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Coordinated motion of cilia is a fascinating and vital aspect of very diverse
forms of eukaryotic life, enabling swimming and propulsion of fluid across
cellular epithelia. There are many questions still unresolved, and broadly
they fall into two classes. (i) The mechanism of how cilia physically transmit
forces onto each other. It is not known for many systems if the forces are
mainly of hydrodynamical origin, or if elastic forces within the cytoskeleton
are important. (ii) In those systems where we know that forces are purely
hydrodynamical, we do not have a framework for linking our understand-
ing of how each cilium behaves in isolation to the collective properties of
two or more cilia. In this work, we take biological data of cilia dynamics
from a variety of organisms as an input for an analytical and numerical
study. We calculate the relative importance of external flows versus internal
cilia flows on cilia coupling. This study contributes to both the open ques-
tions outlined above: firstly, we show that it is, in general, incorrect to
infer cilium–cilium coupling strength on the basis of experiments with exter-
nal flows, and secondly, we show a framework to recapitulate the dynamics
of single cilia (the waveform) showing classes that correspond to biological
systems with the same physiological activity (swimming by propulsion,
versus forming collective waves).

This article is part of the Theo Murphy meeting issue ‘Unity and diversity
of cilia in locomotion and transport’.
1. Introduction
Hydrodynamical coupling of oscillators is of interest owing to the extensive
range of natural systems where fluid is present, causing viscous forces that
can affect dynamics at large scales [1–3].

All eukaryotes, from simple unicellular life to complex vertebrates, share the
same organelle to induce fluid motion at the cellular scale. The common model
organisms include: Chlamydomonas, a single-cell alga with usually two flagella
swimming in a breaststroke style [4–9], andVolvox, another single-cell organism,
which lives in colonies. Volvox somatic cells are biflagellated [10,11], with the
colony as a whole displaying a large number of filaments. Paramecium is another
microswimmer and a popular model system of a single-cell multiciliated organ-
ism, i.e. where the cell growsmany cilia and these form a carpet with coordinated
beating dynamics, allowing the organism to swim [12–14]. In all cases, these
motile cilia perform periodic shape changes, beating typically at between 10
and 50Hz. Themolecular structure of cilia and flagella is conserved across eukar-
yotes, with only subtle ultrastructural differences, but more significant
differences in cilia length and inter-cilia distance. The shape of the cilia across
the beating cycle does vary significantly across organisms, and so does the
coordination observed between neighbouring cilia. In larger organisms, motile
cilia perform a variety of different functions. In mammals, they cover some of
the epithelia, where they are critical for driving fluid movement along surfaces.
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In larger animals, the cilia form carpets and are involved in
several crucial processes, such as assisting in ova transport
in the fallopian tubes and enabling circulation of cerebro-
spinal fluid in the brain [15], and they are integral to mucus
clearance, a critical aspect of defence against microbes and
dust in the lungs. For all these processes, synchronized
dynamics across cilia is essential.

Experiments on both the natural systems and the simpli-
fied driven systems have revealed hydrodynamically induced
mechanisms allowing switching between in-phase and anti-
phase steady-state behaviour, depending on the cilia beat
pattern [16,17], and a dependence on spatial separation
consistent with hydrodynamic coupling [2,17,18]. Other
experiments have revealed evidence of coupling beyond
that which is expected from purely the forces transmitted
by the fluid, and have postulated other coupling mechanisms
[4,19,20]. Examples include an internal elastic interaction or
some form of cell-body rocking [19,20].

