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The generation of ciliary waveforms requires the spatial and temporal
regulation of dyneins. This review catalogues many of the asymmetric struc-
tures and proteins in the cilia of Chlamydomonas, a unicellular alga with
two cilia that are used for motility in liquid medium. These asymmetries,
which have been identified through mutant analysis, cryo-EM tomography
and proteomics, provide a wealth of information to use for modelling how
waveforms are generated and propagated.

This article is part of the Theo Murphy meeting issue ‘Unity and diversity
of cilia in locomotion and transport’.
1. Introduction
Cilia and flagella are often described as microtubule-based structures with nine-
fold symmetry. In this review, a discussion of the structural and biochemical
asymmetries in Chlamydomonas cilia and their potential roles will be presented.
It is likely that similar asymmetries are present in motile cilia in other organ-
isms. Cilia have nine doublet microtubules (DMTs) that surround two singlet
microtubules. These organelles and their associated structures are able to gen-
erate both asymmetric and symmetric waveforms that move single cells or
move fluid in multi-ciliated tissues.

Motile cilia are highly conserved organelles composed of over 500 proteins
that assemble into the 9 + 2 structure, which is the canonical structure associated
with these organelles [1–3] (figure 1a). The nine outer DMTs each consist of one
complete microtubule, the A-tubule, with 13 protofilaments, and an incomplete
microtubule, the B-tubule, with 10 protofilaments and an inner junction filament
composed of two proteins, FAP20/BUG22 and Parkin coregulated gene protein
(PACRG) [4–6]. Axonemal complexes attach to the outer DMT to form the struc-
tural feature of the axoneme, termed the 96 nm repeat. The 96 nm repeat contains
multiple structures; they are the four outer dynein arms, two complete radial
spokes (S1 and S2) and a third vestigial spoke (S3), the Modifier of Inner Arms
(MIA) complex, the nexin–dynein regulatory complex (N-DRC), the calmodulin-
and spoke-associated complex (CSC) and multiple inner dynein arms [7–10].
A molecular ruler composed of CCDC39 and CCDC40 is important for the dock-
ing of several structures [11].Mutations inCCDC39 orCCDC40 result in the loss of
the N-DRC and misplacement of the radial spokes [11,12]. Additional filaments
are observed on the surface of the A-tubule using the hybrid Tygress method,
which achieves 12 Å resolution [13]. These filaments may provide additional
rulers for other complexes. In the centre of the cylinder of nine outer doublets
is the central pair complex (CPC), composed of singlet microtubules, C1 and
C2, and their associated appendages. These microtubules are more similar in
their structure and stability to the cytoplasmic microtubules.

Chlamydomonas cilia exhibit two different waveforms. One is termed asym-
metric and is characterized by a whip-like, or breaststroke, motion. The
whip-like movement can be broken into two phases. The power stroke begins
with the cilium fully extended. Then, the cilium moves through the liquid to lie
next to the cell body. The recovery stroke involves an unfolding of the cilium to
return to the fully extended starting position (figure 2a). This waveform is often
referred to as the ciliary waveform as it is used by the lateral cilia of the clam gill
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Figure 1. Diagrams of the Chlamydomonas cilium. (a) Cross-sectional view of the cilium with one doublet microtubule enlarged to show a radial spoke (RS), an
inner dynein arm (IDA), the N-DRC and an outer dynein arms (ODAs) as well as the A and B microtubules of the doublet microtubule. The DMTs are labelled 1–9.
On doublet microtubule 1 (DMT1), there is no outer arm dynein. The central pair microtubules reside in the middle. (b) A longitudinal view to see the four regions
and the unique features of these regions along the length the Chlamydomonas axoneme.
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or mammalian respiratory cilia. The waveform results in the
Chlamydomonas cell moving forward with the cilia leading the
way. In a wild-type Chlamydomonas cell, the beat frequency is
generally about 60 Hz and the swimming velocity is about
150 µm s−1. A sinusoidal, or flagellar waveform as it is often
called, is used by both vertebrate and invertebrate sperm tails.
The waveform is initiated at the base of the cilium and propa-
gated along the cilium to the tip, resulting in the backward
motion of aChlamydomonas cellwith the cilia trailing (figure 2b).

