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ABSTRACT Adaptation in spatially heterogeneous environments results from the balance between local selection, mutation, and
migration. We study the interplay among these different evolutionary forces and demography in a classical two-habitat scenario with
asexual reproduction. We develop a new theoretical approach that goes beyond the Adaptive Dynamics framework, and allows us to
explore the effect of high mutation rates on the stationary phenotypic distribution. We show that this approach improves the classical
Gaussian approximation, and captures accurately the shape of this equilibrium phenotypic distribution in one- and two-population
scenarios. We examine the evolutionary equilibrium under general conditions where demography and selection may be nonsymmetric
between the two habitats. In particular, we show how migration may increase differentiation in a source–sink scenario. We discuss the
implications of these analytic results for the adaptation of organisms with large mutation rates, such as RNA viruses.
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SPATIALLY heterogeneous selection is ubiquitous, and con-
stitutes a potent evolutionary force that promotes the

emergence and the maintenance of biodiversity. Spatial var-
iation in selection can yield adaptation to local environmental
conditions; however, other evolutionary forces, likemigration
and mutation, tend to homogenize the spatial patterns of
differentiation, and thus impede the build up of local adap-
tation. Understanding the balance between these contrasting
evolutionary forces is a major objective of evolutionary bi-
ology theory (Slatkin 1978; Savolainen et al. 2013; Whitlock
2015) and could lead to a better understanding of the speci-
ation process and the evolutionary response to global change
(Doebeli and Dieckmann 2003; Leimar et al. 2008. In this
article, we consider a two-habitat model with explicit demo-
graphic dynamics as in Meszéna et al. (1997), Day (2000),
Ronce and Kirkpatrick (2001), and Débarre et al. (2013). We
assume that adaptation is governed by a single quantitative

trait where individuals reproduce asexually. Maladapted pop-
ulations have a reduced growth rate, and, consequently,
lower population size. In other words, selection is assumed
to be “hard” (Christiansen 1975; Débarre and Gandon 2010)
as the population size in each habitat is affected by selection,
mutation, and migration. These effects are complex because,
for instance, nonsymmetric population sizes affect gene flow
and adaptation feeds back on demography and population
sizes (Nagylaki 1978; Meszéna et al. 1997; Day 2000;
Ronce and Kirkpatrick 2001; Lenormand 2002; Débarre
et al. 2013). To capture the complexity of these feed backs, it
is essential to keep track of both the local densities and the
distributions of phenotypes in each habitat. Note that this
complexity often led to the analysis of the simplest ecological
scenarios, where the strength of selection, migration, and
demographic constraints are assumed to be the same in the
two habitats (we will refer to such situations as symmetric
scenarios). See, however, Holt and Gaines (1992), García-
Ramos and Kirkpatrick (1997), Gomulkiewicz et al. (1999),
and Holt et al. (2003) for the analysis of the effect of asym-
metric migration from a source habitat on the dynamics of
adaptation in a peripheral (i.e., sink) habitat. Three different
approaches have been used to analyze these two-population
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models. Each of these approaches rely on a set of restrictive
assumptions regarding the relative influence of the different
evolutionary forces acting on the evolution of the population.

First, under the assumption that the rate of mutation is
weak relative to selection, it is possible to use the Adaptive
Dynamics framework [seeMeszéna et al. (1997); Day (2000);
Szilágyi and Meszéna (2009); Débarre et al. (2013), but also
Results for a presentation of this framework]. This analysis
captures the effect of migration and selection on the long-
term evolutionary equilibrium. In particular, this approach
shows that weak migration relative to selection promotes
the coexistence of two specialist strategies (locally adapted
to each habitat). In contrast, when migration is strong rela-
tive to selection, a single generalist strategy is favored. The
main limitation of this approach is that it relies on the as-
sumption that the mutation rate is vanishingly small, which
results in a very limited amount of genetic variability. Atmost,
two genotypes can coexist in this two-habitat model.

Second, Quantitative Genetics formalism, based on com-
putation of the moments of phenotypic distribution, has been
used to track evolutionary dynamics in heterogeneous hab-
itatswhen there is a substantial level of phenotypicdiversity in
each population (Ronce and Kirkpatrick 2001). This model
considers sexual reproduction with a quantitative trait [con-
sidering multiple loci with small effects (Fisher 1919)]. How-
ever, similar types of equations, describing the dynamics of
the moments of phenotypic distribution, can also be derived
in the case of asexual reproduction considering large muta-
tion rates [see Débarre et al. (2013) and below]. This formal-
ism allows the recovery of classical migration thresholds
below which specialization is feasible. But the analysis of
Ronce and Kirkpatrick (2001) also reveals the existence of
evolutionary bistability, where transient perturbations of the
demography can have long-term evolutionary consequences
for specialization. Yet, the assumption of the shape of the
phenotypic distribution (assumed to be Gaussian in each hab-
itat) is a major limitation of this formalism.

Third, attempts to account for other shapes of phenotypic
distributions in heterogeneous environments have been de-
veloped recently (Yeaman and Guillaume 2009; Débarre
et al. 2013, 2015). These models highlight that calculations
based on the Gaussian approximation, which neglects the
skewness of the equilibrium phenotypic distribution, under-
estimate the level of phenotypic divergence and local adap-
tation. Yet, there is currently no model able to accurately
describe the build up of non-Gaussian distributions. The only
attempts to model this distribution describe the phenotypic
distributions in each habitat as the sum of two Gaussian dis-
tributions Yeaman and Guillaume 2009; Débarre et al. 2013.
These models, however, yield only approximate predictions
on long-term evolutionary equilibria.