Oscillatory systems are often probed through the appli-
cation of an external signal. In the context of hydrodynamic
systems, the external signal usually takes the form of an exter-
nal flow [21–24]. For biological systems, flows are often applied
either to probe a particular cell’s behaviour, or to align and
organize the system beforehand during cilia growth. This is
biologically relevant in the context of development, where
growing cells often experience flow in vivo. The basal body at
the base of a motile cilium is directional. Basal bodies have
been shown to align under external flows in both Xenopus
larvae and mouse brain cilia [15,22]. Aligning the basal
bodies leads to an increase in alignment of the cilia beating
plane. To better understand the underlying mechanics of a fla-
gellum, external flows have been applied to Chlamydomonas
[25,26]. The flows are applied either to determine the load
response and the effect of fluid viscosity, as in [26], or to infer
the coupling strength between the flagella themselves as in
[25]. Applying external flows is a non-invasive way to test a
living hydrodynamic oscillator directly.

In parallel to experiments on living systems, there has been
very fruitful theoretical work, especially in the last decade,
attempting to understand how the properties of the individual
oscillator, together with spatial arrangement, can give rise to
the long-ranged ordered dynamics. Studies of the flagella
from living systems have informed choices for the driving
potentials: typically, in a simplified model a hydrodynamic
point force is driven via a rule that preserves the far-field
hydrodynamics of the biological cilium, while simplifying
the model so that the question of synchronization becomes
tractable analytically or at least by numerical simulation. Cru-
cially for studying synchronization, the phase of the
individual beating cilia needs to be a variable that can adjust
itself as a result of forces from the neighbours [13,16,27,28].
There are broadly two classes of models that have been devel-
oped: rotors and rowers [2]. The rotor model usually involves
a bead driven along a two-dimensional trajectory, with some
compliance in the orbit [18,29,30]. By contrast, the rower
model is most often implemented with a bead oscillating
along one dimension with a position-based update creating
the oscillations [16,31,32]. We use the rower model here,
motivated by the freedom to fit complex force profiles to one
dimension and to remove the need to estimate compliance. It
is used to develop a new analytical approach to explore the
similarities between synchronization with an external flow
and synchronization between oscillators. We find that for
interactions of pairs of such oscillators, the underlying driving
force is a critical factor controlling the synchronization
strength. The same dependence is not observed for an external
flow. This has two important consequences: (a) the difference
in responses to the driving force makes it wrong to naively
equate the synchronization between an external flow with
the coupling between oscillators, and (b) working with the
driving potentials that we extract from a wide set of different
organisms, we see a systematic classification between the
cilia in systems that rely on internal synchronization (cilia
that have to beat in waves for their physiological function)
and the cilia in systems that rely only on few flagella for
swimming.
2. Methods
(a) The oscillator model
In the rower model, the bead oscillates along a direction, x, driven
by a potential trap that is updated geometrically (figure 1). The
shape of the potential contains, in a coarse-grained fashion, the
degrees of freedom of the cilium’s complex shapes and activity;
the far-field fluid dynamics can be matched to a given biological
system [2]. The potential in the model can be any strictly increas-
ing function, but we predominantly focus on a simple power law
with k xbr ; here, k is the trap strength and xr the distance relative to
the vertex of the trap. Details of the model are represented in
figure 1, with aspects of the power law potentials covered
in figure 1b. The position update that ensures driven oscillations
occur is illustrated in figure 1a. Once a rower passes a certain
threshold A + xs the trap is reflected; hence the bead reverses
direction. The threshold position is measured relative to the
vertex and controlled through xs. The reflection axis is chosen to
create oscillations with amplitude A. The period of an isolated
oscillation, 2τ0, is set by the driving potential and the drag in
the fluid γ. The pair-wise behaviour of rowers is known to be
dependent on the shape of the driving potential [16]. To simulate
Brownian dynamics, we include thermal noise using the Ermack
& McCammon BD method [33] as implemented in our previous
work [34]. The drag of each particle depends on the position,
and so the noise is multiplicative. The noise on ith particle as fi
has the mean and variance

hfi(t)i ¼ 0 and hfi(t)f j(t0)i ¼ 2kBTH�1
ij d(t� t0): (2:1)

The variance depends on the specifics of the hydrodynamic tensor
H�1

ij as well as the temperature T and Boltzmann constant kB.

