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analysis based on the high density SNP
markers in Ethiopian durum wheat (Triticum
turgidum ssp. durum)
Admas Alemu1,2* , Tileye Feyissa1, Tesfaye Letta3 and Bekele Abeyo4

Abstract

Background: Ethiopia has been considered as a center of diversity and the second possible center of
domestication of durum wheat. Genetic diversity and population structure analysis in the existing Ethiopian durum
wheat germplasm have enormous importance in enhancing breeding effort and for sustainable conservation.
Hence, 192 Ethiopian durum wheat accessions comprising 167 landraces collected from major wheat-growing areas
of the country and 25 improved varieties released from Debre Zeit and Sinana Agricultural Research Centers,
Ethiopia in different years (1994–2010) were assembled for the current study.

Results: The panel was genotyped with a High-density 90 K wheat SNP array by Illumina and generated 15,338
polymorphic SNPs that were used to analyze the genetic diversity and to estimate the population structure. Varied
values of genetic diversity indices were scored across chromosomes and genomes. Genome-wide mean values of
Nei’s gene diversity (0.246) and polymorphism information content (0.203) were recorded signifying the presence of
high genetic diversity within this collection. Minor allele frequency of the genome varied with a range of 0.005 to
0.5 scoring a mean value of 0.175. Improved varieties clustered separately to landraces in population structure
analysis resulted from STRUCTURE, PCA and neighbor joining tree. Landraces clustering was irrespective of their
geographical origin signifying the presence of higher admixture that could arise due to the existence of historical
exchanges of seeds through informal seed system involving regional and countrywide farming communities in
Ethiopia.

Conclusions: Sustainable utilization and conservation of this rich Ethiopian durum wheat genetic resource is an
irreplaceable means to cope up from the recurrent climate changes and biotic stresses happening widely and
thereby able to keep meeting the demand of durum productivity for the ever-growing human population.
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Background
Modern wheat cultivars generally refer to two species:
hexaploid bread wheat, Triticum aestivum (2n = 6x = 42,
AABBDD), and tetraploid/hard or durum wheat, T.
durum (2n = 4x = 28, AABB) used for pasta, macaroni,
couscous and low-rising bread, and the former accounts

for about 95% of world wheat production and durum
covers the other 5% [1].
In Ethiopia, wheat is the second most widely produced

cereal crop after corn and the third most important
staple food behind corn and sorghum [2]. Hard red
wheat accounts for about 75–80% of the national pro-
duction, while durum makes up roughly 10–15% [2].
Wheat has versatile uses in making various foods and
drinks, such as bread, ‘Kolo’ (traditional Ethiopian snack
made from wheat mixed with barley, chickpea and other
legumes and roasted in a clay griddle), ‘Tella’ (traditional
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Ethiopian beer), pasta, macaroni, biscuit, cake, and
others. Additionally, wheat straw is commonly used as a
roof thatching material and as animal feed in most
wheat-growing rural areas of Ethiopia. Hence, increasing
wheat production has been a national goal to decrease
the gap between production and human consumption
especially in view of the fastest-growing population as
compared to production.
Durum wheat is the result of two successful domesti-

cation events by ancient farmers: first, from wild emmer
(Triticum turgidum ssp. dicoccoides) to domesticated
emmer (T. turgidum ssp. dicoccum) with the loss of fra-
gility of spikes (disarticulation into spikelets), and sec-
ond, from cultivated emmer to durum with the
appearance of naked kernels or free threshing kernel [3].
Ethiopia is one of the few countries that has been served
as the center of primary gene pool for various crops [4–
6]. Ethiopian biodiversity institute (EBI), formerly known
as Institute of biodiversity conservation (IBC), has

maintained more than 60,000 accessions of different
crops in its gene bank and of these, 7000 are durum
wheat accessions accounting 12% from the total [7, 8].
Besides, up to recent time, agricultural research centers
and institutions have been involved in collecting and
conserving Ethiopian durum wheat landrace accessions
in the country. Due to its uniqueness, Ethiopian durum
wheat has been served as a center of focus for genetic
studies and the source of novel alleles [9–14]. Vavilov
[4] and Zohary [15] reported the presence of high genetic
diversity in Ethiopian durum wheat and recent studies
specified uniqueness of Ethiopian durum landraces form
the Fertile Crescent collections (primary center of domes-
tication) and considered as the possible second center of
domestication for the crop [3]. Durum wheat is long
established in the country and it was likely introduced into
the northern highlands of Ethiopia around 3000 BC [16].
Previous studies indicated the existence of high genetic
variation of cultivated durum wheat in Ethiopia that arises