Ciliary movement is generated by the controlled sliding of
adjacent outer DMTs in the axoneme. The dynein motors use
the energy derived from adenosine triphosphate hydrolysis to
generate the sliding movement, which is converted into bend-
ing to create the waveform. If all of the ciliary dyneins were
active at one time, the cilia would be in a rigor state or tug-
of-war, which results in no net movement or bending. In
order to generate an effective bend, dynein motor function
must be controlled both along the length of the axoneme
and around the circumference of the axoneme across a defined
axis. In elegant cryo electron microscopy (cryo-EM) tomogra-
phy studies, Lin & Nicastro unexpectedly found that most
dyneins are in an active state conformation, with a smaller
population of inactive dyneins [14]. The locations of the inac-
tive dyneins are asymmetric and bend-dependent. They
propose a switch-inhibition mechanism in which the bend is
generated by inhibiting, rather than activating, dyneins on
one side of the cilium. The data suggest that the initiation of
a bend starts with the inhibition of the inner dynein arms
(a, d and g) on specific DMTs. Events on DMT 2 to 4 are
needed for initiating the asymmetric waveform and events
on DMT 7–9 are needed for initiating the symmetrical wave-
form. Once enough dyneins are inhibited, the dyneins on the
other site help to start a bend. This bend is propagated until
an unknown signal reactivates these dyneins and the axoneme
straightens. In paralysed mutants (pf), all the dyneins are
active and in a tug-of-war with each other [14].



(a) (b)

Figure 2. The two waveforms of Chlamydomonas. (a) The asymmetric wave-
form with the power and recovery stroke. (b) The symmetric waveform, which
moves the cells backwards.
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The asymmetrical structural features described in this
review are likely to be key for generating the waveforms.
This review discusses proximal/distal differences, radial/
doublet specific differences and cis/trans differences. The
Chlamydomonas cilium has been divided into four parts: the
very proximal portion of the axoneme (0.3 µm), the proximal
portion (2 µm), the central portion (7 µm) and the distal
portion (2–3 µm) [10] (figure 1b). Part of the distal segment
is marked by an extension of the A-tubule [10]. The DMTs
are numbered DMT1–9. Two cilia are indicated as cis and
trans based on their position relative to the single eyespot.
(a) The dynein arms
The outer dynein arms are positioned on the outer circumfer-
ence of eight of the nine outer DMTs every 24 nm. The outer
dynein arm attachment is stabilized by a complex of three
proteins [15]. Multiple mutations fail to assemble all, or
part of the outer dynein arms, as monitored by electron
microscopy and by biochemical analysis of salt-extracted
mutant axonemes [16–23]. These loci encode most of the 16
structural proteins of the outer dynein arm (figure 3). The
role of the outer dynein arms in ciliary movement has been
determined from analysis of the mutant phenotypes. While
the ciliary waveform is normal, oda− mutants display signifi-
cantly reduced ciliary beat frequencies. The outer dynein
arms are needed for increasing the power of the ciliary
stroke. In these mutant strains, the ciliary beat is reduced
by more than one-half and results in a reduced forward
swimming speed [24–26].