(b) Pair interactions
(i) Rower–rower coupling
To simulate the rowers, each rower is updated using the
following equation,

_ri ¼
X2
j¼1

Hij (F(r j)þ f j): (2:2)

F is the force resulting from the trapping potential discussed in §2a,
with an additional linear restoring force applied along y to restrict
the oscillations to one dimension. Given the form of the power law
potential, the driving force has a magnitude F ¼ kbxb�1

r , with the
sign depending on the current update of the trap vertex. The
rowers are coupled through the tensor Hij, which for simplicity
was chosen to be the Oseen tensor

Hij ¼
1
g I, i ¼ j,
1
g

3a
4rij

(Iþ r̂ijr̂ij), i = j,

(
(2:3)
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Figure 1. The model of ‘rower’ phase oscillators is used to compare the mutual synchronization facilitated by viscous forces, with entrainment to an external flow.
(a) Each oscillator is driven by a repulsive trap, which is updated geometrically. When the rower passes a switch point A + xs the trap is reflected and drives the
rower in the opposite direction. This creates oscillations with amplitude A, and free period and phase. For simplicity, distances are measured relative to the vertex,
with the relative position of the rower within the trap xr. The switch point is controlled through parameter xs, which is also measured relative to the trap vertex.
(b) The driving potentials take the form of power laws, which results in position-dependent force F ¼ kbxb�1

r with k the trap strength. When varying β, k is also
updated to maintain a constant non-detuned frequency f0. The curvature of the potential is known to relate to the synchronization strength, with increasing |β− 1|
also increasing the level of noise at which rowers maintain synchrony [16]. Here, entrainment and synchronization are compared by considering the detuning range
in which phase-locking occurs. (c) Two rowers have their traps separated by a distance d, with one rower detuned and marked in red. This rower has a frequency fd,
while the grey has frequency f0. The separation is perpendicular to the direction of oscillation, so as to minimize the variation in the distance separating the beads.
(e) This pair of rowers is compared with a single unaltered rower that experiences an oscillating flow, which is then scanned in frequency (detuned versus the rower).
(d ) The applied flow has a square wave structure, with magnitude vext and a period 2Nfδt that gives its frequency fext; the time step for simulation is δt.
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where the distance between two particles is rij = |rj − rj| and
the associated unit vector r̂ij. The radius of the bead is a.
The diagonal terms are given by the Stokes drag, which
assumes a point force. This also affects the noise that each
rower experiences, fi.

To scan the effect of the curvature of the potential on the
coordination, both the trap shape β and switch point xs are
varied, with β ∈ [0.2, 1.95] and xs/a ∈ [0.17, 0.57]. The rowers
oscillate in x but are separated in y, to minimize variation in
the distance between them throughout a cycle. Furthermore,
owing to the one-dimensional nature of the model, the principal
effect of the orientation is a constant change to the coupling
strength which can explored through separation distance [35].
The rower model has been extended to two dimensions to inves-
tigate alignment [36], but we do not include this extension in this
work. This configuration is shown in figure 1c. To test the
strength of the coupling between the rowers, the frequency of
the first rower is detuned, marked as a red bead in figure 1c.
To detune the rower, the trap strength is scaled by fd/f0, the
ratio of the new detuned frequency fd and the unperturbed
frequency of the second (grey) rower f0.

