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Motile cilia are miniature, whip-like organelles whose beating generates a
directional fluid flow. The flow generated by ciliated epithelia is a subject
of great interest, as defective ciliary motility results in severe human diseases
called motile ciliopathies. Despite the abundance of motile cilia in diverse
organs including the nervous system, their role in organ development and
homeostasis remains poorly understood. Recently, much progress has been
made regarding the identity of motile ciliated cells and the role of motile-
cilia-mediated flow in the development and physiology of the nervous
system. In this review, we will discuss these recent advances from sensory
organs, specifically the nose and the ear, to the spinal cord and brain
ventricles.

This article is part of the Theo Murphy meeting issue “‘Unity and diversity
of cilia in locomotion and transport’.

1. Introduction

The motile cilium is an evolutionarily conserved organelle. Even unicellular
organisms harbour multiple motile cilia (Paramecium and Tetrahymena) or a
single pair of flagella (Chlamydomonas) that are structurally similar to vertebrate
cilia [1]. The conserved ciliary core, known as the axoneme, consists of nine
microtubule doublets that surround a central microtubule pair and is referred
to as a 9 +2 structure. Ciliary motility is driven by axonemal dyneins, which
create sliding interactions between outer microtubules, while other motor pro-
teins, intraflagellar transport proteins, carry cargo into and out of the cilium [1].
Ciliates can interact with their environment in complex ways [2]. Hence, it is not
surprising that occasionally sensory components, such as insulin-like receptors
[3], are found on the cilium together with other components of signal transduc-
tion cascades [4]. In metazoans, besides the motile cilium, another type of
sensory cilium exists: the immotile primary cilium. This cilium lacks dynein
arms, accounting for its immotility [5], and often the central microtubule pair
[6]. Hence, they are referred to as 9 +0 cilia. Primary cilia are major signalling
hubs [7], exhibiting receptors for serotonin [8], Hedgehog [9] and various
odours [10]. The sensory role, however, is not limited to primary cilia, as
motile cilia express signalling components too, such as bitter taste-like receptors
in respiratory cilia [11] or progesterone receptors in oviductal cilia [12]. Whether
cilia harness dynein arms or not is largely determined by specific expression of
the Foxj1 transcription factor. This transcription factor alone is sufficient to gen-
erate motile cilia [13-15] and is therefore regarded as a marker for motile
ciliated cells. Cells, harbouring either a single, two or multiple motile cilia
[16], exist in various parts of the nervous system where they generate specific
flow patterns. We will here describe the identity and function of motile ciliated
cells in the nose, the ear, the spinal cord and the brain primarily in animal
models used in research and in humans.

© 2019 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Schematic depiction of sensory and ventricular systems across vertebrates. (a—d) Olfactory organs (green), inner ears (orange), ventricular systems (blue)
and central nervous systems (pink) in zebrafish (a), frog (b), mouse (c) and human (d) are shown. Sensory regions in olfactory organs are coloured dark green, while
non-sensory regions are light green. Three-dimensional renderings of brain ventricular systems of (a’) a 2-day old zebrafish [25], (a”) a three-month-old zebrafish
[26], (') a stage 45 Xenopus tropicalis [27], () an average adult mouse [28] and (") an adult human [29] are shown. TV, telencephalic; DV, diencephalic ventricle;
TeV, tectal ventricle; RV, rhombencephalic ventricle; LV, lateral ventricle; 3V, 3rd ventricle; MV, mesencephalic ventricle; 4V, 4th ventricle.