Fig. 1 Distribution of SNPs generated from the 90 K Illumina iSelect SNPs array across chromosomes (A) and genomes (B) in 192 Ethiopian
durum wheat accessions
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due to the wide range of agro-ecological conditions
coupled with diverse farmers’ culture [11, 12, 17–22].
Ethiopian farmers have grown durum wheat since imme-
morial time, mostly under adverse environmental condi-
tions and they developed a broad gene pool of durum
wheat landraces adapted to various environmental condi-
tions [23]. In Ethiopia, durum wheat is commonly planted
on heavy black clay soils (vertisols) of the highlands be-
tween 1800 and 2800 masl [23].
Mechanisms of detecting and analyzing genetic diver-

sity have gradually progressed from Mendelian survey of
discrete morphological traits to molecular examinations
of DNA variation [24]. Genetic diversity analysis is a
critical component of plant genetics, breeding, conserva-
tion and evolution [25]. Understanding the existing gen-
etic divergence and distribution of crop species has
paramount importance for conservation and selection of
parents with diverse genetic backgrounds, thereby ren-
dering crop improvement more efficient [22].

Single nucleotide polymorphisms (SNPs) are the
most abundant class of DNA markers. Lower rates of
recurrent mutation make them evolutionarily stable.
They are excellent markers for studying complex gen-
etic traits and for understanding the genomic evolu-
tion. They have been widely used in genome-wide
association studies, genetic resource characterization,
marker-assisted breeding and genomic selection [26].
Hybridization arrays/microarrays have been used as a
preeminent solution to develop SNPs in complex
polyploid genomes such as wheat [27]. Once a com-
prehensive SNP data set is available for a species, a
well-designed microarray can be produced; and gener-
ally, the technology is then cost-efficient and the
process is relatively convenient. The technology
avoids the risk of miscalling diversity on homoeolo-
gous genomes and its power recently increased 100-
fold in wheat moving from 9 K [28] to 820 K [29]
genome-wide SNPs. The 90 K wheat SNP array [27]

Fig. 2 Frequency distribution of Nei’s gene diversity (A), polymorphic information content (PIC) (B) and minor allelic frequency (MAF) (C) of
15,338 polymorphic SNPs generated from Ethiopian durum wheat accessions
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has been successfully used for genetic diversity ana-
lysis, genome-wide association mapping and construc-
tion of high-density consensus maps in both bread
and durum wheat [12, 30–32].
Molecular characterization of Ethiopian durum wheat

accessions has been investigated in DNA markers with a
very limited number, such as microsatellites [11, 20, 21].
However, except in a single attempt that has made to
characterize Ethiopian durum wheat landraces collected
by EBI siding with Mediterranean durum wheat [12], the
germplasm has not been extensively investigated with a
high density SNP markers. Hence, the present study
aimed to assess the genetic diversity and population
structure of 167 landraces and 25 improved varieties col-
lected and maintained at Debre Zeit and Sinana Agricul-
tural Research Centers, Ethiopia with a 90 K wheat SNP
array.

Results
SNP markers distribution
From 81,587 SNP probes available on the chip, 30,510
SNP calls (23,354 polymorphic SNPs) were reproducible
in the current Ethiopian durum wheat panel. From these
markers, 18,788 SNPs had a known position but only 15,
338 (81.63%) were polymorphic and used for the current
study (Additional file 2: Table S2). The smallest number
of SNP markers were recorded on chromosome 1A (263
SNPs) while the highest on chromosome 2B (2253 SNPs)
(Fig. 1-a). Chromosome 2B also contributed the highest
number of polymorphic SNP markers (1755 SNPs) while
the smallest on chromosome 1A (236 SNPs). Consider-
ing the distribution of SNPs across homoeologous chro-
mosomes, group two scored the highest number of SNP
markers (3639 SNPs of which 78.38% is polymorphic)
while the smallest number on group one with 1709