The noise is defined non-dimensionally as in [37], where the
non-dimensional noise is defined as ξ = 2kBT/(A〈F〉t), which is
set to ξ = 4.34 × 10−4 using the average force of the non-detuned
rower 〈F〉t = 2.05 pN; this is the force associated with the
semi-period τ0 = 0.11 s, amplitude A = 3.1 μm, bead radius a =
1.75 μm and Stokes drag γ = 0.073 μPa s. The step size for
the simulations is δt = 9.1 × 10−4 τ0 and the total length is
270 τ0. The distance d between the rower traps is chosen to
produce weak coupling but maintain clear phase-locking.
Specifically, d/a = 9.14 or 11.43.
(ii) Signal–rower coupling
To study the effect of external velocity flow, the rower’s equation
of motion is instead

dx1
dt

¼ 1
g
(F1(x)þ f1)þVext(t): (2:4)

There is now only a single bead that experiences the external vel-
ocity Vext(t). To create the square wave structure, the flow has a
magnitude vext, which switches direction every Nf frames, i.e.
Nfδt is the half-period of the external signal. The structure of the
external flow is illustrated in figure 1d, while the signal–rower
system set-up is shown in figure 1e. The external flow is aligned
to the oscillation of the rower because of the perpendicular force
trapping the rower to one-dimensional oscillations; misaligning
the force would decrease the flow aligned with the oscillations
while any effect from the perpendicular flow would be sup-
pressed. To make the cases of signal-rower coupling (SR) and
rower–rower coupling (RR) comparable to each other, the ampli-
tude of the external flow, vext, is set equal to the average effective
flow created by the detuned rower, veff. This is calculated using
the average force driving the detuned rower 〈Fd〉t, and the hydro-
dynamic coupling calculated using the average positions of the
rowers, μ = (1/γ)(3a/4d):

vex ¼ veff ; mhFdit: (2:5)

(c) Measuring the coupling strength
The ‘Arnold tongue’ refers to the region in which two detuned
oscillators phase-lock (figure 2a). The range of detuning in
which this occurs depends in general on the coupling strength
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two straight lines and interpolating for a specific value. This particular example is the plateau width for rower–rower interactions. Interpolation is required because
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between the two cases. These plots are for a trapping potential with β = 1.55 and xs/a = 0.17.
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between them; we explored this in pairs rowers [31]. For weak
coupling, we see in these systems that the range of detuning
value depends linearly on the coupling strength. The width of
the Arnold tongue can, therefore, be used to compare the coup-
ling in different systems. To compare like with like, the width is
measured in the linear weak coupling regime. This avoids diffi-
culties with different nonlinear responses with strong coupling.
Furthermore, for weak coupling, we expect the plateau width
to be proportional to the relaxation time of a pair of non-detuned
rowers with a given trap shape; relaxation time is another useful
measure for coupling strength. To distinguish between the
Arnold tongue widths measured in each system, a subscript is
included: pr is the plateau width measured for the two rowers,
and ps the equivalent for a rower under external flow. The detun-
ing of a rower alters its average force, and so the effective flow
produced by the rower is also dependent on the level of detun-
ing. This effect can be seen in figure 2b: two sets of simulations
were performed at two constant distances, d/a = 9.14 and 11.43,
but there is a slope to the sampling. For consistency, the same
detuning dependence is implemented in the signal–rower case,
an example of which is shown in figure 2c. To account for this
the phase-locking is measured for two similar levels of coupling,
and the Arnold tongue is fitted. The fit includes the two bound-
ary results and the origin. The plateau width, which defines the
detuning range and is used as a proxy for synchronization
strength, is then interpolated using the fit at veff = vext = 0.071v0.
For simplicity, the applied velocities are expressed in terms of
the average velocity of the unperturbed rower, v0 = 2Af0. Note
that the initial values for the coupling strength are chosen to be
similar to the desired interpolation value.