2. Cilia in the nose

Chemosensation in vertebrates occurs in dedicated olfactory
and gustatory organs. In the nose, bipolar olfactory sensory
neurons (OSNs) [17] protrude several olfactory cilia from
their dendritic knobs into the nasal cavity and are indispen-
sable to the nasal epithelium across animal species. Indeed,
mutations affecting ciliogenesis or intraflagellar transport of
transduction components into the olfactory cilia [10,18]
result in anosmia in humans, mice [19] and zebrafish [20]. In
addition, the olfactory epithelium contains microvillous odorant
receptor cells, glia-like support cells (sustentacular cells) and
basal cells which replenish the OSNs. The anatomically separ-
ated respiratory epithelium consists of mucus-producing goblet
cells and multiciliated support cells [21-24]. This arrangement is
observed in all vertebrates and has been documented for
humans [23], mice [24], clawed frogs [21] and zebrafish [22]
(figures 1 and 2a). Nevertheless, vertebrate olfactory organs
are highly variable. Fish exhibit an aquatic nose, mammals
an airborne nose and amphibians a combination of the two
[17]. Despite vast differences in their environment, odorant
receptors are conserved between aquatic and terrestrial ani-
mals [17] and localize specifically to the cilia of the OSNs
[10]. Olfactory cilia lack dynein arms in many species includ-
ing humans [23], rodents [30] and zebrafish [22], and are
therefore considered immotile. Yet, OSNs express the motile
ciliary marker Foxj1 in mice [31,32] and olfactory placodes
express foxjlb in zebrafish [33,34]. Strikingly, olfactory cilia
were observed to be motile in frog [35] and trout [36]. The
motile nature of those cilia, however, remains puzzling.
Nonetheless, multiciliated cells are found near the olfac-
tory epithelium in many species (figure 2a). Their function,
however, remains poorly understood. Motile cilia may
remove pathogens entrapped in mucus away from the olfac-
tory epithelium [37], in a process similar to the mucociliary
clearance of the lung epithelium [38]. Olfactory cilia are the
single direct entry point into the central nervous system
from the outside [39] and are specifically targeted by

pathogens [40]. Thus, mucociliary clearance [38] may comp-
lement other defence mechanisms including enzymatic
activity targeting pathogens [41] and sneeze reflexes [42].

Additionally, motile-cilia-mediated flow may contribute to
odour sampling in the nose. In the aquatic environment, odour
molecules flow through the olfactory organ, either by diffusion
or by active mechanisms including motile cilia [43—45]. Motile
cilia not only attract odorants into the nasal cavity to aid odour
detection, but simultaneously repel odours to enhance detec-
tion of rapidly succeeding odour plumes in the zebrafish
nose pit (figure 2a) [44]. Cilia-mediated flow may also support
the sequential enzymatic conversion and delivery of odorants,
such as ATP, to the nose [45]. For mammals and other terres-
trials, such as insects, volatile odours first need to reach
OSN s through diffusion or active transport into the mucus or
fluid surrounding OSNs [17]. In mammals, sniffing not only
aids odorant transport to the olfactory epithelium, but also
induces sniff-cycle-related temporal dynamics in the olfactory
bulb that facilitate odour coding [46,47]. Such a process may
be mediated by mechanosensitivity of olfactory cilia [48].
To further aid phase transition of odorants, both mammals
and insects express odorant-binding proteins, which travel
freely in the mucus and help capture volatile odours into the
mucus layer close to the sensory cilia [41,49]. It remains unclear
whether motile-cilia-mediated mucus flow in the nasal cavity
of mammals contributes to the clearance of odours, and
thereby plays similar roles as in fish.