Here, we develop an alternative formalism that yields
population size and phenotypic distribution in each habitat
at the equilibrium between selection, mutation, and migra-
tion. InMaterials and Methods, we present our two-population
model. For heuristic reasons, we next provide analysis of the

equilibrium between selection and mutation in a single pop-
ulation. This provides an illustration of our approach in a sim-
ple scenario, and shows how this analysis can go beyond the
classical Gaussian approximation. Next, we extend this ap-
proach to a two-population scenario, wheremigration can also
influence phenotypic distribution, and we derive approxima-
tions for the level of adaptation under a migration–selec-
tion–mutation balance. We also explore the effects of
nonsymmetric constraints on selection, migration, or de-
mography between the two habitats. We evaluate the ac-
curacy of these approximations by comparing them to
numerical solutions of our deterministic model, and we
show that our approach improves previous attempts to
study the interplay between adaptation and demography
in heterogeneous environments. We contend that our
results are particularly relevant for organisms with high
mutation rates and may help to understand the within-
host dynamics of chronic infections by RNA viruses
(Drake and Holland 1999; Sanjuán et al. 2010).

The present work has been prepared in parallel to the
mathematical article Mirrahimi 2017 where we provide the
mathematical basis and proofs for the method used here. See
also Gandon and Mirrahimi (2017), where those mathematical
resultswere announced. The aimof the present paper is to show
how this approach can help to understand the balance between
different evolutionary forces. We present several new biological
scenarios, and derive new results that help grasp the interplay
between different evolutionary forces and demography.

Materials and Methods

We model an environment containing two habitats that we
label 1 and 2 (Figure 1). The population is structured by
a quantitative trait z. In each habitat i there is stabilizing
selection on the trait z for an optimal value ui (for habitat
i ¼ 1; 2). The growth rate in habitat i is denoted by riðzÞ;
which has its maximum rmax;i when z ¼ ui. In the following,
we will focus mainly on the following quadratic stabilizing
selection function (Bürger 2000, pp. 117–121 and chapter
VI):

riðzÞ ¼ rmax;i 2 siðz2uiÞ2: (1)

We denote by si the selection pressure in habitat i. Without
loss of generality, we assume that u1 ¼ 2 u2 ¼ 2 u. But our
approach could be used with other stabilizing selection func-
tions (see Equation 12 below, where another selection func-
tion is studied in the case of one population).

Reproduction is assumed to be asexual. Offspring in-
herit the phenotype of their parent (i.e., no environmental
variance), and we consider a continuum of alleles model
(Kimura 1965). Mutations occur with a constant rate U
(i.e., mutations are not associated with reproduction), and
add an increment y to the parents’ phenotype; we assume
that the distribution of these mutational effects is given by
KðyÞ, with mean 0 and variance equal to 2Vm. We also
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assume that individuals disperse out of habitat iwith ratemi.
Rates of migration are assumed to be independent of individ-
uals’ phenotypes.

Let niðt; zÞ be the phenotypic density in habitat i at time t.
The dynamics of this density in each habitat is given by (for
i ¼ 1; 2 and j ¼ 2; 1):

@niðt;zÞ
@t ¼ U

�Z þN

2N
niðt; z2 yÞKðyÞdy2 niðt; zÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mutation
                                     

þ niðt; zÞ
�
riðzÞ2 ki

Z þN

2N
niðt; yÞdy

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth

þ mjnjðt; zÞ2miniðt; zÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
migration

:

(2)

The first term on the right-hand side of the above equation
corresponds to the effect of mutations. The second term
corresponds to the logistic growth that results from the bal-
ance between reproduction given by Equation 1 and density
dependence, where ki measures the intensity of competition
within each habitat. The last term corresponds to the dis-
persal of individuals between habitats.

If we assume that the variance of the mutation distri-
bution is small relative to the mutation rate U, we can
consider an approximate model where we replace the
mutation term in Equation 2 by a diffusion [see Kimura
(1965); Lande (1975) and the more recent article by
Champagnat et al. 2008, where the diffusion term has
been derived directly from a stochastic individual based
model]. See also Bürger (2000, pp. 239–241) for a dis-
cussion on the domain of the validity of such model. Our
model then becomes:

@niðt; zÞ
@t

¼UVm
@2niðt; zÞ

@z2
þ niðt; zÞ

�
riðzÞ2 ki

Z þN

2N
niðt; yÞdy

�
þmjnjðt; zÞ2miniðt; zÞ:

(3)

The total population sizes in each habitat is given by:

NiðtÞ ¼
Z þN

2N
niðt; zÞdz; for i ¼ 1; 2: (4)

In otherwords, niðt; zÞ refers to the density of individuals with
phenotype z in habitat i, while Ni refers to the total density of
the polymorphic population in habitat i.

Data availability statement

No biological data are provided in this article. The authors
state that all data necessary for confirming the conclusions
presented in the article are represented fully within the arti-
cle. Supplemental material available at figshare: https://
doi.org/10.25386/genetics.11365982.

Results

One population: the selection–mutation equilibrium

In this section,we start bya simple scenariowithnomigration.
This one-population example provides a good introduction to
ourmethod.Thedynamicsof thephenotypicdensity inasingle
habitat is given by:

@n0ðt; zÞ
@t

¼ UVm
@2n0ðt; zÞ

@z2
þ n0ðt; zÞðr0ðzÞ2 kN0ðtÞÞ; (5)

where N0 is the total population size:

N0ðtÞ ¼
Z þN

2N
n0ðt; yÞdy:

For this scenario, we consider amore general form of growth
rate r0ðzÞ than in Equation 1. We suppose only that r0ðzÞ is
maximized for an optimal trait z0. In the following, we pres-
ent our two-step approach. First, we analyze the evolution-
ary equilibria of the problem when the rate of mutation is
small, and we identify the evolutionary stable strategy
(ESS). Second, we use this ESS to derive an approximation
for the stationary solution of Equation 5 when mutation
is more frequent and maintains a standing variance at
equilibrium.

Adaptive dynamics and ESSs

In this section, we assume that mutations are very rare, such
that a mutation is fixed or goes extinct before a newmutation
arises in the population. The phenotypic distribution results
from a collection of spikes. Such spikes are gradually replaced
by others with the arrival of new mutations and through
a competitive procedure. The theory of Adaptive Dynamics
(Geritz et al. 1998) is based on the study of the stable equi-
librium distribution and the localization of the spikes of such
equilibrium, known as ESSs. Note that, in this first step, we
do not make any assumption regarding the effects of these
mutations on the phenotype. We are interested in the iden-
tification of the global ESSs, i.e., when the resident popula-
tion cannot be invaded by any mutation, no matter what its
effect.