Table 1 Mean values of diversity indices and minor allelic frequency distribution of SNP markers across chromosomes in 192
Ethiopian durum wheat accessions

Chromosome Nei’s Gene diversity Polymorphic information content (PIC) Minor allelic frequency (MAF)

A-Genome

1A 0.282 0.229 0.208

2A 0.221 0.185 0.150

3A 0.246 0.202 0.175

4A 0.248 0.204 0.176

5A 0.272 0.221 0.200

6A 0.265 0.215 0.194

7A 0.217 0.181 0.150

B-Genome

1B 0.254 0.208 0.185

2B 0.229 0.190 0.158

3B 0.233 0.194 0.159

4B 0.279 0.226 0.209

5B 0.265 0.217 0.191

6B 0.246 0.203 0.172

7B 0.235 0.193 0.164

Homoeologous

1 0.259 0.211 0.188

2 0.226 0.188 0.155

3 0.238 0.197 0.166

4 0.264 0.215 0.193

5 0.268 0.218 0.194

6 0.255 0.209 0.182

7 0.226 0.187 0.157

A-Genome 0.2448 0.2015 0.1744

B-Genome 0.2471 0.2035 0.1750

Whole Genome 0.2462 0.2027 0.1748
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SNPs of which 84.43% was polymorphic. Higher number
polymorphic SNP markers were recorded on B genome
(9013 SNPs) than the A genome (6325 SNPs) in Ethiop-
ian durum wheat accessions (Fig. 1-b).

Genetic diversity analysis
The SNP markers exhibited a wide range of poly-
morphic information content (PIC) and Nei’s gene di-
versity across chromosomes and genomes of
Ethiopian durum wheat. Frequency distribution of
SNPs for gene diversity, polymorphic information
content, and frequency of the minor allele values of
the genome is presented in Fig. 2-a, Fig. 2-b, and Fig.
2-c, respectively. While a detail of the frequency dis-
tribution of SNP markers across chromosomes is pre-
sented for values of gene diversity (Additional file 4:
Figure S2), PIC (Additional file 5: Figure S3) and
minor allelic frequency (Additional file 6: Figure S4).
The overall mean value of polymorphic information
content was 0.203 ranged from 0.01 to 0.375. Nei’s
gene diversity score was varied from 0.01 to 0.5 with
a mean value of 0.246 and the mean MAF of the

genome was 0.175 ranged from 0.005 to 0.5. Chromo-
some 1A scored the highest PIC (0.229) and gene di-
versity (0.282) (Table 1). In contrast, the lowest PIC
and genetic diversity score was observed on chromo-
some 7A (PIC = 0.181; gene diversity = 0.217). Chro-
mosomes 2A, 2B, 3A, 3B, 7A and 7B showed slightly
lower polymorphic information content than the aver-
age PIC values of the whole genome. On the other
hand, homoeologous chromosome groups 1, 4, and 5
scored higher Nei’s genetic diversity than the average
genome-wide value. The highest gene diversity, PIC
and MAF were on homoeologous chromosome group
five. Comparable mean values of genetic diversity,
PIC and MAF were scored on A and B genomes.

Genetic stratification and principal component analysis
The optimal sub-population of accessions was inferred
through two approaches: The first method was the
STRUCTURE-based clustering approach that was in-
ferred based on the second order rate of change of the
likelihood (ΔK) (Table 3). The result indicated a clear
peak at K = 3 signifying the optimal sub-populations in

Fig. 3 Inference of the optimal numbers of sub-populations (clusters) in Ethiopian durum wheat panel with the Bayesian clustering model in
STRUCTURE (A) and by the discriminant analysis of principal components (DAPC) using adegenet package (B)
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the panel (Fig. 3-a). The second approach was based on
the discriminant analysis of principal components
(DAPC) and the result couldn’t show a clear lowest
Bayesian information criterion (BIC) on a specific K
value above which BIC values decreased spontaneously
with simultaneous increment making an elbow at the
optimal K value (Fig. 3-b). However, in this case, it pro-
vided a clue in which somehow less than five clusters
could be optimal. Hence, accessions were grouped into
three clusters based on the STRUCTURE-inferred clus-
tering result with 75, 27 and 90 accessions came to-
gether for sub-populations 1, 2 and 3, respectively
(Additional file 1: Table S1). Landraces gathered on
cluster-one and cluster-three while all improved var-
ieties, except one variety (Selam) that was under cluster
one, assembled on sub-population two. The neighbor-
joining based clustering analysis (Fig. 4) also identified
three clear clusters and except one accession all are
grouped based on the STRUCTURE based stratification.
Principal component analysis (PCA) was analyzed with

all Polymorphic SNPs generated from the panel. The
first, second and third principal components explained