3. Cilia in the inner ear

Whereas OSNs are key to olfaction, hair cells are essential to
auditory and vestibular processing [50]. The hair cell bundle
consists of multiple tapering stereocilia and sometimes a
single kinocilium, the only true cilium. Both vestibular and
cochlear kinocilia do not directly transduce sensory infor-
mation (for a review of cilia in the development of the
inner ear, see [51]). Even more so, hair cells in the cochlea
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Figure 2. Schematic depiction of various cavities of the nervous system lined with motile cilia. (a) The olfactory organ of a zebrafish larva is composed of multi-
ciliated cells (MCC) located at the outer rim of the nasal cavity. MCC bear multiple motile cilia (magenta), which generate a directional fluid flow of water. Ciliated
0SNs (green), which bear multiple primary cilia (black) and microvilli OSN (grey) are located at the bottom of the nasal cavity. (b,b') The otic vesicle of a zebrafish
embryo at 18—24 hpf contains hair cells (green), or tether cells, that bear primary cilia capable of tethering the otolith (blue). Next to hair cells, there are motile cilia
on supporting cells that generate a rotational flow near the otolith. () The central canal of the spinal cord is composed of cerebrospinal fluid-contacting neurons
(CSF-cNs; green), which bear a microvilli tuft and a motile cilium in zebrafish. ECC (grey), also known as ERG in zebrafish, are located on the floor plate or the dorsal
wall of the central canal and bear a cilium. Note that there are more motile cilia in the ventral part of the central canal than the dorsal plane at early developmental
stage, and that the CSF flow is bidirectional. (d) The brain ventricular system of the zebrafish larva is decorated by motile cilia (magenta) at very specific locations
along the midline. Motile-cilia-mediated flow is complex and compartmentalized to individual ventricles. (d") Sagittal view of the inset in (d) showing that cells
bear a single cilium oriented anteriorly in the same direction as fluid flow. (d”) Transverse view shows that motile cilia are located in the ventral and dorsal wall of
the diencephalic-tectal ventricle. Elsewhere, radial glia (RG, green) project their primary cilium into the CSF-filled cavity. (e) ECs, which bear motile cilia, are located
along the medial and lateral wall of the mouse lateral ventricle. (¢) Transverse section through the inset in () reveals that NSCs of the SVZ are located directly under the
ependyma layer made of multiciliated E1 cells and bi-ciliated E2 cells. NSCs also known as B cells (green) project their primary cilium towards the CSF-filled ventricle in
addition to contacting the blood vessel (blue), while transient amplifying cells (C cells, grey) and migrating neuroblasts (A cells, grey) lose their direct interaction with the
CSF. En face representation shows the pinwheel structure composed of E1 and B cells. Note the translational polarity of the motile cilia of E1 cells. A, anterior; P, posterior;
L, left; R, right; D, dorsal; V, ventral; M, medial; Lat, lateral. Motile cilia are in magenta, primary cilia are in black.

of mammalians lose their cilium during the maturation pro-
cess [50]. Instead, gated ion channels on stereocilia open
upon deflection of the hair bundle and initiate a cellular
response. Hair cells mediate stimulus detection of head
rotation in the semicircular canals, linear acceleration in the
otolithic organs, and sound in the otolithic organs of fish or
amphibians, and in the cochlea in mammals [52].

In mammals, otolithic kinocilia lack inner dynein arms
[53] and are thus considered immotile. Similarly, kinocilia
in the zebrafish inner ear are considered to be immotile
[51,54-57], despite an initial report stating otherwise [58].
Surprisingly, oscillating kinocilia have been observed in the
otolith organ of eels [59]. Despite the immotility of the kino-
cilium, hair cells express the motile cilia marker foxj1b in
zebrafish [33,54], foxj1.2 in the clawed frog otic vesicle,
[60,61], and Foxjl in mice in the cochlea prenatally [62], and
in the utricle both pre- and postnatally [62,63]. Interestingly,
motile cilia in auditory organs have been found elsewhere.
For instance, the chordotonal sensory neurons of Drosophila
bear cilia whose motility is shown to amplify environmental
sounds [64], such that mutants lacking ciliary motility are