In absence of migration, the phenotype z0 constitutes
a globally stable evolutionary strategy. Indeed, when such
monomorphic population reaches its demographic equi-
librium, the total population size is given by N*

0 ¼ rðz0Þ
k .

The fate of a mutant with phenotype zm introduced into
such a resident population is determined by its fitness (i.e.,
per capita growth rate minus density dependence) given
by:

w
�
zm;N*

0

�
¼ r0ðzmÞ2 k0N*

0 ,w
�
z0;N*

0

�
¼ 0: (6)

No mutant trait zm can indeed invade the population since
r0ðzÞ takes its maximum at z0.
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Equilibrium distribution with mutation

The ESS z0 corresponds to the long-term evolutionary out-
come in a scenario where all phenotypic strategies are pres-
ent initially, but where mutation is absent. In the following,
we study the impact of mutation on the ultimate evolutionary
equilibrium of the population.

We introduce a newparameter, e ¼ ffiffiffiffiffiffi
Vm

p
. Hence,we replace

Vm by e2; and we approximate the phenotypic density n*e;0ðzÞ,
the equilibriumof Equation 5, in terms of e (where the subscript
e in n*e;0 indicates the dependence of the phenotypic density on
the parameter e). Our objective is to provide an approximation
of the phenotypic density when the effect of mutation (mea-
sured by e) is small, while the mutation rate can be large.

To study n*e;0ðzÞ;we will use a method based on Hamilton-
Jacobi equations (see Equation A.5), which was developed by
the mathematical community during the last decade to study
selection–mutation models, when the effect of mutations
is vanishingly small. This method was first suggested by
Diekmann et al. (2005), and was developed for the case of
homogeneous environments in Perthame and Barles (2008)
and Barles et al. (2009). However, those works, which are
addressed to the mathematical community, were focused
mainly on the limited case where the effect of mutations, e,

is vanishingly small. Here, we go further than previous stud-
ies, and characterize the phenotypic distribution when the
mutations have non-negligible effects.

The method is based on the following transformation:

n*e;0ðzÞ ¼
1ffiffiffiffiffiffiffiffi
2pe

p exp
�
ue;0ðzÞ

e

�
: (7)

The introduction of the function ue;0ðzÞ is a mathematical
trick. It is indeed easier to first provide an approximation of
ue;0ðzÞ rather than directly studying n*e;0ðzÞ.

Note that a first approximation of the population’s phe-
notypic density, which is commonly used in the theory of
Quantitative Genetics, is a Gaussian approximation of the
following form around z*:

n*e;0ðzÞ � N*
e;0  N

�
z*; e  s2

�
: (8)

The Gaussian approximation is as if we had imposed ue;0ðzÞ to
be a quadratic function of z, that isue;0ðzÞ ¼ e  log

�
N*
e;0

s

�
2 ðz2z*Þ2

2s2 .

Our objective, however, is to obtain more accurate results than
Equation 8, and to approximate ue;0 without making an a priori
Gaussian assumption. To this end, we postulate an expansion
for ue;0ðzÞ in terms of e:

ue;0ðzÞ ¼ u0ðzÞ þ ev0ðzÞ þ O
�
e2
	
; (9)

and we try to compute the coefficients u0ðzÞ and v0ðzÞ. These
terms can indeed be computed explicitly, and they lead to an
approximation of the total population size N*

e and the pheno-
typic density n*e ðzÞ; which we will henceforth call our first
approximation (see the supplementary information A.1.1
for these derivations).

In order to provide more explicit formula for the moments of
order k$ 1 of the population’s distribution in terms of the
parameters of the model, we also provide a second approxima-
tion. This second approximation, instead of using the values of u0
and v0 in thewhole domain, is based on the Taylor expansions of
u0 and v0 around the ESS points (see the supplementary infor-
mation, Section A.1.2). Our second approximation is, by defini-
tion, less accurate than the first. We illustrate below the quality
of these different approximations under two different scenarios.

Quadratic growth rate:We first consider a quadratic growth
rate as in Equation 1:

r0ðzÞ ¼ rmax;0 2 s0ðz2u0Þ2: (10)

In this case, our first approximation yields the Gaussian dis-
tribution (Equation 8) with:

N*
e;0 � 1

k0

�
rmax;0 2 e

ffiffiffiffiffiffiffiffi
s0U

p �
; s2 �

ffiffiffiffi
U

pffiffiffiffi
s0

p : (11)

Note that this Gaussian distribution is actually an exact
equilibrium of Equation 3, and the above � signs can indeed

Figure 1 Schematic representation of the two habitat model. The top
figure shows the growth rate (fitness) in each habitat as a function of the
phenotypic trait z. In habitat i, the growth rate is assumed to be maxi-
mized at z ¼ ui ; and the strength of selection is governed by si (see
Equation 1). Here, we illustrate a scenario with nonsymmetric fitness
functions. The bottom figure shows the phenotypic density in each hab-
itat (light blue and light red in habitats 1 and 2, respectively). Migration
from population i is governed by the parameter mi ; and tends to reduce
the differentiation (i.e., the difference between the mean phenotypes)
between populations.
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be replaced by equalities [see Kimura (1965) and Bürger
(2000, Chapter IV)]. For the derivation of this result, see
the supplementary information, Section A.1.1.

An asymmetric growth rate:Wenext consider a growth rate
that is not symmetric:

r0ðzÞ ¼ rmax;0 2 s0ðz2u0Þ2
�
aþ ðz2u02bÞ2

�
: (12)

In this case, thephenotypicdistributiondoesnothaveaGauss-
ian profile, and our approximation yields:

N*
e;0 � 1

k0

�
rmax;0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0U
�
aþ b2

�r
  e

�
;

n*e;0ðzÞ �
1ffiffiffiffiffiffiffiffi
2pe

p exp
�
u0ðzÞ þ ev0ðzÞ

e

�
;

where the values of u0 and v0 can be computed explicitly (see
the supplementary information, Section A.1.1). In Figure 2
we plot this first approximation, and compare it with the
exact distribution that we derived numerically.