24.29, 6.61 and 3.74% of the total variance, respectively.
The smaller numbers of variance explained by the sec-
ond and consecutive PCs indicated that only few PCs
couldn’t encapsulate the existing genetic variance in
Ethiopian durum wheat. The first PC (PC1) distantly
clustered varieties from landraces and the second PC
grouped the two landrace subgroups (Fig. 5-a). The first
two PCs (PC1 and PC2) clearly clustered the three sub-
populations. However, clustering gets distorted when
additional principal components were considered (Fig.
5-b).

Genetic divergence between landraces and improved
varieties
The Bayesian model based stratification and PCA
clustering methods grouped landraces and varieties in
distinct places except in a single variety, Selam, which
was clustered alongside landraces. The numbers of
polymorphic SNPs were slightly higher in varieties
than landraces. Varieties scored higher gene diversity
(0.297), PIC (0.240) and the mean frequency of minor

Fig. 4 Neighbor-joining tree generated based on simple matching dissimilarity coefficients using SNP markers from 192 Ethiopian durum wheat
accessions. Colors of accessions are clusters inferred from STRUCTURE-based analysis
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allele (0.218) than landraces (gene diversity = 0.213;
PIC = 0.173 & MAF = 0.154) (Table 2).
However, the number of landraces included in the

present study was higher by six folds than the number of
varieties and that could affect the reliability of the PIC,
genetic diversity and the minor allelic frequency scores
reported in the current study.

Genetic variation among clusters
The analysis of molecular variance (AMOVA) re-
vealed the presence of higher genetic variance be-
tween STRUCTURE-inferred sub-populations (52.41%)
than among individuals within clusters (47.59%)
(Table 4).

Further analysis of molecular variance between the 25
varieties and 167 landrace accessions indicated higher
genetic variation between the two groups (61.02%) than
individuals within the group (38.98%) (Table 5).

Genetic clustering via geographic origin
The current Ethiopian durum wheat germplasm com-
prises landrace accessions collected from major wheat-
producing areas of the country (Additional file 3: Figure
S1) including Bale, Gondar, Gojjam, Shewa, Tigray, and
Wollo, and 12 Ethiopian durum wheat landraces cur-
rently cultivated in the USA.
The clustering analysis indicated that the SNPs data

couldn’t group landraces clearly based on their geo-
graphical background and accessions were admixed

Fig. 5 Principal component analysis (PCA) using 15,338 polymorphic SNP markers generated from 192 Ethiopian durum wheat accessions. (A)
Varieties cluster (green, K-2) showing a clear separation from the other two landrace clusters (K1 & K2) using PC1 and PC2. (B) Clustering got
disrupted when considering other PCs

Table 2 Mean of diversity indices and minor allelic frequency distribution of SNPs in landraces and varieties of Ethiopian durum
wheat

Accession Type Sample size No. of polymorphic SNPs Nei’s Gene diversity Polymorphic information content (PIC) Minor allelic frequency (MAF)

Landrace 167 13,466 0.213 0.173 0.154

Cultivar 25 13,725 0.297 0.240 0.218
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into the different sub-groups irrespective to their geo-
graphic origin. For instance, eight landraces collected
from northeastern Ethiopia (Wollo) were grouped in
sub-population one while 25 landraces from the same
origin clustered in sub-population three (Additional
file 1: Table S1). Landraces collected from central
Ethiopia (Akaki and Shewa) clustered in both sub-
groups; 4 landraces in sub-population one while 19
landraces in sup-population three. However, from the
total eight landraces collected in Bichena (a town in
East Gojjam Zone, west-central Ethiopia), seven were
grouped in sub-population three and the other one
landrace altogether with four landraces collected from
other parts of Gojjam were grouped in sub-
population one. Landraces collected from Bale (South-
eastern Ethiopia) grouped in both clusters (44 land-
races in cluster 1 and 24 landraces in cluster 3). The
two landraces collected from Tigray region (North
Ethiopia) were clustered in sub-population one. How-
ever, a landrace collected from Gondar, adjacent to
Tigray, was sub-grouped in cluster three. All twelve
Ethiopian landraces that are now cultivated in the
USA were gathered in sub-population three.