deaf [65]. By contrast, mammalian hair cells do not rely on
kinocilia to amplify environmental sounds. Instead, this role
is attributed to an active piezo-element in the hair cell mem-
brane [52]. Beating cilia have also been observed in the
zebrafish otic vesicle during early development, specifically
on cells neighbouring hair cells [54-58] (figure 2b). Besides
clear evidence of ciliary motility, there is no consensus
on the timely location [54-58], the ciliary beat frequency
[55-58] or the consequences of ciliary immotility on otolith
formation. Even though ablation of ciliary motility in zebra-
fish affects the otolithic number [54,58] and shape [54,55],
these phenotypes disappear at later developmental stages
[56,57]. It is possible that other mechanisms regulate the
later development of the ear. Bodily movements may be
involved in this process since restraining larval movements
perturbs otolith development [56,66] and even aggravates
the motile-cilia-mediated ear phenotype [57]. Even though
the otolith phenotype disappears over time, the young zebra-
fish larva may depend on motile ciliated flow for its inner
ear function at early age. Since otolith size affects auditory
perception [67] and vestibular processing [68], defects in
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otolith formation may result in an imbalance that compromises
larval zebrafish survival [68]. In fish, otoliths are directly teth-
ered to kinocilia, while in amniotes, multiple hair cells are
covered by an otoconia-covered membrane. Little is known,
however, about the presence or absence of motile cilia in
amniotes. Although otolith formation in fish may not directly
translate to mammals, understanding cilia-mediated control,
as well as the importance of Foxjl expression, could provide
important mechanistic insights into ear development.

4. Motile cilia in the spinal cord

Motile cilia are observed on several cell types in the spinal
cord, including floor plate cells, ependymal cells (ECs) and
cerebrospinal fluid-contacting neurons (CSF-cNs) (figure 2c).
These cells are adjacent to the central canal, which elongates
from the brain ventricles throughout the entire spinal cord
and is filled with cerebrospinal fluid (CSF) [69,70].

(a) Identity of motile ciliated cells in the spinal cord
The floor plate is present during early development in all ver-
tebrates and consists of cells populating the ventral midline of
the neural tube. Through the secretion of Sonic hedgehog,
floor plate cells play key roles in the patterning of the
neural tube [71]. Work in various animal models including
zebrafish [13], mice and chick [72], revealed that the floor
plate cells harbour cilia and express typical markers of cilia
motility including Foxjl. Moreover, ciliary motility was
observed in zebrafish floor plate cells [73-75], but remains
to be investigated in other species.

Ependymal cells of the central canal (ECCs), which com-
monly refer to the cells directly contacting the central canal
[76], also harbour motile cilia (figure 2c). ECCs primarily
originate from the ventral progenitor domains of the neural
tube during spine development [77-79] and retain the ability
to proliferate at postnatal stages. Most proliferation occurs
either during spinal cord growth [80,81] or upon spinal
cord injury [76,82,83]. ECCs have been observed in all ana-
lysed vertebrate central canals and possess fewer cilia than
ECs of the brain. In fish and amphibians, ECCs have com-
monly been referred to as ependymo-radial glial cells (ERG)
[84]. In fish, birds, amphibians and reptilians, ECCs harbour
one and sometimes two cilia [83,85], while in mice, rat and
guinea pig, ECCs are bi-ciliated [80,85,86], or occasionally
bear up to three to four cilia in multinucleated cells [80,82].
In larger mammals, such as rabbits [85], macaques [81] and
humans [81], two populations of ECCs with either 1-2 or
20-30 cilia coexist and are spatially organized; multiciliated
cells are located laterally, while mono- and bi-ciliated cells
are situated ventrally and dorsally [81]. This suggests that
the number of cilia on ECCs correlates with the size of
the spinal cord and central canal [85]. Interestingly, only
bi-ciliated cells were shown to proliferate [81].

CSF-cNs, also known as Kolmer—-Agdhur cells, are the
third motile ciliated cell type in the spinal cord. They primar-
ily constitute GABAergic and PKD2LI-positive neurons
located at the interface between the nervous system and the
CSF [69,87-90]. Two populations of CSF-cNs coexist: the
dorsal CSF-cN’ and the ventral CSF-cN”, which emerge
from different progenitor domains during early spinal cord
development [69,87,91-94]. The morphology of CSF-cNs is
peculiar. They display an apical dendritic extension directed

