, supporting the claim that our results
reflect the action of selection, rather than being artifactual.

Potential biases in selection estimates

Our estimates of purifying selection on 4D sites may be
conservative, underestimating the true amount of selection
on 4D sites. This could be the case if there was any constraint
on the SI controls, or if there was positive selection on the 4D
sites themselves. There were two methodological decisions
that may have contributed to constraint in short introns. Both
Halligan and Keightley (2006) and Parsch et al. (2010) found
that short introns (,65 bp and ,120 bp, respectively) have
the least constraint on bases 8–30. As we included a larger
portion of the intron, it is possible that we have also included
SI sites under a greater amount of conservation. We also
excluded regions surrounding indels (10 bp on either side)
in order to reduce false polymorphisms due to mismapping.
This more strongly affects short introns (as they are more
permissive to indels than coding regions) and will select for
more conserved SI regions. Purifying selection acting on the
control SI sites can result in a negative polymorphism ratio,
as can positive selection acting on 4D sites. As previously
discussed, we actually do observe a negative polymorphism
ratio in certain data subsets. Regardless of whether the ex-
planation for a negative polymorphism ratio is purifying se-
lection on control SI sites or positive selection on 4D sites,
both dampen our ability to detect purifying selection.

Our estimates of purifying selection can also be biased as
the result of demographic forces. For example, a simulated
demographic scenario for Zambia shows that our ML model
fails to completely correct for the bottleneck/growth demo-
graphic scenario, and may result in reduced estimates of the
proportion of weakly deleterious sites and the strength of
strong purifying selection (Figure S4). Additionally, the sen-
sitivity of our ML model to estimate multiple selection cate-
gories is dependent on the number of sites under selection.
Deeper population sampling and a larger set of sites support-
ingmore selection categories could reveal greater detail about
the true, underlying DFE of 4D sites.

New model of CUB

Our finding that selection on CUB ranges from weak to
strong directly contradicts the standard Li–Bulmer model of

Figure 6 Polymorphism ratio by class of codon preference and the fre-
quency of preferred codons (FOP). FOP groups are classified into low
(lowest quartile), medium (middle two quartiles), and high (top quartile).
U: unpreferred; P: preferred. Arrows separate ancestral (pre-arrow) and
derived (postarrow) states. Error bars are 2 SE.
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selection on CUB. The Li–Bulmer model assumes a constant
selection coefficient for a codon, and, given the intermediate
proportion of preferred codons observed in many species,
predicts that selection on CUB is weak (Li 1987; Bulmer
1991). However, the Li–Bulmer model has not always agreed
with the data. First, since population sizes vary by several
orders of magnitude across species, the selection coefficient
would have to vary inversely by several orders of magnitude
as well in order to result in the observed intermediate levels
of CUB (Hershberg and Petrov 2008). There is no intuitive
reason to think that the selection coefficient would be in-
versely related to the population size, or that it should vary
by several orders of magnitude. Second, if selection is weak,
there should be more CUB in high recombination rate re-
gions. This prediction comes from the increased effect of
Hill-Robertson interference (linked selection) in low recom-
bination rate regions (Felsenstein 1974; Charlesworth and
Campos 2014).While there is some evidence for a correlation
between CUB and recombination rate in D. melanogaster
(Kliman and Hey 1993; Campos et al. 2012), this is not true
for the D. melanogaster X chromosome (Singh et al. 2005;
Campos et al. 2013), and the correlations that have been
found can be explained by mutation rate variation (Marais
et al. 2001). Third, though previous studies of polymorphism
data have inferred selection on synonymous sites to be weak
(in keeping with Li–Bulmer), these patterns of polymorphism
have also suggested a more complex selection model among
4D codons than simply preferred vs. unpreferred, contraven-
ing themodel’s standard formulation (Singh et al. 2007; Zeng
2010; Clemente and Vogl 2012a). Fourth, there is experi-
mental evidence that changes in one or more synonymous
codons can have large phenotypic and fitness effects, suggest-
ing that selection on CUB is not always weak (Zhou et al.
1999; Carlini and Stephan 2003; Carlini 2004; Sharon et al.
2018; She and Jarosz 2018; Yannai et al. 2018). Indeed,
experiments in yeast have found large numbers of synonymous

mutations with similar fitness and phenotypic effect sizes to
missense mutations, often enriched in genes with high CUB,
or causing significant changes in the Codon Adaptation Index
(Sharon et al. 2018; She and Jarosz 2018).

We propose a new model where the strength of selection
per codon varies from nonexistent to strong within a gene,
with the level of CUB in a gene set primarily by thedistribution
of selection coefficients across sites. Genes that have highCUB
under our model would have more sites subject to strong
selection in favor of preferred codons compared to genes with
low CUB, as we in fact see in the data. This eliminates the
problem of setting the proportion of preferred codons by fine-
tuning the strength of selection at all preferred sites to a
particular value of s �1/Ne under the Li–Bulmer model. In
addition, under our model, a substantial proportion of pre-
ferred codons is subject to such strong purifying selection
(s .. 1/Ne), that reduction in effective population size by
orders of magnitude due either to demographic shifts ormod-
ulation in the strength of genetic draft would still not abolish
CUB, as many preferred sites would still remain subject to
strong selection (s . 1/Ne). At the other extreme, a substan-
tial increase in effective population size would not generate
complete CUB as many preferred sites may not be subject to
purifying selection at all.

If this model is correct, the key question that remains is
what determines whether a particular synonymous site is
subject to strong, weak, or no selection in favor of preferred
codons. Specifically, the sites under very strong selection
might play a disproportionately important role by, for exam-
ple, being essential for cotranslational folding, transcription,
RNA stability, translational efficiency, or translational accu-
racy. Thiswould suggest that the location of such synonymous
sites should be largely conserved across species, as we in fact
detect to some extent by showing a correlation between
polymorphism ratio and phylogenetic constraint in the
Drosophila genus (Figure 2).

Conclusion

We find evidence that CUB is under a substantial amount of
purifying selection in D. melanogaster, and that this is not
limited to weak selection. Our finding that there is a distri-
bution of fitness effects for CUB, ranging from weak to strong
selection, resolves the contradiction between the intermedi-
ate frequencies of preferred codons observed in most species,
and the population-size independence of said frequencies.
We also reconcile the observations that changes in synony-
mous codons can have large phenotypic effects, but that ge-
nomic methods have identified only weak selection. We
suggest that the reasons previous studies did not find evi-
dence for strong selection on CUB are methodological. Our
use of a test that includes the polymorphism level, while
controlling for mutation rate and linked selection, provides
sufficient power for identifying strong purifying selection.
While this study was performed in Drosophila, the impor-
tance of a new model of CUB is general, as both CUB and
the assumption of constant weak selection on CUB is

Figure 7 Polymorphism ratio by codon preference and exonic position.
Polymorphism ratio by class of codon preference and the position along
the exon (top) or the exon position along the gene (bottom). U: unpre-
ferred; P: preferred. Arrows separate ancestral (pre-arrow) and derived
(postarrow) states. Error bars are 2 SE.
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widespread. Further, this study underscores the importance
of CUB, and of synonymous variation in general, to the fitness
of an organism, and opens research directions to further un-
derstand this phenomenon.
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