We can also use our second approximation to obtain
analytic expressions for the mean phenotypic trait (see
the supplementary information, Section A.1.2 for the
derivation):

m*
e;0 ¼ 1

N*
e;0

Z
zn*e;0ðzÞdz ¼ u0 þ 2b

ffiffiffiffi
U

p
effiffiffiffi

s0
p �

aþ b2
	3=2 þ O

�
e2
	
;

the mean variance:

s*2
e;0 ¼ 1

N*
e;0

Z �
z2m*

e;0

�2
n*e;0ðzÞdz ¼

ffiffiffiffi
U

p
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0
�
aþ b2

	q þ O
�
e2
	
;

and the third central moment:

c*
e;0 ¼ 1

N*
e;0

Z �
z2m*

e;0

�3
n*e;0ðzÞdz ¼

2bUe2

s0
�
aþ b2

	2 þ O
�
e3
	
:

In Table 1, we show that our two approximations capture
accurately the first three moments of the equilibrium distri-
bution using the parameters that we used in Figure 2. As
expected, the first approximation is more accurate, but the
analytic expressions of the second approximation given above
allow us to capture the influence of the parameters of the
model.

Two populations: the selection–mutation–
migration equilibrium

Next, we return to analysis of the stationary solution of Equa-
tion 3, which results from the equilibrium between selection,
mutation, and migration in each habitat. Using Equation
1 and Equation 3, one can derive dynamical equations
for the size of the population and the mean phenotype
ðmi ¼ 1

Ni

R
zniðt; zÞdzÞ:

d
dt
Ni ¼ Ni

�
rmax;i 2 kiNi

	
2 siNi

�
ðmi2uiÞ2þs2

i

�
þmjNj2miNi;

d
dt
mi ¼ 2 si

�
2ðmi2 uiÞs2

i þ ci
	 þmj

Nj

Ni

�
mj 2mi

�
;

where s2
i and ci are the variance and the third central mo-

ment of the phenotypic distribution, respectively. These two
quantities are also dynamical variables, and their dynamics
are governed by higher moments of the phenotypic distribu-
tion. But this dynamical system is not closed, and these
higher moments are also dynamical variables that depend
on additional moments. Various approximations, however,
have been used to capture its behavior. Typically, many
results are based on the Gaussian approximation, which fo-
cuses on the dynamics of the mean and the variance and
discards all higher cumulants of the distribution (Bürger
2000; Rice 2004). Yet several authors have pointed out that
neglecting the skewness of the distribution can underestimate
the amount of differentiation and local adaptationYeaman and
Guillaume 2009; Débarre et al. 2013, 2015. Indeed, in the case
of symmetrical habitats, that is when m1 ¼ m2 ¼ m; k1 ¼
k2 ¼ k; s1 ¼ s2 ¼ s; rmax;1 ¼ rmax;2 ¼ rmax, one can readily ob-
tain the size and themean trait of the population at equilibrium
(the equilibrium is indicated by a superscript *). Using the fact

Figure 2 The selection–mutation equilibrium of the phenotypic density
ne;0ðzÞ in a single population. We plot the exact phenotypic density at
equilibrium obtained from numerical computations of the equilibrium of
Equation 5 (blue dots) together with our first approximation (full black
line) with the growth rate given in Equation 12. The vertical dotted line
indicates the mean of the phenotypic distribution. Note the skewness of
the equilibrium distribution that is accurately captured with our approx-
imation (see also Table 1). In this figure, to compute the equilibrium
numerically, we solved the dynamic problem numerically (Equation 5)
and kept the solution obtained for a long time after the equilibrium
has been reached. Parameter values: rmax ¼ 3, s0 ¼ 1; u ¼ 20:5,
k ¼ 1, a ¼ 0:2, b ¼ 1, U ¼ 1, e ¼ 0:1.

Adaptation in Heterogeneous Environments 483



that N*
1 ¼ N*

2 ¼ N*, m*
1 ¼ 2m*

2, s*
1 ¼ s*

2 ¼ s* and
c*
1 ¼ 2c*

2 ¼ c*, we obtain:

N* ¼ 1
k

 
rmax2 s

 
ð2mu2sc*Þ2
4ðmþ gs*  2Þ2

þ s*  2

!!
;

m*
1 ¼ 2s

�
c* þ 2us*  2

	
2ðmþ ss*  2Þ :

The differentiation between the two habitats is thus (Figure
1):

m*
2 2m*

1 ¼ s
�
c* þ 2us*  2

	
mþ ss*  2

: (13)

There is, however, no analytic prediction of the magnitude of
the different moments of the phenotypic distribution, except
in the limiting case when the mutation rate is extremely low
(Débarre et al. 2013).

Next, we follow the two-step approachwe used to obtain
the stationary phenotypic distribution in a single popula-
tion. First, we analyze the evolutionary equilibria of the
system when mutations are rare using the Adaptive Dy-
namics framework.We identifymonomorphic or dimorphic
globally ESSs. Second, we use these ESSs to derive approx-
imations of the stationary solution of Equation 3 when
mutation is more frequent and maintains a standing vari-
ance at equilibrium.