towards the central canal, protruding a tuft of microvilli [ 4 |

[69,90,95]. CSF-cNs possess a cilium in clawed frog [96,97],
lamprey [88,98,99], zebrafish [100], chick [101] and turtle
[102], and the motility of this cilium was confirmed in lam-
prey and zebrafish [88,99,100] (figure 2c). However, there is
no consensus on whether a cilium exists on CSF-cNs in mam-
mals [69]. Considering their particular morphology and
resemblance to hair cells, CSF-cNs were suggested to be sen-
sory neurons integrating mechanosensory and chemosensory
cues from the CSF [69]. Recent evidence in zebrafish and lam-
prey confirmed that CSF-cNs are mechanosensory
[74,99,100]. CSF-cNs respond to both the continuous CSF
flow present in the central canal and bending of the tail
through the specific expression of PKD2L1 [74,100], a channel
previously implicated in flow sensation [103,104]. They also
detect pH changes in the CSF through acid-sensing ion chan-
nels [99] and PKD2L1 [89] in mice and lamprey. CSF-cNs
were shown to maintain spine morphology [74] and modu-
late locomotion [100] in zebrafish. Yet, the importance of
motile cilia in CSF-cNs physiology remains poorly under-
stood. Sternberg et al. [74] observed that the response of
CSF-cNs to muscle contractions was reduced in the absence
of ciliary motility, although PKD2L1 correctly localizes to
the apical extensions of CSF-cNs. These results suggest that
the motile cilium of CSF-cNs may contribute to the sensory
function, but the precise mechanisms remain to be discovered.

(b) Functions of ciliary beating in the development and
maintenance of the spine

In agreement with the observations of ciliary motility in the
spinal cord, movement of CSF occurs along the central
canal. This is well described in zebrafish from 24 h of devel-
opment, when most of the motile cilia are located on the
ventral part of the central canal and generate a bidirectional
flow, moving caudally along the ventral wall and rostrally
along the dorsal wall [74,75,105] (figure 2c).

Work in zebrafish has provided many insights regarding
the function of motile cilia in spine development. Ciliary
motility is essential for the straightening of the body axis at
early developmental stages in zebrafish. N-ethyl-N-nitrosourea
mutagenesis screens were the first to describe zebrafish
mutants with a curly tail phenotype [106], which has since
been ascribed to motile ciliary defects [107]. This phenotype
is only recently being understood. First, ciliary motility and
CSF flow are crucial to form the Reissner’s fibre [75], which
is an extracellular thread primarily composed of the glyco-
protein SCO-spondin secreted by the floor plate and the
subcommissural organ [108]. In turn, the Reissner’s fibre is
needed for the straightening of the body axis, in a process
independent from CSF flow or cilia motility, which is
poorly understood [75]. Second, motile-cilia-mediated
transport of molecules from the brain to the spinal cord
[73,74] controls spine development. Brain-derived adrenaline
induces the release of the urotensin peptides URP1 and URP2
by spinal CSF-cNs, which act on the muscles of the develop-
ing embryos to straighten the body [109]. Surprisingly, no
other animal model but the zebrafish shows such striking
developmental defects upon loss of ciliary motility in the
early neural tube [72].

Later in development, CSF flow and ciliary beating help
maintain a straight body axis in zebrafish. The inhibition of
motile cilia function at post-embryonic stages reveals a high

95106107 :SLE § 0S "y "supi[ “iyd  qis/[eusnol/ba0°buiysiigndAranosiedol



incidence of scoliosis [26,110,111]. In addition, a zebrafish
model of scoliosis carrying a mutation in the ptk7 gene
shows defects in cilia and ciliary flow [110,112] even before
the appearance of spinal curvature [113]. The mechanisms
linking scoliosis, ciliary motility and CSF flow are still poorly
understood. Neuroinflammation may be responsible, as proin-
flammatory signals are sufficient to induce scoliosis-like spinal
curvature, and treatment with immunomodulating therapies
reduces the severity of scoliosis [113]. Next, the abovemen-
tioned adrenaline-urotensin signalling may be involved in
this phenotype, since urotensin receptor uts2ra mutant zebra-
fish develop scoliosis [109]. Interestingly, rescuing the
expression of the scoliosis-associated gene ptk7 solely in the
motile ciliated cells of the brain ventricles is sufficient to
rescue the scoliosis phenotype [110,113]. This suggests that
brain-released factors travel to the central canal and maintain
the straight body axis, but the precise molecular mechanisms
remain unknown. Most studies on the importance of
cilia-mediated flow have been performed on zebrafish, and
some studies support a conserved role for CSF flow in spine
development in mammals. For instance, developmental
scoliosis is observed in human conditions associated with per-
turbations of CSF flow, including neural tube closure, spinal
canal cyst and Chiari malformation [114]. Nonetheless,
stenosis of the human central canal has been observed
in the healthy population after the age of 10 years, yet
it remains a subject of debate and raises questions to the func-
tion of the central canal in adult human physiology
[81,115,116].