Discussions
Genetic diversity of Ethiopian durum wheat
Genetic diversity is imperative to provide a robust food
security system capable of adapting to recurrent biotic
and abiotic stresses. Genetic diversity analysis is a crucial
step in noticing alleles that could be used as the source
of novel traits with high yielding, resilient for biotic and/
or abiotic stresses and yet delivers satisfied productivity
or in meeting the end-user demands in plant breeding.
Ethiopian durum wheat landraces have especially proven
to show a relevant variation for various traits derived
from their potential in adapting to changing environ-
mental conditions [33]. Due to this, Ethiopian durum
wheat germplasm has served as a center of focus for
genetic studies and served as the source of novel QTLs,
genes and gene complexes for many traits [9–14, 34].
Slightly higher number of SNPs (30,510) were repro-

duced in the present study from the 90 K wheat SNP
array than previously reported by Mengistu et al. [12] on
Ethiopian durum wheat (30,155 SNPs) and in Mediterra-
nean durum wheat collections (21,069 SNPs). Genomes
of A and B did not show a significant difference in diver-
sity indices, indicating that they have followed similar

Table 4 Analysis of molecular variance (AMOVA) for Ethiopian durum wheat accessions with and without grouping according to
STRUCTURE clustering result

Source of variation DF Sum of squares Variance components Percentage of variation Fixation indices P value

Among populations 2 166,172.20 700.94 Va 52.41 FST = 0.52 Va and FST = 0.000

Among individuals Within populations 189 240,563.25 636.41 Vb 47.59 FIS = 1.00 Vb and FIS = 0.000

Total 191 406,735.45 1337.35

Table 3 Inference of the optimal numbers of clusters existed in Ethiopian durum wheat panel using Delta K Statistics

K L(K) stdev L’(K) L”(K) |L”(K)| Delta K

1 −157,376 3.369 – – – –

2 −138,930 1370.013 18,446.93 − 3224.75 3224.75 2.35

3 − 123,708 543.0884 15,222.19 − 5458.76 5458.76 10.05

4 −113,944 1149.967 9763.425 − 1419.46 1419.46 1.23

5 − 105,600 708.175 8343.965 − 3511.28 3511.28 4.96

6 −100,768 677.594 4832.685 − 1326.03 1326.025 1.96

7 −97,261 1353.421 3506.66 580.6019 580.6019 0.43

8 −93,173 1398.676 4087.262 − 1491.05 1491.054 1.07

9 −90,577 1708.376 2596.208 635.7119 635.7119 0.37

10 −87,345 2170.333 3231.92

Where;
K = Subpopulations;
Ln (PD) = The log likelihood for each K;
L (K) = An average of 20 values of Ln P(D);
stdev = Standard deviation for 20 values of Ln P(D);
L’(K) = L(K) n – L(K) n-1;
L”(K) = L′(K) n+ 1 − L′(K);
ΔK = |L”(K)|/Stdev;
The gray color of the third line designates the optimal sub-populations of the panel based on the highest delta K value
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evolutionary histories in Ethiopian durum wheat land-
races and improved varieties [12].
The 90 K wheat SNP array was a platform made to cap-

ture the most reliable gene-associated SNP markers avail-
able in the wheat genome worldwide and could not enable
to mine new loci. The less number of SNPs reproduced
from the array in the current panel indicates the possibil-
ity of existence of novel alleles and further studies would
be benefited from the employment of both hybridization
and sequencing techniques to provide a thorough descrip-
tion of Ethiopian durum wheat genome.
Comparing with previous reports, higher genetic diver-