Adaptive dynamics and evolutionary stable strategies

We consider a resident population at a demographic equilib-
rium set by the phenotypic densities of the resident in both
habitats (see the supplementary information, Section A.2.1).
Wewant to determine the fate of amutant with phenotype zm
introduced into this resident population. The ability of the
mutant to invade is determined by its fitness, given by:

wiðzm;NiÞ ¼ riðzmÞ2 kiNi; for i ¼ 1; 2: (14)

To take into account migration between habitats, we intro-
duce an effective fitness, which corresponds to the growth
rate of a trait in the whole environment (see Caswell 1989;
Metz et al. 1992; Meszéna et al. 1997). The effective fitness
Wðzm;N1;N2Þ; which corresponds to the effective growth rate

associated with trait zm in the resident population ðn1; n2Þ; is
the largest eigenvalue of the following matrix:

Aðzm;N1;N2Þ ¼
�
w1ðzm;N1Þ2m1 m2

m1 w2ðzm;N2Þ2m2

�
:

(15)

After some time, the dynamical system will reach a globally
stable demographic equilibrium. Because there are two hab-
itats, we expect that, at most, two distinct traits can coexist.
With an analysis of the effective fitness W, we charac-
terize such equilibrium corresponding to the evolutionary
stable strategy (see the supplementary information, Section
A.2.1.1). This equilibrium is indeed either monomorphic�
with phenotype zM* and total population size NM*

i

	
or di-

morphic
�
with phenotypes zD*I and zD*II and total population

size ND*
i , where the subscripts I and II indicate that the phe-

notype is best adapted to habitat 1 and 2, respectively
	
.

Equilibrium distribution with mutation

In the following, we allow the mutation rate to increase and
we study the impact ofmutations on theultimate evolutionary
equilibrium of the phenotypic densities, i.e., the stationary
solution of Equation 3. We present below the general princi-
ple of the approach before examining specific case studies.

As above, we introduce the parameter e ¼ ffiffiffiffiffiffi
Vm

p
and we

approximate the phenotypic density n*e;iðzÞ, the equilibrium of
Equation 3 with Vm ¼ e2, in terms of e. Our objective is to
provide an approximation of the phenotypic density in each
habitat when the effect of mutation (measured by e) is small,
while the mutation rate can be large.

We use analogous transformation to (7):

n*e;iðzÞ ¼
1ffiffiffiffiffiffiffiffi
2pe

p exp
�
ue;iðzÞ

e

�
: (16)

Our objective is then to estimate ue;iðzÞ. We proceed as in the
one-population scenario, and we postulate an expansion for
ue;i in terms of e:

ue;iðzÞ ¼ uiðzÞ þ eviðzÞ þ O
�
e2
	
; (17)

and we try to compute the coefficients uiðzÞ and viðzÞ . First,
we can show that, when there is migration in both directions
(i.e.,mi . 0 for i ¼ 1; 2), the zero-order terms are the same in
both habitats: u1ðzÞ ¼ u2ðzÞ ¼ uðzÞ (see the supplementary
information, Section A.2.1.2). We can indeed compute ex-
plicitly uðzÞ; which is given by (A.23) in the monomorphic
case and by (A.24) in the dimorphic case. As we observe in
the equations (A.23) and (A.24), uðzÞ attains its maximum
(which is equal to 0) at the ESS points identified in the pre-
vious subsection. This means that the peaks of population
distribution are around the ESS points (zM* in the case of
the monomorphic ESS and ðzD*I ; zD*II Þ for the dimorphic
ESS). Note that the fact that u1ðzÞ ¼ u2ðzÞ ¼ uðzÞmeans that
the peaks of the population distribution are placed approxi-
mately at the same points (ESS points) in both habitats.

Table 1 First three moments of the phenotypic distribution at
mutation–selection equilibrium in a single population

Exact value First approximation
Second

approximation

Mean: m*
e;0 20.29 20.29 20.35

Variance: s*2
e;0 0.13 0.14 0.09

Third central
moment: c*

e;0

0.02 0.02 0.01

We compare the values from the exact numerical resolution of Equation 5 and our
two approximations using the growth rate given in Equation 12 (see also Figure 2).
Parameter values: rmax ¼ 3, s0 ¼ 1; u ¼ 2 0:5, k ¼ 1, a ¼ 0:2, b ¼ 1, U ¼ 1, and
e ¼ 0:1
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However, the size of the peaks may be different since v1ðzÞ is
not necessarily equal to v2ðzÞ.

We are also able to compute the first-order term viðzÞ
(see the supplementary information, Section A.2.1.2).
This allows us to obtain a first approximation of the phe-
notypic density n*e;iðzÞ. This approximation of the station-
ary distribution is very accurate (see, for instance, Figure
4).

As in the one population scenario, we derive more explicit
formula for the moments of order k$1 of the stationary
phenotypic distribution. This second approximation, instead
of using the values of uðzÞ and viðzÞ in the whole domain, is
based on the computation of the Taylor expansions of uðzÞ
and viðzÞ around the ESS points (see the supplementary in-
formation, Section A.2.1.3).

Case studies

Symmetric fitness landscapes:We focus first on a symmetric
scenario, where, apart from the position of the optimum, the
two habitats are identical: m1 ¼ m2 ¼ m; k1 ¼ k2 ¼ k; s1 ¼
s2 ¼ s; rmax;1 ¼ rmax;2 ¼ rmax. In this special case, it is possible
to fully characterize the evolutionary equilibrium.

When migration rate is higher than the critical migration
threshold:

m.mc ¼ 2su2 (18)

migration prevents the differentiation of the trait between the
two habitats (see the supplementary information, Subsection
A.2.1.1). The only evolutionary equilibrium, when the mu-
tation rate is vanishingly small, is monomorphic, and satisfies
zM* ¼ 0 and nM*

1 ðzÞ ¼ nM*
2 ðzÞ ¼ NM*dðzÞ, where dð:Þ is the

dirac delta function and NM* ¼ 1
kðrmax 2 su2Þ.