5. Motile cilia in the brain ventricular system

Motile cilia are also found within the brain ventricular
system, which is the conserved complex of CSF-filled cavities
in the brain. Here, CSF is circulated throughout the brain
ventricular system to nourish the brain, maintain brain
homeostasis and support neurogenesis [117-121]. One
major contributor to such CSF flow is the motile cilia of the
ECs lining the ventricles [122,123].

(a) Development and cellular composition of the brain
ventricular system

The embryonic brain vesicles, which later develop into the
brain ventricular system, are remarkably conserved across ver-
tebrates. Initially, the hollow neural tube bends to generate
three fluid-filled cavities, one in the telencephalon, one in the
diencephalon and one in the rhombencephalon, akin to the
three ventricular cavities of the larval zebrafish (figure 1)
[124,125]. As the brain further develops to its adult anatomy,
the telencephalic ventricle transforms into two lateral ventricles
in amphibians and mammals, but not in zebrafish, such that
the mature ventricular system constitutes four cavities (figure 1)
[26,124,125]. Furthermore, the telencephalic ventricle in teleost
fish is located dorsally above the brain parenchyma, in contrast
with the deeply embedded ventricles of other vertebrates [126].
This is likely due to the unique telencephalic morphogenesis of
teleosts, wherein the tissue everts and folds outwards [126],
contrasting the telencephalic evagination of other vertebrates.
Already in 1836, the neuroanatomist Purkinje described
ciliary beating on cells along the sheep ventricles [127].
Since then, these cells, referred to as ECs, have been described
in both fish [25,110,128-130], amphibians [131-133] and

mammals [16,123]. Traditionally, the ECs of the brain are “

defined as Foxj1-positive, motile ciliated, cuboidal cells gener-
ating near-wall CSF flow [16,25,29,133-135]. In mammals, the
multiciliated ependymal lining appears during late prenatal
and early postnatal stages [136-140], even though ECs are
already committed during embryonic development
[137,140,141]. ECs derive from embryonic radial glial cells,
which are neural stem cells (NSCs) generating neurons
[142], glia [137,141,143], as well as the NSCs (termed B
cells) of the adult neurogenic subventricular zone (SVZ)
[140,141]. Furthermore, the ECs and adult NSCs share a sub-
population of radial glia as their common progenitors
[140,141]. In contrast with ECs of the spinal cord that can pro-
liferate postnatally, ECs in the mammalian brain are
considered to be post-mitotic [135,141]. Yet, this is still
debated, as some studies suggest ECs may dedifferentiate
and proliferate [144-146]. Like mammals, both zebrafish
and the clawed frog have a multiciliated ventricular lining
in adult stages, despite the presence of motile monociliated
cells in larvae [25,129,130,133,147] (figure 2d). Interestingly,
although most of the adult ventricular lining of rodents
consists of multiciliated cells, even in the mouse, mono-
and Dbi-ciliated cells do exist [148,149] (figure 2¢). Since
these cells contact the ventricular lumen and extend long
radial processes into the neuropil, they are thought to be
tanycytes relaying chemical and mechanical information
from the CSF to the underlying neurons [149].