(d) Tracking living cilia
Individual cilia and flagella from high-speed microscopy videos
in [17,19,38,39] were tracked using a custom user interface in
MATLAB. A custom analysis software reconstructs a smooth rep-
resentation of the cilium by interpolating between the
coordinates of the manually selected points with two 4th
degree polynomials. Resistive force theory (RFT) allows us to
measure the force exerted by the cilium on the surrounding
fluid between two frames, based on the method described in
[17] and briefly summarized here. First, the reconstructed
cilium shapes in each of the two frames are approximated with
a set of N cylinders 1 μm long. We then measure the displace-
ment Δri and the velocity vi ¼ vik þ vi? of the midpoint of the
ith cylinder between the two frames along the directions parallel
and perpendicular to the cylinder itself. Thanks to RFT we can
now find the force the ith cylinder exerts on the fluid as

fi ¼ fik þ fi? ¼ (ckvik þ c?vi?) li, (2:6)

where li is the length of the cylinder. The two constants

c? ¼ 8ph
1þ log l2=a2

and ck ¼ 4ph
�1þ log l2=a2

(2:7)

are the drag coefficients of a slender cylinder of length l and
radius a and have the units of viscosity. Integrating the force con-
tributions of all the cylinders, taking into account overlapping
cylinders, yields the total force.

It is worth noting that this approach is a first approximation
for the system, as it assumes the individual cylindrical segments
to be immersed in an unbounded Newtonian fluid of viscosity η.
For the purposes of this work, we used η = 1 mPa s. In general,
however, the cilia can be fairly close to each other and to bound-
aries, and in some cases (such as the lungs) the fluid surrounding
the beating cilium can be non-Newtonian.

An effective ‘centre of drag’ of the cilium can now be defined
as the average of the positions of the N cylinders weighted with
the magnitude of the force they exert on the fluid:

rcod ¼
PN

i¼1 firiPN
i¼1 fi

: (2:8)

Having a colloidal rotor follow the trajectory of the centre of drag
rcod(t) is now a natural choice to coarse-grain the parameters of
the ciliary beat pattern (see the supplementary material for
further details).

(e) Calculating rower potentials from tracked
trajectories

The individual cilia and flagella were tracked to derive rower
potentials from their trajectories. This allows us to contextualize
observed flagella in terms of our results from the rower model.
To compress the trajectories into one dimension an orbit is calcu-
lated to describe the trajectory. The specifics for calculating the
orbit vary depending on whether the trajectory resembles an
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ellipse or follows a crescent-shaped path. The shape of the trajec-
tory varies with the type of flagella, and is discussed further in
§3c. The fitted orbit is used to define a central axis, onto which
the force and position data of the flagella are mapped. The spe-
cifics of that mapping depend on the shape of the trajectory. This
results in a one-dimensional force and position data, to which a
cubic force profile is fitted. The output of the fit is a relationship
between force and position that can be substituted into the rower
model. Further explanations of the process are given in the elec-
tronic supplementary material, which also includes pseudocode
documenting the steps taken.
3. Results
The two systems studied here vary in their sensitivity to
changes in the driving potential. This manifests as a change
in the detuning range between the two cases, which we
normalize using the detuning range for the entrainment case
( pR− pS)/pS. The difference, measured in simulations by com-
paring the plateau widths, is shown in figure 3a. The points are
results of individual simulations, and the background shows
the contours fitted using the data. The intensity of the colour
indicates the magnitude of the difference, with pink shades
indicating the rower–rower system has a broader synchroniza-
tion region and green shades indicating the signal–rower
system has the wider plateau. Near β = 1, the signal–rower
system has much stronger synchronization (as expected
because inter-cilium synchronization strength vanishes at
β = 1 [16]), but the width of pR quickly crosses over pS as the
trap curvature is increased. This can be replicated by applying
a phase reduction to each case. Todo so the rowers are converted
to their natural phase frame and the pair interaction is approxi-
mated by its average over one cycle [40,41]. The natural phase
removes the large variations in the cycle and focuses on the
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small changes that occur from their interaction. The difference
predicted by the phase reduction is shown in figure 3b.
(a) Phase reduction applied to the external flow system
Using the phase reduction to convert the signal–rower system
to a phase viewpoint results in an expression for the phase
difference between rower and signal ψS,

dcS

dt
¼ DVS þ gvexV0

pjF(xs)jGS[cS]: (3:1)