Monomorphic case: Let us suppose that mc ¼ 2su2 #m.
Then, zM* ¼ 0 is the only ESS and NM* ¼ 1

kðrmax 2 su2Þ. Then,
we can provide our first approximation of the phenotypic
density ne;iðzÞ following the method introduced above (Fig-
ure 3). Moreover, defining f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2su2=m

q
, we can use the

second approximation to obtain an analytic formula for the
moments of the stationary state:

NM*
e;1 ¼ NM*

e;2 ¼
Z

nM*
e;i ðzÞdz ¼

1
k

�
rmax2 su2

	
2 e 

ffiffiffiffiffi
Us

p
  f

k
þ O

�
e2
	
;

m
M*
e;1 ¼ 1

NM*
e;1

Z
znM*

e;1 ðzÞdz ¼2 e

ffiffiffiffiffi
Us

p
  u

mf
þ O

�
e2
	
;

m
M*
e;2 ¼ 1

NM*
e;2

Z
znM*

e;2 ðzÞdz ¼ e

ffiffiffiffiffi
Us

p
  u

mf
þ O

�
e2
	
;

s
M*  2
e;1 ¼ s

M*  2
e;2 ¼ 1

NM*
e;i

Z �
z2m

M*
e;i

�2
nM*
e;i ðzÞdz ¼

e
ffiffiffiffi
U

pffiffi
s

p
f
þ O

�
e2
	
;

c
M*
e;i ¼ 1

N
M*
e;i

Z �
z2m

M*
e;i

�3
nM*
e;i ðzÞdz ¼ O

�
e3
	
:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(19)

These results are consistent with Equation 13. Note that the
equilibrium variance in each habitat, sM*2

e;i � e
ffiffiffi
U

pffiffi
s

p
f
; is larger

than the equilibrium variance maintained in the absence of
heterogeneity between the habitats (cf. Equation 11). This
increase in the equilibrium variance comes from f, which
depends on dispersion and the heterogeneity between the
two habitats. The variance of the distribution increases as f
decreases. When f ¼ 0; the approximation for the variance
becomes infinitely large. Indeed, this corresponds to the
threshold value of migration, below which the above approx-
imation collapses because the distribution becomes bimodal.
In this case, we have to switch to analysis of the dimorphic
case. Note that the differentiation between habitats also
depends on f. Some differentiation emerges even when the
migration rate is above the critical migration rate,mc (Figures
3 and 4). In Figure 4 we provide a comparison of the results
from the first and the second approximations. Our second ap-
proximation yields convincing results when the parameters
are such that we are far from the transition zone from mono-
morphic to dimorphic distribution. This approximation is in-
deed based on an integral approximation, which is relevant
only when the population distribution is relatively sharp
around the ESS points. This is not the case in the transition
zone unless the effect of the mutations, i.e., e, is very small.

Figure 3 Selection–mutation–migration equilibrium of the phenotypic
densities ne;iðzÞ in the two habitats in a symmetric scenario. We plot
the exact phenotypic densities at equilibrium obtained from numerical
computations of the equilibrium of Equation 3 (blue dots) together with
our first approximation (full black line) in a case where the distribution is
unimodal in each habitat. We also plot the approximation given in
Débarre et al. (2013) (red dashed line). Note that our approximation
captures the emergence of some differentiation, even though we are
above the critical migration rate leading to the evolution of a dimorphic
population. In the presence of large mutation rates, the population dis-
tribution is indeed shifted to the left (respectively right) in the first (re-
spectively second) habitat, while Débarre et al. (2013) provided the same
approximation for both habitats. Our calculation yields also better approx-
imations for the variance of the distribution in each habitat (Débarre et al.
2013 underestimates this variance). In this and the following figures, to
compute the equilibrium numerically, we have solved the dynamic prob-
lem numerically (Equation 3) and kept the solution obtained for a long
time after equilibrium has been reached. Parameter values: m ¼ 1:5,
rmax ¼ 3, s ¼ 2; u ¼ 0:5, k ¼ 1, U ¼ 1, e ¼ 0:1.
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Dimorphic case: When m,mc, the only globally stable
evolutionary equilibrium is dimorphic, which yields the
following ESS: zD*I ;   zD*II g

n
with zD*I ¼ 2zD*II ¼ 2zD* and

zD* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2u4 2m2

p
2su . When e ¼ 0; this yields the following phe-

notypic densities at equilibrium: nD*i ðzÞ ¼ nI;idðz2 zD*I Þþ
nII;i   dðz2 zD*II Þ (analytic expressions for nI;j and nII;j are given
in the supplementary information, SectionB.1).When e. 0;we
can use our first and second approximations to obtain con-
vincing approximations of the phenotypic distribution and
its moments (see Figure 4). Our first approximation
improves the Adaptive Dynamics predictions in a broad
range of the parameter space, and, as pointed out above,
our second approximation is pertinent when the parameters
are such that we are far from the transition zone from dimor-
phic to monomorphic distribution. The analytic expressions
for the local moments of the stationary distribution in each
habitat, obtained from our second approximation, are given in
the supplementary information, Section B.3.

Nonsymmetric scenarios: A general nonsymmetric scenario:
In a nonsymmetric scenario, there is also a unique globally
stable evolutionary strategy that is either monomorphic or
dimorphic. There is still a threshold value of migration, above
which the maintenance of a dimorphic polymorphism is
impossible: D ¼ m1m2

4s1s2u4
$ 1. Note that this condition general-

izes the condition in the symmetric case (i.e., when m1 ¼ m2

and s1 ¼ s2). However, for the ESS to be dimorphic, the condi-
tion D,1 is not enough and two other conditions should also
be satisfied. These conditions (i.e., h1 ,b2rmax;2 2a1rmax;1 and
h2 ,b1rmax;1 2a2rmax;2 with the constants ai,bi and hi
depending on the parameters m1, m2, s1, s2, k1, k2 and u, see
the supplementary information, Section B.2) guarantee that the
qualities of the habitats are not very different. Indeed, if one
habitat has a higher quality it is likely to overwhelm the dynam-
ics of adaptation in the other habitat. This will yield a mono-
morphic equilibrium biased toward the high-quality habitat.
Figure 5 illustrates that a polymorphism is maintained only
in a range of parameter values where the two habitats are

Figure 4 Effects of migration in a symmetric scenario on (A) the total population size (N*
e;1) in habitat 1, (B) the differentiation between habitats