In addition to the important role of ECs in circulating
CSE studies also suggest that ECs secrete molecules
into the fluid [150], and thus relay signals from the
neural tissue to the CSF. Nevertheless, the main contributors
to the CSF contents in adult vertebrates are the choroid
plexuses [151,152]. These structures, which exist in each ven-
tricle in mammals, consist of specialized epithelial cells,
transporting ions and water from blood capillaries to the ven-
tricular lumen. Furthermore, the choroid plexus cells
themselves produce and secrete many proteins into the CSF
[153]. As such, the choroid plexuses make up a barrier
between the blood and the CSE tightly controlling the
CSF content. Interestingly, the choroid plexus cells exhibit
cilia, which are motile in zebrafish [154], but mostly
immotile in mice [155]. The function of these cilia is not
fully understood, yet in zebrafish they may contribute to
CSF flow [154], while in mice they are suggested to serve a
chemosensory function [155].

(b) Regulation of the cerebrospinal fluid flow

The flow of CSF within the ventricular system, which is
contributed to by multiple factors in addition to cilia, is com-
plex. Moreover, the properties of CSF flow vary with the
proximity to the ventricular walls, following a principle
known as boundary layers [29]. Therefore, the description
of CSF flow is commonly separated into two major levels:
the macrofluidic, bulk flow amid the ventricular cavities,
and the microfluidic, near-wall flow contributed by the ECs
[29]. In mammals, the bulk CSF flow emerges at the secretion
sites (the choroid plexuses) and moves through the third and
fourth ventricles into the subarachnoid space, wherein it
escapes the brain ventricular system [156-158]. This overall
bulk, unidirectional flow is suggested to arise from several
sources, like the pressure gradient caused by CSF secretion
and exchange of CSF for interstitial fluid across the
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ependymal lining [137]. Pressure changes may also be con-
tributed by the cardiac [29,159] and respiratory cycles
[159,160]. Interestingly, bodily movement temporally changes
the direction of CSF flow in humans [161] and in the zebra-
fish brain ventricular system [25]. Since many physiological
parameters impact the bulk flow, and are difficult to measure
with high spatial and temporal resolution, most studies focus
on the cilia-mediated flow along the ventricular walls. The
contribution of motile cilia in CSF flow is clearly demon-
strated in zebrafish [25,110], clawed frog [27,133], rodents
(e.g. [123,136,138,162,163]), pigs [162] and humans [123].
Notably, the cilia-mediated, near-wall flow is complex,
wherein local domains of cilia-generated currents may serve
to target certain molecules to specific areas [25,162]
(figure 2d). It is well documented that such cilia-mediated
flow is crucial to maintain a properly functioning brain ven-
tricular system, as zebrafish, clawed frog and mouse ciliary
mutants display ventricular defects eventually causing
hydrocephalus (e.g. [25-27,110,111,133,136,138,163]). Surpris-
ingly, human patients with primary ciliary dyskinesia rarely
develop hydrocephalus [164]. This observation poses the
question as to whether the relative importance of near-wall
cilia-mediated flow and bulk flow differs across species. The
ventricular sizes may also influence the importance of bulk
compared to near-wall flow, and advocates the continued
use of several animal models to disentangle the CSF flow pat-
terns. Such animal models will also be pivotal to understand
how the CSF flow patterns are regulated. A few studies
revealed that neural states may impact the ciliary beating of
ECs. For instance, the CSF flow patterns change in the third
ventricle of mice during the day versus the night [162]. Fur-
thermore, neuropeptides like melanin-concentrating hormone
may increase the ciliary beating frequency of the ECs [165].
Yet, the influence of such local changes in ciliary beating on
the global CSF flow remains poorly understood.

The differential nature of the bulk flow and the near-wall
flow suggests these different levels of CSF flow may serve
different means of relaying signalling and developmental
cues. It is likely that the bulk mid-ventricular flow supports
brain homeostasis and volume transmission, which is the
long-range, intercellular communication [166,167]. Transfer
of neuropeptides across brain ventricles was shown to not
only promote basic physiological needs like hunger [168],
but also increase neuronal excitability to enhance cortical
alertness in response to acute stress [150].