sity indices were scored in Ethiopian durum wheat panel
(Table 1) that strengthens the unresolved and ongoing ar-
gument of Ethiopia as the center of origin or domestication
of durum wheat [3]. The result unveiled the presence of
higher genetic diversity in Ethiopian durum wheat that
could arise because of various causes including adaptation
to wider agro-ecology [23], natural crossings due to culti-
vating mixed genotypes in a field and diverse farmers’ cul-
ture of agricultural practices [22, 35]. For instance, Ren
et al. [36] reported mean polymorphic information content
(0.18) and Nei’s gene diversity (0.22) from world-wide col-
lected 150 durum wheat accessions genotyped with 1536
SNP markers. Kabbaj et al. [3] obtained a mean PIC value
of 0.119 from 337 durum wheat accessions included land-
races, varieties and elite lines collected from more than 30
countries genotyped with 35 K Affymetrix Axiom wheat
breeders array. Eltaher et al. [37] reported slightly higher
mean gene diversity (0.3) and PIC (0.23) in 250 winter
wheat accessions genotyped with Genotyping-By-
Sequencing (GBS) platform. However, unlike the present
study, they only included SNP markers having less than
20% missing information and with minor allelic frequency
(MAF) greater than 5%. As expected, higher PIC and gen-
etic diversity scores were reported in studies using multi-
allelic markers such as SSR, unlike SNPs, that could go be-
yond 0.5 values [38, 39].

Genetic structure
Genetic stratification analysis based on the Bayesian clus-
tering model of the second order rate of change of the
likelihood [40] revealed the presence of three subpopula-
tions. However, discriminant analysis of principal compo-
nents based on the Bayesian information criterion (BIC)
couldn’t show the smallest BIC on a specific K value above
which the BIC values spontaneously decreased followed

by simultaneous increment creating an elbow shape [41].
However, it provided a clue in which somehow less than
five clusters could be optimal. Varieties showed a single
distinct cluster and landraces distributed into two distinct
clusters. Both principal component analysis (PCA) with
the first two components and the neighbor joining cluster-
ing based on simple matching dissimilarity coefficient
proved the former clustering result was optimal showing
three clear clusters. In the current study, clustering was
not based on their geographic origin where landrace ac-
cessions were originally collected in Ethiopia. Mengistu
et al. [12] reported a similar result on a study conducted
in 311 Ethiopian durum wheat accessions (287 landraces
and 24 varieties) collected from major wheat producing
areas of the country. This admixture could be due to the
existence of historical and current exchange of seeds
through informal seed system involving regional and
countrywide farming communities [34]. Ren et al. [36] re-
ported neither geographical nor ecological evidence was
detected in grouping 150 durum wheat accessions with
world-wide origin and noted that the possible reason
could be the existence of gene flow via germplasm ex-
changes among different regions occurred frequently or
that human transfer of genes in history made a very big
admixture. Kabbaj et al. [3] found higher admixtures be-
tween 370 durum wheat accessions included landraces,
varieties and elite lines collected from more than 30 coun-
tries including Ethiopia. However, they observed a very
limited admixture between Ethiopian landraces with other
collections originated world-wide and Ethiopian durum
wheat landraces made a separate cluster and proved the
presence of a unique morphology [10, 34] and represent a
separate sub-species under the name Triticum durum
subs. Abyssinicum or T. aethiopicum [22]. This phenom-
ena placed Ethiopia as a secondary center of origin and di-
versity for durum wheat since the germplasm is distinct
from the primary region of origin of durum wheat, the
Fertile Crescent countries [3].

Conclusions
In this study, 192 Ethiopian durum wheat accessions
comprising 167 landraces and 25 improved varieties
were assembled and genotyped with a high density 90 K
wheat SNP array to analyze the existing genetic diversity
and population structure within accessions. Clustering
analysis showed a higher genetic admixture between
landraces despite their geographic origin resulted from

Table 5 Analysis of molecular variance) between landraces and varieties

Source of variation DF Sum of squares Variance components Percentage of variation Fixation indices P value

Among populations 1 108,435.72 1228.63 Va 61.02 FST = 0.61 Va and FST = 0.000

Among individuals Within populations 190 298,299.73 784.99 Vb 38.98 FIS = 1.00 Vb and FIS = 0.000

Total 191 406,735.45 2013.62
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the existence of higher rate of historical seed exchange
throughout the country. Diversity indices revealed the
presence of higher genetic diversity in Ethiopian durum
wheat accessions. Landraces adapted to wider agroecol-
ogy and with the genetic capacity to tolerate various
stresses could be used as a source of unique alleles in
the enhancement of durum breeding through marker
assisted selection or marker assisted backcrossing.
Hence, sustainable conservation and utilization of Ethi-
opian durum wheat genetic resource is key for future
breeding strategies in Ethiopia and worldwide.