(m*
e;2 2m*

e;1), (C) the variance (s*2
e;1), and (D) the third central moment of the phenotypic distribution (c*

e;1) in habitat 1 (see Equation 19 and Section B.3
for the definition of these quantities and the analytic formula obtained from our second approximation). The dots refer to the numerical resolutions of
the problem with e ¼ 0:05, the red line indicates the case where e ¼ 0, while the lines in black refer to our two approximations when e ¼ 0:05 (the
dashed line for the first approximation and the full line for the second approximation). The vertical gray line indicates the critical migration rate below
which dimorphism can evolve in the Adaptive Dynamics scenario. Note that both approximations predict the same total population size. Other
parameter values: rmax ¼ 1, s ¼ 2, u ¼ 0:5, k ¼ 1, and U ¼ 1.
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relatively similar. Interestingly, in spite of the asymmetry
of the two habitats, the locations of the two peaks of the
phenotypic distribution are always symmetric, and, conse-

quently, zD*1 ¼ 2 zD*2 ¼ 2 zD*; where: zD* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð12DÞ

q
.

The symmetric locations of the peaks is indeed a consequence
of the choice of the quadratic stabilizing selection (Equation
1). See the supplementary information, Section B.1 for the
expressions of the densities in each habitat, and Section
A.2.1.1 for the conditions leading to this stable equilibrium.

A source–sink scenario: An extreme case of asymmetry
occurs when one population (the source) does not receive
any migrant from the second population (the sink). For in-
stance, when m1 .0 and m2 ¼ 0; there is no immigration in
habitat 1. Note that this is a degenerate case. In contrast with
the above analysis, where both m1 and m2 are positive, we
have to provide an analysis of ESS for each habitat separately.
Moreover, computation of the equilibrium in presence of
mutations is slightly different because of this degeneracy
(see the supplementary information Section A.2.2).

The evolutionary outcome in the first habitat is obvious
because it depends only on selection acting in habitat 1: the
ESS is 2u and

N*
1 ¼ rmax;1 2m1

k1
: (20)

Moreover, the population’s phenotypic density, n*e;1; can be com-
puted explicitly: n*e;1 ¼ N*

e;1fe, where N
*
e;1 ¼ rmax;1 2m1 2 e

ffiffiffiffiffi
Us1

p
k1

and

fe is the probability density of a normal distribution
N
�
2u; e

ffiffiffi
U

pffiffiffi
s1

p
�
.

In habitat 2, the evolutionary outcome results from the
balance betweenmigration fromhabitat 1 and local selection.
Interestingly, migration has a nonmonotonic effect on adap-
tation in the sink (See Figure 6). Indeed, Figure 6A shows that
the population size in the sink is maximized for intermediate
values of migration. More migration from the source has
a beneficial effect on the demography of the sink, but it pre-
vents local adaptation. Yet, when migration from the source
becomes very large it limits the size of the population in the
source (see Equation 20). This limits the influence of the
source on the sink, and can even promote adaptation to the
sink. In fact, it is worth noting that differentiation between
the two habitats can actually increase with migration (Figure
6B). The level of migration from the source that prevents
local adaptation in the sink is given by the condition:

4s2u2rmax;2

k2
#

m1
�
rmax;1 2m1

	
k1

: (21)

Indeed, when condition Equation 21 is verified, themigration
from the source overwhelms local selection, and the evolu-
tionary stable strategy in the sink is z* ¼ 2 u. In contrast,
when condition Equation 21 does not hold, the effective
growth rate of the optimal trait u in the sink habitat is high
enough to compete with the trait2u coming from the source,
allowing coexistence between the two strategies. Note again

Figure 5 Maintenance of polymorphism and nonsymmetric adaptation as a function of the maximal growth rates rmax;1 and rmax;2 in the two habitats. In
(A) we examine a symmetric situation where all the parameters are identical in the two habitats: m1 ¼ m2 ¼ 0:5, s1 ¼ s2 ¼ 2, and k1 ¼ k2 ¼ 1. In (B)
we show a nonsymmetric case with the same parameters as in (A) except m1 ¼ 0:5 and m2 ¼ 0:7. The black area indicates the parameter space, where
the population is driven to extinction because the maximal growth rates are too low. In the gray area, some polymorphism can be maintained in the
two-habitat population as long as the difference in the maximal growth rates are not too high. When this difference reaches a threshold, polymorphism
cannot be maintained and the single type that is maintained is more adapted to the good-quality habitat (the habitat with the highest maximal growth
rate).
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that our two approximations (see supplementary information
sections A.2.2.2 for the derivation of the first approximation
and B.4 for the analytic formula for the moments of the phe-
notypic distribution derived from our second approximation)
provide very good predictions for the moments of the pheno-
typic distribution in the sink (Figure 6).

Discussion

The balance between selection, migration, and mutation
drives the dynamics of local adaptation in heterogeneous
environments. Here, we present a new theoretical approach
to obtain accurate approximations for the equilibrium phe-
notypic densities in a two-habitat environment. This analysis
goes beyond the Adaptive Dynamics framework because it
allows us to account for the effect of largemutation rates. This
analysis does not rely on the Gaussian approximation that
underlies many Quantitative Genetics models. Our analysis
yields analytic approximations that help provide a good un-
derstanding of thebalance between thedifferent evolutionary
forces in both symmetric and nonsymmetric scenarios.