Inner dynein arms are found along the inner circumfer-
ence of the nine outer DMTs and function to generate the
ciliary waveforms. Inner dynein arm (ida−) mutations result
in a shallow ciliary waveform with reduced amplitude that
produces reduced forward swimming speeds [27]. Unlike
the outer dynein arms, there are at least 10 biochemically
distinct inner arm structures in the 96 nm repeat [28,29].
One of the inner dynein arms (I1/f) is a two-headed structure
with 10 subunits [30]. The remaining six inner dynein arms
are single-headed motors with only one heavy chain; they
are biochemically defined as dyneins a, b, c, d, e and g [28].
In addition, there are three minor dynein heavy chains.
Inner arm mutants in nine genes have been isolated that
affect their assembly [30–40], and these mutant strains show
altered waveforms. Additional proteins associated with
specific inner arms have been identified using biochemical
analyses [41–44].
2. Proximal differences
(a) The inner dynein arms
Three (DHC3, DHC4 and DHC11) of 14 dynein heavy chain
genes in Chlamydomonas produce proteins that are found at
low abundance. Immunofluorescence microscopy revealed
that DHC11 localizes exclusively to the proximal approxi-
mately 2 µm portion, and DHC3 and DHC4 are likely to be
localized to this proximal portion [45]. This conclusion is sup-
ported by proteomic data of isolated axonemes. DHC3,
DHC4 and DHC11 peptides are present at about 12% of the
single-headed inner arm dynein proteins and at about 6%
of the I1/f inner dynein arm. DHC11 may replace inner
dynein arm a (IAa) in the proximal portion [10]. By contrast,
inner dynein b (DHC5/IAb) shows an inverse distribution
pattern in which it is missing from the proximal 2 µm, but
is present along the rest of the axoneme.
(b) Doublet microtubule bridge
In the proximal axoneme, doublet microtubule 1 (DMT1) has
a bridge with DMT2 [46–48]. This bridge is not unique to
Chlamydomonas. In sea urchins, two of the doublets are
attached by a bridge (DMT5–DMT6) with a 96 nm periodicity
[48]. The bridge in sea urchins is made up of two parts called
the inner and the outer parts. The inner part of the bridge,
i-SUB5–6, is present along the entire length of a DMT in
both Strongylocentrotus (DMT5) and Chlamydomonas (DMT1)
cilia. It localizes between the I1/f dynein and the N-DRC
(figure 3).
(c) Polyglutamylation of tubulin
Axonemal microtubules contain post-translational modifi-
cations on tubulin that include acetylation, phosphorylation,
polyglycylation and polyglutamylation [49]. The functional
importance for ciliary function is not clear for all of the
modifications. Tubulin polyglutamylation adds multiple
glutamates onto the gamma carboxyl group of any of several
glutamine residues in the carboxyl terminus of either α- or
β-tubulin. Different proteins are required for polyglut-
amylation (PolyE) along the length of the axoneme in
Chlamydomonas. PolyE staining appears to be restricted to the
B-tubule and is found along the length of the axoneme
expect for the distal end [50]. In Chlamydomonas, mutations
in the genes TTLL9 or FAP234, encoding either the tubulin
tyrosine ligase-like enzyme or the subunit needed for its local-
ization, [51] affect polyglutamylation of α-tubulin [12,52]. The
proximal end of the axoneme (approx. 1.5 µm) remains poly-
glutamylated in these mutants [53]. Double mutant analysis
suggests that loss of ttll9 activity regulates inner dynein arms
[54]. In mutants of the molecular ruler (CCDC39/40), there
is a reduction in the signal intensity of polyglutamylated α-
tubulin relative to polyglutamylated β-tubulin. The PolyE
signal in the proximal region requires CCDC39 [12].
CCDC39 appears to be required for the transport or docking
of a different TTLL enzyme, which acts at the proximal end.

The purpose of having different enzymes for polyglutam-
ylation at the proximal and central regions is not known. It is
interesting to speculate that the length or spacing of the poly-
glutamate tails may be different and allow different proteins
to bind and interact at the proximal and distal ends [55].
If B-tubules are highly modified by polyglutamylation, this
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modification might participate in multiple functions, which
include stabilizingDMTs and regulatingdyneinmotor activity.

(d) LF5 and length control
Recent work showed that length affects the motility properties
of the cilium. Mechanical metrics (force, torque and power)
all increased in proportion to the ciliary length. Themechanical
efficiency of beating appeared to be maximal at the normal
wild-type length of 10–12 µm [56]. In lf− (long flagella)
mutants, the cilia are often two to three times longer than in
wild-type cells and are unable to generate an effective wave-
form. Length control is regulated by the LF5 kinase, which is
a homologue of CDKL5, and localizes to the proximal 1 µm
of the cilia. This localization requires a complex of the LF1,
LF2 and LF3 proteins [57]. The role of LF5 at the proximal
end of the axoneme is not clear but could affect entry or exit
of intraflagellar transport trains.
3. Proximal and radial asymmetries
(a) The outer–inner dynein linker
The outer–inner dynein linker (OIDL) connects the I1/f dynein
arm to the outer dynein arms [10]. OIDLs in the central and
distal regions are similar among all of the DMTs. However, at
the proximal end, more OIDL densities are found on DMT2,
DMT6, DMT7 and DMT8 than on the other DMTs. The
OIDL contains the intermediate chain (IC2) of the outer
dynein arm and DRC4 of the N-DRC [58]. It plays a role in
regulating both inner and outer dynein arms.