Considering the apposition of the embryonic and adult
neurogenic zone to the ventricles (figure 2d,e), it is highly
probable that CSF flow supports the neurogenic capacity of
NSCs through the specific delivery of chemical or mechanical
cues. Interestingly, the CSF proteome is regionalized due to
the differential transcriptome of the choroid plexuses in the
various brain regions in mouse embryos [153] and also
changes substantially from early to late embryonic stages
[169] and during ageing [152]. These regional and temporal
changes in the CSF composition have a direct impact on the
cell fate and proliferation rate of the neurogenic tissue appos-
ing the CSF [152,153,169]. Furthermore, these secreted signals
can be rather specific. For instance, WNT5A, secreted by the
hindbrain choroid plexuses, travels to distinct neural progeni-
tors within the developing hindbrain to support cerebellar

development [170]. Altogether, these findings indicate that
CSF flow promotes regionalization of the CSF contents as
proposed in larval zebrafish [25] (figure 2d). Other develop-
mentally important CSF-borne signals, like Igf-2 [117], may
be localized to specific areas by the near-wall flow patterns.
Whether this supports the distinctive differentiation of brain
regions remains to be investigated.

While the neurogenic capacity is largely retained in tele-
osts and amphibians throughout adulthood [84,147,171],
mammalian neurogenesis is confined to two brain regions,
namely the SVZ [172,173], located just beneath the ependyma
of the lateral ventricle, and the subgranular zone of the hip-
pocampal dentate gyrus [174]. In mice, NSCs located in the
SVZ extend a primary, immotile cilium into the ventricles
(figure 2e). This apical extension is surrounded by ECs to
form the so-called pinwheels [148]. Since primary cilia dis-
play a multitude of mechano- and chemosensory receptors
[6,7,175], cilia of the neural progenitors may integrate cues
from the CSF flow and regulate neurogenesis. In the embryo-
nic and early postnatal stages in mice, the primary cilia of
radial glia express the mechanosensors PKD1 and PKD2
[176], which not only regulate the polarity of multiciliated
ECs [176], but also promote the differentiation of radial
glial cells to neurons [121]. The primary cilia of NSCs may
play similar functions in adults. Indeed, ablation of pri-
mary cilia in a subpopulation of SVZ NSCs resulted
in reduced neurogenesis [118]. Furthermore, a study in
mice demonstrated that applying mechanical forces onto
the ventricle-contacting, apical domain of adult NSCs in
the SVZ promoted neuronal proliferation through the
flow-sensing epithelial sodium channel [119] in a cilia-inde-
pendent manner. However, the nature of the incoming signal
to the NSCs remains poorly understood and may also
be chemical. Studies have demonstrated that the binding of
developmental signalling cues to receptors on the NSC pri-
mary cilia may promote proliferation [117] or maintain
cellular quiescence [120]. While these studies suggest that
CSF flow transports molecules to the SVZ in the lateral ventri-
cle, CSF flow may also support a more fine-tuned distribution
of molecules into gradients. For instance, Sawamoto et al. [177]
showed that the distribution of the chemorepellent Slit2 may
drive proper neuroblast migration from the SVZ towards the
olfactory bulb.

Motile cilia serve a variety of functions within the nervous
system. There is now clear evidence for the role of these orga-
nelles in circulating fluid, in sensory systems like the nose and
ear, in the spinal cord and in the brain ventricles during organ
development and homeostasis. It remains, however, less under-
stood how motile cilia allow the nervous system to sample its
environment, whether it is achieved through the establishment
of chemical gradients, delivery of molecules to precise targets
or mechanical forces. Moreover, it is remarkable that the ner-
vous system may manipulate ciliary beating, yet the extent
and impact of such regulation on the development and physi-
ology of the brain remain to be studied. Investigations across
systems, species and developmental stages will now be pivotal
to further disentangle this mutual dependence of the nervous
system on proper motile cilia functioning. Ultimately, such
studies will be essential to understand and develop treatments



for disorders associated with ciliary defects, like scoliosis

and hydrocephalus.
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