The first term, ΔΩS, is the difference between the natural angu-
lar frequency of the rower and that of the signal. The second
term is the contribution from the interaction between signal
and oscillator. It depends on the natural frequency of the
non-detuned bead Ω0, as well as the ratio between the external
flow amplitude vext and the minimum velocity of the bead
when driven by the trap potential |F(xs)|/γ. The effect of the
trap potential and flow is encapsulated by the dimensionless
function GS[ψS], which is a convolution of the relationship
between rower phase and position with the external flow.
We note that the results for the linear trap, reported in [23],
are recovered when β is set to 1 in this more general result.
Details of the function derivation are included in the electronic
supplementary material.
The Arnold tongue is the region in which a stationary
solution exists for the phase difference (dψS/dt) = 0. Conse-
quently, a fixed point exists for this signal–rower system when

gvex
pjF(xs)jG

min
S [cS] ,

f�
f0

,
gvex

pjF(xs)jG
max
S [cS]: (3:2)

The frequencydifference between the rowerand the signal is f−,
which is expressed in terms of the rower’s frequency f0. The
detuning plateaus predicted by this expression, when vext/
v0 = 0.071, is shown in figure 3d. The width does not vary
much when the trap is changed, staying near pS = 0.18, but it
does increase slowly as the trap curvature increases, i.e. when
|β− 1| increases.

(b) Phase reduction results applied to the rower
interaction

The phase reduction process can be applied to pairs of
rowers. Here, the phase difference is labelled ψR, and the gov-
erning equation is

dcR

dt
¼ DVR þ 2gm (f0GID[cR]� fdGID[�cR]): (3:3)

Similarly to the previous case, the first term, ΔΩR, is the
difference in natural angular frequency, but this time between
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rowers. The dimensionless interaction function GID depends
on the shape of the driving potential. The process here is
the same as in [37] and so the function has a similar shape.
In this case, the rowers have asymmetric contributions, stem-
ming from the detuning. The interaction term on each rower
is proportional to the frequency of the rower that is acting
upon it. When performing the phase reduction, the hydro-
dynamic coupling term was approximated as a constant, μ,
by setting the distance between the rowers to the distance
between their trap centres. The same approximation was
used earlier to calculate veff. For further details on the
derivation see the electronic supplementary material.

Approximating the interaction GID to its first-order Four-
ier series terms, the region in which phase-locking occurs is

jf�j
fþ

,
jgms1=pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (gmc1=p)
2

q , (3:4)

where f− = fd− f0 and f+ = fd + f0, while s1 and c1 are the first-
order sine and cosine coefficients in the Fourier series. The
detuning f−/f+ increases linearly for weak coupling, and
then broadens as γμ increases. At very large coupling this
expression predicts infinite phase-locking range, demon-
strating that when γμ is large enough it is no longer valid
to apply the averaging process. To match the signal–rower
case, the plateau is reported in terms of f0, with f−/f+ con-
verted to f−/f0. Similarly, the coupling strength is measured
in terms of average velocity applied by the detuned
rower veff = μ〈Fd〉t = 0.071v0, which occurs around d/a≈ 10.
Figure 3c is a contour plot of pR for β∈ [0.2, 1.9] and xs/
a∈ [0.17, 0.57]. The plateau shrinks to zero when the traps
become linear, β→ 1, i.e. the curvature decreases to zero.
This is consistent with earlier work, showing that rowers
did not synchronize when driven by linear traps [16]. pR
increases as |β− 1| grows, with a sharper increase for β > 1.
(c) Rower potentials derived from cilia
To estimate where the behaviour of living flagella lies in
terms of entrainment and synchronization, force profiles
were fitted to tracked flagella and cilia from previously
published high-speed recordings. Specifically, we used cilia
profile recordings of Chlamydomonas [4], quadri-flagellates
[19] and Volvox somatic cells [17] kept stationary by holding
on micropipettes, ependymal cilia from mouse brain in vivo
[38] and in vitro [42], and human airway cilia from in vitro cul-
ture [39].