(b) The ODA5/ODA10 protein complex
ODA5 and ODA10 play two roles. They are required for outer
dynein arm assembly in the cytoplasm [59], and they are
assembled into the cilia as well [60]. Using tagged transgenes,
ODA10 and ODA5 were found to localize to the proximal 2–
3 µm of the cilia (figure 4) and only to DMT1, with a 24 nm
spacing, as assayed by immuno-EM [59]. Chlamydomonas has
paralogues of ODA5 (ODA1/DC3) and of ODA10 (ODA3/
DC1) which generate a separate docking complex (DC1/
DC3) that assembles along most of the cilium and is associated
with the stabilization of the outer dynein arms [15]. In humans,
there are only two proteins; they are CCDC151 and CCDC114.
They play a role in placement of the outer dynein arms in
humans and are found along the entire length of the ciliary axo-
neme [61,62]. It is not knownwhat restrains theODA5/ODA10
complex to one microtubule in the proximal axoneme and
what its role is in the proximal cilium.

Unlike in Chlamydomonas, the trypanosome waveform can
start at the tip or the base of the axoneme. The initiation of
the waveform is based on a proximal/distal asymmetry of the
outer arm docking complexes. The trypanosomes have two
paralogues of DC1 and two paralogues of DC3, which form a
proximal docking complex and a distal docking complex.
This asymmetry is set up by a gradient of proximal docking
complexes using the intraflagellar transport machinery [63].

(c) VFL3/CCDC61 plays another role
The VFL3 protein has been suggested to play a role in segre-
gation of the basal bodies in Chlamydomonas by assembling
the distal striated fibres that hold the mature basal bodies
together [64]. In addition, VLF3 has been postulated to
have a role in the templating of new basal bodies [65].
Recently, we have found that the VFL3 protein also localizes
to the proximal region of the cilia [66] (figure 4).

Analysis of the waveform of cilia in the vfl3 mutant using
high-speed filming revealed that the flagellar waveform
and frequency are similar to those of wild-type cells [67].
Wan & Goldstein showed that the two cilia in the vlf3 mutant
display markedly different synchronization from the wild-
type pattern. They used micromanipulation of flagella and
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concluded that a mechanism, internal to the cell, must provide
additional flagellar coupling [68]. The waveform of biciliated
cells in the vfl3-2 mutant is unchanged but the two cilia from
the vfl3 mutant move independently (figure 5). We do not
know if coupling offered by the striated fibres between the
two basal bodies or the role of the VLF3 protein in the proximal
cilia is responsible for the lack of synchrony between the two
cilia [49]. As in wild-type cells, the cilia of vfl3 coordinately
switch to a symmetrical, ciliary-type waveform during the
shock response, which shows that the VFL3 protein is not
needed for photoshock response.

(d) B-tubule projections or beaks show proximal and
radial asymmetries

Structural analyses of axonemes revealed the presence of projec-
tions in the centre of the B-tubules. These projections are only
in the proximal half of the axoneme and in only three outer
doublet microtubules (DMT1, 5 and 6) [46]. They are referred
to as beaks [46]. Mutant strains with defects in the MBO1 and
MBO2 genes lack beaks in DMT5 and DMT6, but retain the
beak in DMT1 [69]. The mbo− mutant cells fail to generate the
asymmetricwaveform required for normal forward swimming.
As a result, the mutant cells move backwards only (mbo) using
the symmetrical waveform. The MBO2 gene encodes a coiled-
coil protein (CCDC146) [70] that localizes along the length of
the ciliary axoneme. Proteomic analysis of mbo1 and mbo2
mutants revealed that the mutant axonemes are missing many
more proteins than shown originally by two-dimensional elec-
trophoresis ([69], M. Porter 2019, personal communication).
The composition of the beaks remains unknown. The BUG22/
FAP20 protein, which is part of the inner junction, plays a
role in the placement of all the three beaks, and fap20/bug22
mutants show a symmetrical waveform that generates
backwards swimming [4]. The role of MBO2 or FAP20 in beak
assembly is not known. Loss of BUG22 in Drosophila sperm
affects polyglycylation of tubulin [71], but polyglycylation has
not been examined in the Chlamydomonas mutants.
4. Radial asymmetries
(a) The central pair complex
Cilia in all studied metazoans have a fixed CPC orientation in
which the plane through the two CPC microtubules is perpen-
dicular to the bend plane. By contrast, the CPC has a variable
orientation inChlamydomonas. This is related to anoverall helical
twist of the CPC structure and a change in the orientation of the
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CPC during bending. The plane through the two CPC
microtubules is parallel to the bend plane [72].