Methods
Plant material
One hundred sixty seven Ethiopian durum landrace ac-
cessions collected from major wheat growing areas of
the country and twenty five improved varieties released
in different years and have been cultivated in Ethiopia
were assembled for the present study. Improved varieties
were released by Debre Zeit Agricultural Research Cen-
ter (DZARC) and Sinana Agricultural Research Center
(SARC), Ethiopia in different years (1994–2010). All
landrace accessions and varieties are maintained by these
two agricultural research centers as a single seed descent
(SSD) progenies.
Landraces were originally collected from major wheat-

producing areas of Ethiopia (Additional file 3: Figure S1)
including Bale, Gondar, Gojjam, Shewa, Tigray, and
Wollo, as well as twelve lines, which are originally from
Ethiopia but currently cultivated in the USA. A detail of
accessions is summarized in Additional file 1: Table S1.

DNA extraction and SNP genotyping
A pooled tissue sample of twenty five one-week-old
seedlings was taken for genomic DNA extraction for
each accession. The DNA extraction was done with
DNeasy 96 Plant Kit (Qiagen GmbH, Hilden, Germany).
SNP markers were generated using the Illumina iSe-

lect® 90 K wheat SNP assay comprising 81,587 gene-
associated SNPs [27]. Marker genotypes were called with
the GenomeStudio v2011.1 software package (Illumina,
San Diego, CA, USA) and calls showing residual hetero-
zygosity were entered as missing values before exporting
genotype data from the GenomeStudio. A high-density
consensus map of tetraploid wheat generated by Macca-
ferri et al. [32] was used to identify chromosome posi-
tions of SNPs. The SNPs data used for diversity analysis
is available in Additional file 2: Table S2.

Genetic diversity analysis
Numbers and percent of polymorphic loci, polymorph-
ism information content (PIC), Nei’s gene diversity and
minor allelic frequency (MAF) were calculated using
Power Marker v 3.25 [42]. PIC was estimated based on

the probability of finding polymorphisms between any
two random samples while Nei’s gene diversity defined
as the probability of two randomly chosen alleles from
the population is different. Principal component analysis
(PCA) [43] for the genetic relationships among individ-
uals was calculated using a package “SNPrelate” [44] in
R studio [45]. Neighbor-Joining tree based on simple
matching dissimilarity coefficient was constructed using
DARwin var. 6.0.14 [46] and the resulting trees were dis-
played using FigTree var. 1.4.3 [47]. A software package
Arlequin v.3.5.2.2 [48] was used to assess the molecular
variance (AMOVA) between clusters based on STRUCT
URE-inferred subpopulations and between landraces and
varieties.

Genetic structure analysis
Two approaches were implemented to infer the optimal
clusters/subpopulations existed in 192 Ethiopian durum
wheat accessions. First, a Bayesian model-based cluster-
ing approach was used to estimate the optimal subpopu-
lations and the membership probability of each genotype
to the subpopulations using STRUCTURE v.2.3 [49]. To
infer the optimal clusters, an ad hoc quantity (ΔK) ap-
proach was applied that was calculated based on the sec-
ond order rate of change of the likelihood [40]. For this
analysis, 10 sub-populations with 20 independent itera-
tions for each sub-population was done under the ad-
mixture model of population structure with correlated
allele frequencies and 50,000 lengths burn-in period and
100,000 Markov Chain Monte Carlo (MCMC) replica-
tions after burn-in was applied for each iteration.
The second approach was based on the discriminant

analysis of principal components (DAPC) implemented
using a package “adegenet” [41] in R studio. In this
method, the optimal clustering solution corresponded to
the lowest Bayesian Information Criterion (BIC) and the
number of clusters determined as the value of K above
which BIC values decreased with simultaneous incre-
ment making an elbow at the optimal cluster [41].
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