Example trajectories of the centre of drag for each species
are plotted in figure 4. At a glance, they can be classified as
elliptical or crescent-shaped, with the epithelial cilia exhibit-
ing crescent shapes and the other types elliptical. The
process used to compress the trajectory into a force profile
suitable for rowers varies slightly between the two cases,
but the gist remains the same: a central axis is defined, onto
which the tracked data are projected. Depending on which
side of the axis the points fall, the force associated is assigned
to be either positive or negative. For elliptical orbits, the cen-
tral axis is defined as the major axis of the fitted ellipse. The
crescents are more complex. Rather than fitting an ellipse,
second-order Fourier series are fitted to the x and y data.
The central line is then defined by separating the resulting
trajectory into two sections and finding the midpoint
between them. Details of this process are included in
electronic supplementary material. The final step is to
mimic the updating trap of the rower potential. Conse-
quently, the point from which the projected distance is
measured changes; it is always measured relative to the end
the centre of drag is approaching.

The resulting groups of forces can be fitted with cubic
functions. These can then be used as force functions describ-
ing the motion of a sphere. Consequently, the values for
( pR− pS)/pS can be evaluated numerically for the different
species. Earlier work found that the average trapping poten-
tial was a useful measure of the rower system, and revealed
similar trends in power law and more complex potentials
[16,37]. Consequently, we place the biological results in the
context of the earlier power law work. This assumes that
the Fourier series has no large contribution from higher-
order terms and relies on weak coupling to minimize the
role of the cosine term. The results of this are plotted in
figure 5a. The single-cell organisms consistently give negative
values, indicating that the range of detuning that will entrain is
larger than the range for mutual synchronization. The Volvox
and brain cilia results are more clustered about zero, with posi-
tive mean values. The airway results are inconclusive, with
values tightly clustered in both the positive and negative
regions. This may stem from difficulties precisely tracking
cilia in a dense cilia environment. In figure 5b, the ranges of
measured biological values are overlaid onto the predicted
contour map from earlier. In this plot, the colours supplement
the cartoon markers to indicate the species, with dark green—
Chlamydomonas, light green—quadriflagellates, blue—airways,
purple—Volvox and pink—mouse brain.

The shape of the trajectories is compared between species
in figure 5c. The amplitude, which represents the length of
trajectory, and a measure of width are plotted for each trajec-
tory. To have a consistent measure for width, the area traced
out by the trajectory is divided by the amplitude, A. For refer-
ence, dashed lines for 1 : 1, 1 : 2 and 1 : 4 ratios are included,
with the representative rectangle labelling each. The trajec-
tories of single-cell organisms, and the colonial Volvox, are
clustered below the 1 : 2 line. This is consistent with an ellip-
tical orbit with the same ratio. The epithelial results have
smaller widths, with the elongation ratio falling around 1 : 4.
4. Discussion
The increased sensitivity of the rower–rower system to
changes in the driving potential is most likely due to the
feedback between the two rowers. In the signal–rower case,
the rower must match the frequency of the external flow,
which remains unaltered. The different sensitivity to changes
in the driving potential means that careful consideration is
necessary when equating the entrainment of an oscillator
with the synchronization between a pair of oscillators, as
was done, for example, in [25].

The results from the different species, compiled in figure 5,
indicate a possible difference across species. For the single-cell
flagella studied, the susceptibility to an external flow is greater
than the oscillator coupling strength. By contrast, the com-
pressed trajectories for the colonial alga Volvox predict stronger
coupling between oscillators compared with entrainment. The
results from the mouse brain are consistent with those of
Volvox, i.e. a stronger internal coupling between oscillators.
This suggests that the role of hydrodynamics in brain cilia
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bears further investigation. For the airways case, there is some
evidence of stronger coupling; however, the broad spread of
the results and difficulties tracking individual cilia in dense car-
pets inhibits our ability to draw firm conclusions.