The central pair microtubules are asymmetric. The two
microtubules, called C1 and C2, have differential stability
[73]. The two central microtubules have different appendages
based on cryo-EM and analysis of mutants [74–82]. Recent
cryo-EM tomography shows that the C1 microtubule has six
projections while the C2 microtubule has five projections [83].
The two central pair microtubules are connected by a bridge
as well that has at least three appendages. The known mutants
affect specific appendages. CPC1 and hydin mutations affect
the appendages on the C2 microtubule (2b-2d), PF16 (SPAG6)
mutations affect the C1 tubule, and PF6 mutations affect the
appendage 1a. The PF20 mutation affects the bridge between
the two microtubules [83]. Recent proteomics on the pf18
mutant, which lacks a CPC, suggests that it is composed of at
least 44 proteins [84]. The CPC together with the radial
spokes are needed for the ciliary waveform. Mutants affecting
different appendages show a range of phenotypes. The fap47
mutant is intriguing in that it is defective in phototaxis [84].

(b) DMT1 and DMT9
As mentioned previously, DMT1 shows proximal differences.
In addition, DMT1 and DMT9 are missing several single-
headed IDAs (IAb, IAc and IAe); these are missing from
the entire length of these two DMTs [48].

(c) The MIA complex and outer dynein arms are
needed for assembly of I1/f dynein

Chlamydomonas has two responses to light: phototaxis and
photoshock. Chlamyrhodopsin is the photoreceptor [85]
and the signal transduction process involves transmembrane
Ca2+ fluxes. The cell responds by changes in ciliary behav-
iour. The MIA1 and MIA2 genes were identified among
mutants that showed reduced positive phototaxis and
resulted in increased phosphorylation of the IC138 subunit
of the I1/f dynein [86]. These genes encode FAP73 and
FAP100, and they localize near I1/f dynein and may connect
with the N-DRC. The assembly of the I1/f dynein arm
requires both the MIA1 and ODA complexes [87]. Conse-
quently, in the mia1 or mia2 mutants, the I1/f dynein arms
are missing from DMT1, which lacks outer dynein arms.
In a mia1; oda6 double mutant, the I1/f dynein is completely
missing from the axoneme [87].

(d) Mutations that affect dynein docking on a subset of
doublet microtubules

The ODA2 gene encodes the gamma-dynein heavy chain of
the outer dynein arms. Some alleles cause loss of the entire
outer arm complex while others show a partial reduction.
Surprisingly, the alleles isolated as suppressors of central pair
mutations show a partial reduction of outer dynein arms on
a subset of doublets (DMT3,6,7,8,9) [88]. The bop2 mutation
was identified as a suppressor that affects the assembly of
inner dynein arms on only a subset of the DMTs [89,90]. By
electron microscopy tomography, doublets 5, 6 and 8 show
the most severe deficiency, doublet 9 has an intermediate phe-
notype, and doublets 2, 3, 4 and 7 show the least severe
phenotype. A more recent examination of bop2 mutants using
cryo-EM tomography shows that a subset of inner dynein
arms ismissing onDMT5–9 [91]. BOP2 encodes aWDRprotein
(FAP57), and a patient with a mutation in CFAP57 show
primary ciliary dyskinesia [92].
5. cis and trans asymmetries
The two cilia in Chlamydomonas are called the cis and the trans
cilia. The cis cilium is nearest to the eyespot, which lies on the
equator of the cell. The cis cilium is templated by the daugh-
ter basal body and the trans cilium is templated by the older
or mother basal body [93]. Differences in the behaviour of the
cis and trans cilia are thought to play a key role in orientation
of the cell to light and calcium signals [94].