In the symmetric scenario, we recover the classical results
from Quantitative Genetics in a single population (Lande
1975; Bürger 2000; Rice 2004) but expand this to spatially
heterogeneous scenarios. In particular, we capture the emer-
gence of differentiation between habitats when themigration
rate decreases. Whenmigration is strong relative to selection,
the stationary phenotypic density is unimodal in each habitat
but heterogeneous selection increases phenotypic variance
and differentiation (see Equation 19 and Figure 4). When
migration is close to the critical migration rate mc (see con-
dition Equation 18), we observe a shift between the pheno-
typic distributions of the two habitats. This pattern was not
detected in previous studies, but our method captures this
shift and improves the approximation of the variance of the
phenotypic distributions [see Débarre et al. (2013) and Fig-
ure 3]. When themigration rate is much smaller thanmc; and
selection is sufficiently strong between habitats, the equilib-
rium distribution in each habitat can be well approximated
as the sum of two distributions. But, unlike previous approx-
imations (Yeaman and Guillaume 2009; Débarre et al.
2013) these two distributions are non-Gaussian. We derive

Figure 6 Effects of migration in a source–sink scenario on (A) the total population size in the sink habitat, (B) the differentiation between habitats, (C)
the variance, and (D) the third central moment of the phenotypic distribution in sink. The dots refer to exact numerical computations when e ¼ 0:05, the
red line indicates the case where e ¼ 0 while the lines in black refer to our two approximations when e ¼ 0:05 (dashed line for the first approximation
and the full line for the second approximation). The vertical gray lines, atm1 ¼ 1 andm1 ¼ 2, indicate the critical migration rates where transition occurs
between monomorphism and dimorphism in the Adaptive Dynamics framework (see condition Equation 21). Note that both approximations predict the
same total population size. Other parameter values: rmax;1 ¼ 3, rmax;2 ¼ 1, s1 ¼ 3, s2 ¼ 2, k1 ¼ k2 ¼ 1, u ¼ 0:5, and U ¼ 1.
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approximations for the moments of these distributions. In
other words, this work generalizes previous attempts to
derive the distribution of a phenotypic trait at the mutation–
selection–migration equilibrium. Our results confirm the im-
portance of the skewness in the phenotypic distribution, and
improve predictions of measures of local adaptation in a het-
erogeneous environment.

In the nonsymmetric scenario, we show that the condition
for the maintenance of two specialized strategies is more
restrictive (Figure 5). Indeed, asymmetries promote a single
strategy that is more locally adapted to the habitat with
larger population size and/or lower immigration rate. The
impact of biased migration rates from a source population
into the adaptation of peripheral populations has been
discussed before (Holt and Gaines 1992; García-Ramos
and Kirkpatrick 1997; Gomulkiewicz et al. 1999; Holt et al.
2003; Akerman and Bürger 2014). Our approach, however,
yields a quantitative description of the shape of the phenotypic
distributions in both the source and the sink habitats. These
accurate predictions are key to understanding the effect of
different evolutionary forces on the level of adaptation in the
two habitats. For instance, the analysis of an extreme casewith
source–sink dynamics reveals the complex interplay between
migration, demography, and local selection. The maintenance
of a polymorphic equilibrium is possible when migration from
the source is either very weak or very strong. This result chal-
lenges the classical prediction where migration is always a ho-
mogenizing force reducing the differentiation amongpopulations
(Figure 6).

Our work illustrates the potential of a new mathematical
tool in thefield of evolutionary biology. In thiswork,weuse an
approach based on Hamilton-Jacobi equations [see (A.22)],
which has been developed, mostly by the mathematical
community, during the last decade to describe the asymp-
totic solutions of selection–mutation models, as the effect
of mutation vanishes. We refer to Diekmann et al. (2005),
Perthame and Barles (2008), and Mirrahimi (2011) for the
establishment of the basis of this approach. Note, however,
that previous studies were focused mainly on the limit case
where the effects of mutations are vanishingly small. In par-
ticular, they do not provide approximations of phenotypic
density and its moments when the effect of mutations, e, is
nonzero. In the present work, we go further than the previous
studies and characterize the phenotypic distributions when
the influx of mutations can alter significantly the shape of the
stationary distribution. Understanding the build up of this
distribution is particularly important when studying the ef-
fect of mutation on adaptation. Although mutation is the
ultimate source of adaptive variation, the accumulation of
deleterious mutations generates a load on the average fitness
of populations. This is particularly relevant in organisms like
RNA viruses that are characterized by very large mutation
rates (Drake and Holland 1999; Sanjuán et al. 2010). In fact,
the mutation loads of RNA virus is so high that it may even
lead some populations to extinction (Bull et al. 2007; Martin
and Gandon 2010). Our model can be used to accurately

capture the effect of increasing mutation rates on the
mutation load of a population living in a heterogeneous
environment (Figure 7). This heterogeneity may be par-
ticularly relevant in chronic infections by pathogenic
viruses that can adapt to different organs (Kemal et al.
2003; Ducoulombier et al. 2004; Sanjuán et al. 2004; Jridi
et al. 2006). A better understanding of the phenotypic distri-
bution at equilibrium in heterogeneous environments may
thus provide more accurate prediction on the critical mutation
rates that can ultimately lead within-host dynamics to patho-
gen extinction.

Our analysis of the equilibrium between selection,
migration, and mutation could be extended in several new
directions. More than two habitats could be considered,
or different growth rates and/or mutation kernels could be
used [see Mirrahimi (2013) and the supplementary informa-
tion, Section (A.3)]. The approach could also be used to an-
alyze situations away from the equilibrium. For instance, it
would be possible to track the dynamics of the distribution as
the population adapts to a new environment, or to a time-
varying environment (Lande and Shannon 1996). Hamilton-
Jacobi equations have indeed also been used to study time-
varying (but space homogeneous) environments (see, for in-
stance, Mirrahimi et al. 2015; Figueroa Iglesias and
Mirrahimi 2018). Finally, it is interesting to note that the
generalization of the present ecological scenario to model
the adaptation of sexual species in heterogeneous environ-
ments remains to be carried out. Our method could be
extended to allow for sexual reproduction within the frame-
work of the infinitesimal model (see Fisher 1919; Calvez et al.
2019). But this analysis falls beyond the scope of the present
paper.

Figure 7 Effect of increasing the mutation rate U on the total population
size in the symmetric scenario used in Figure 3 with m ¼ 0:5. The full line
indicates the approximation, and the dots are the results of exact numer-
ical computations. This figure illustrates that our approximation given by
the first line of Equation 19 captures reasonably well the effect of large
mutation rates on the mutation load in a two-habitat scenario where
there is differentiation and some local adaptation.
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