Tracking the trajectories also revealed consistent differ-
ences across the species. The single-cell organisms, including
the colony Volvox, all exhibit elliptical orbits with approxi-
mately the same amplitude for the centre of drag. The
trajectories for epithelial cilia are much more elongated. The
brain and airways markers (pink circles and blue squares)
all fall below the 1 : 4 ratio in figure 5. This might just reflect
the added impediment of a cell wall, but it could be indicative
of a change in flagella stroke that could have important
repercussions concerning coupling between cilia.
5. Conclusion
The focus in this work was the difference between mutual syn-
chronization between oscillators as opposed to oscillator
entrainment. The underlying dynamics of the oscillators
were critical when determining the inter-oscillator dynamics.
The same sensitivity was not found for entraining the oscil-
lator. Consequently, depending on the dynamics of the
rowers, the system will either exhibit stronger coupling
between oscillators or stronger coupling with the external
flow. This effect should be considered when extrapolating
behaviour from flagella under flow, particularly across
organisms. In particular, one cannot draw simple conclusions
on the strength of cilia synchronization from experiments
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using fluid entrainment; a careful consideration of the time
dynamics of the flow and cilia oscillations is necessary.

The one-dimensional nature of rower oscillations sup-
presses a certain level of complexity. This could have
important implications when applying an external flow. The
one-dimensional nature of the oscillations means there can
never be any variability in the coupling with the external
flow that depends on the rowers’ position. This would
become important when applying a flow to groups of oscil-
lators. Intermittent periods of relatively strong and weak
coupling between oscillators could occur if they were moving
in and out of alignment with the flow. The restriction of the
oscillators to one dimension also requires a certain loss of func-
tionality when converting biological trajectories into oscillators.
Variation in the motion of cilia can be captured at least in part
by other models, for example as compliance in the rotor orbit
[18]. However, there is no equivalent mechanism for the
rowermodel, with the driving potential of the rower unaffected
and unvaried over time or by additional oscillators. This could
be in part answered by considering pairs of rowers with hetero-
geneous driving potentials, reflecting that flagella do not have
identical beats; however, truly capturing the interaction
between emergent waveforms of flagella is beyond the scope
of the rower model, and new modelling frameworks will be
required for this intricate aspect.

Our work has shown how to gather cilia dynamics results
from different species (figure 5) and thereby classify the
different functions of motile cilia across the species and
organs. In particular, for the systems where the individual
cilium or pairs of cilia are the functional unit, susceptibility
to an external flow is greater than the oscillator coupling
strength. This corresponds to the intuition that evolution
modulating the cilia waveform has prioritized momentum
transfer over synchronization. By contrast, the cilia dynamics
in the colonial alga Volvox and mouse brain are classified as
showing stronger coupling between the oscillators when
compared with entrainment. These results are in agreement
with previous experimental work: hydrodynamic forces
between cilia were reported to not be enough strong to
drive flagellar synchronization of Chlamydomonas and
quadri-flagellate algae [19,25]. Conversely, hydrodynamic
coupling seems to be sufficient for the synchronization of fla-
gella in Volvox [17,19]. In a broader context, our results
suggest that hydrodynamic interactions between cilia are
dominant in systems displaying metachronal waves, such
as Volvox and brain ependymal cells. By contrast, flagellar
synchronization may be achieved by other mechanisms,
such as elastic inner coupling, in systems that rely only on
few flagella for swimming, such as Chlamydomonas and quad-
riflagellate algae. For the airway cells, which physiologically,
in vivo, also display metachronal waves, we see some evi-
dence of a dominating hydrodynamic coupling; however,
there is a broad spread of results across samples due in
part to difficulties tracking individual cilia in dense carpets.
Data accessibility. Data and analysis scripts are available at https://doi.
org/10.5281/zenodo.3518403.
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