Differences between the cis and trans cilia have been
studied using detergent-extracted and demembranated cells.
At lower calcium concentrations, the trans axoneme is inacti-
vated but at higher calcium concentrations, the cis axoneme is
inactivated. These intrinsic differences between the two cilia
are thought to be important for phototaxis [95]. In living
cells with one cilium, the ciliary beat frequency of the trans
cilium is about 30% higher than that of the cis cilium. But
the cilia generally beat with the same frequency when both
are present [96]. More recently, high-speed, high-resolution
imaging of pipette-held cells with two cilia again has
shown synchronized breaststrokes. At a low rate, there is a
‘slip’ and the trans cilium shows a faster beat frequency by
about 30% while the cis cilium retains the original beat
frequency [97].

This difference between the cis and trans cilia beat frequen-
cies is not observed in mutants lacking the outer arm docking
complex (oda1 and oda3) or in the oda11 mutant, which lacks
the α heavy chain, but remains in the other outer dynein arm
mutants [98,99]. How the docking complex and the α heavy
chain but not the loss of the entire outer dynein arm influences
these intrinsic differences is not known. A protein with four
EF-hand domains (ODA14/DC3) requires DC1 and DC3 for
its assembly [100]. DC3 plays a role in sensing calcium and
redox poise that could be involved in these intrinsic differences
between the two cilia [21]. In the non-phototactic mutant, ptx1,
both cilia show the trans beat frequency [101], which suggests
that PTX1 may define the trans cilium behaviour. The PTX1
genehas not been identified as of yet. In another non-phototactic
mutant, lsp1, both cilia show the cis beat frequency [102].

Mutants that assemble primarily the trans cilium are avail-
able [103]. These uniciliated cells facilitate recording of the
waveform, although cilia behaviour may differ somewhat in
uniciliated compared with biciliated cells [104]. Estimates of
the ‘equivalent’ swimming speeds of uniciliated cells are
much lower than the known swimming speeds of wild-type
biciliated cells [56]. The reasons for these differences are not
yet resolved. Biciliated Chlamydomonas may synchronize the
two cilia by ‘cell body rocking’ with minimal direct hydrodyn-
amic interactions between the two cilia [104], by hydrodynamic
coupling [105] or by coupling of the basal bodies via the striated
fibres [68]. Proteomics of cilia from the uni1 mutant [103] will
help to determine the protein composition of the cis and trans
cilia, and will help us to understand the intrinsic differences.
6. Why have asymmetries in the cilium?
Regulation of ciliary and/or flagellarmotility requires the coor-
dinated spatial control of dynein-driven microtubule sliding
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[106]. However, the mechanisms for regulating the location
and symmetry of dynein activity are still not understood com-
pletely. It seems very likely that the asymmetries observed
in the cilium of Chlamydomonas are critically important for
the initiation and regulation of the waveform. This regulation
will require proximal asymmetries as the initiation of the
waveform occurs in the proximal region aswell as radial asym-
metries as proposed by Lin & Nicastro [14]. The presence of
different dynein arms as well as the alterations in DMT1 and
DMT2 in the proximal axoneme could have a role in initiating
the waveform. DMT1–2 in Chlamydomonas are located in a
plane almost perpendicular to the bending plane and show
little or no interdoublet sliding [107,108].

The role of the central pair and radial spokes in regulating
the dyneins is also demonstrated by the isolation of suppres-
sor mutations that restore some motility to paralysed mutants
that arise from defects in the CPC/RS and radial spokes
[2,19,33,88,109,110]. These mutations affect both outer and
inner dynein arms as well as the N-DRC, which modulates
dynein activity. The loss of the N-DRC is able to turn-on
dynein activity in the absence of CPC/RS signals. An alterna-
tive model suggests that interactions between dynein and the
passive components of the axoneme can produce coordi-
nated, propulsive oscillations like the fluttering of a flag.
Steady, distributed axial forces, acting in opposite directions
on coupled beams in viscous fluid, lead to dynamic structural
instability and oscillatory, wave-like motion [111].

In wild-type cells, the symmetrical waveform (backwards
swimming) is initiated when cells are exposed to intense
light signals, which cause an influx of calcium ions into
the cells [112]. Several lines of evidence suggest that the
outer dynein arms are potential targets of the central pair–
radial spoke control system for generating the symmetrical
waveform [113,114].

The continued analysis of these asymmetries in
Chlamydomonas and other organisms will be key to under-
standing the generation of the asymmetric and symmetric
waveforms. Further biophysical, microscopic and modelling
studies of the many mutants affecting these asymmetri-
cally localized proteins will be key to understanding the
waveforms and the large molecular ciliary machine.
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