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Abstract

Positron emission tomography (PET) suffers from severe resolution limitations which reduce its 

quantitative accuracy. In this paper, we present a super-resolution (SR) imaging technique for PET 

based on convolutional neural networks (CNNs). To facilitate the resolution recovery process, we 

incorporate high-resolution (HR) anatomical information based on magnetic resonance (MR) 

imaging. We introduce the spatial location information of the input image patches as additional 

CNN inputs to accommodate the spatially-variant nature of the blur kernels in PET. We compared 

the performance of shallow (3-layer) and very deep (20-layer) CNNs with various combinations of 

the following inputs: low-resolution (LR) PET, radial locations, axial locations, and HR MR. To 

validate the CNN architectures, we performed both realistic simulation studies using the BrainWeb 

digital phantom and clinical studies using neuroimaging datasets. For both simulation and clinical 

studies, the LR PET images were based on the Siemens HR+ scanner. Two different scenarios 

were examined in simulation: one where the target HR image is the ground-truth phantom image 

and another where the target HR image is based on the Siemens HRRT scanner — a high-

resolution dedicated brain PET scanner. The latter scenario was also examined using clinical 

neuroimaging datasets. A number of factors affected relative performance of the different CNN 

designs examined, including network depth, target image quality, and the resemblance between the 

target and anatomical images. In general, however, all deep CNNs outperformed classical 

penalized deconvolution and partial volume correction techniques by large margins both 

qualitatively (e.g., edge and contrast recovery) and quantitatively (as indicated by three metrics: 

peak signal-to-noise-ratio, structural similarity index, and contrast-to-noise ratio).
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I. Introduction

POsitron emission tomography (PET) is a 3D medical imaging modality that allows in vivo 
quantitation of molecular targets. While oncology [1], [2] and neurology [3], [4] are perhaps 

the fields where PET is of the greatest relevance, its applications are expanding to many 
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other clinical domains [5], [6]. The quantitative capabilities of PET are confounded by a 

number of degrading factors, the most prominent of which are low signal-to-noise ratio 

(SNR) and intrinsically limited spatial resolution. While the former is largely driven by 

tracer dose and detector sensitivity, the latter is driven by a number of factors, including both 

physical and hardware-limited constraints and software issues. On the software front, 

resolution reductions are largely a product of smoothing regularizes and filters commonly 

used within or post-reconstruction for lowering the noise levels in the final images [7]. 

Together image blurring and tissue fractioning (due to spatial sampling for image 

digitization) lead to the so-called partial volume effect that is embodied by the spillover of 

estimated activity across different regions-of-interest (ROIs) [8].

Broadly, the existing computational approaches to address the resolution challenge 

encompass both within-reconstruction and post-reconstruction corrections. The former 

family includes methods that incorporate image-domain or sinogram-domain point spread 

functions (PSFs) in the PET image reconstruction framework [9]–[11] and/or smoothing 

penalties that preserve edges by incorporating anatomical information [12]–[19] or other 

transform-domain information [20]–[22]. The latter family of post-reconstruction filtering 

techniques includes both non-iterative partial volume correction methods [8], [23]–[27] and 

techniques that rely on an iterative deconvolution backbone [28]–[30] which is stabilized by 

different edge-guided or anatomically-guided penalty or prior functions [31], [32].

Unlike partial volume correction, strategies for which are often modality-specific, super-

resolution (SR) imaging is a more general problem in image processing and computer 

vision. SR imaging refers to the task of converting a low-resolution (LR) image to a high-

resolution (HR) one. The problem is inherently ill-posed as there are multiple HR images 

that may correspond to any given LR image. Classical approaches for SR imaging involve 

collating multiple LR images with subpixel shifts and applying motion-estimation 

techniques for combining them into an HR image frame [33]–[35]. More recently, many 

single-image SR (SISR) techniques have been proposed. Some SISR methods exploit self-

similarities or recurring redundancies within the same image by searching for similar 

“patches” or sub-images within a given image [36]–[39]. Other SISR methods (the so-called 

“example-based” techniques) learn mapping functions from external LR and HR image pairs 

[40]–[44]. With the proliferation of deep learning techniques, LR-to-HR mapping functions 

based on deep neural networks have been demonstrated to yield state-of-the-art performance 

at SR tasks. One of the earliest deep SR approaches uses a 3-layer CNN architecture 

(commonly referred to in the literature as the SRCNN) [45]. Subsequently, a very deep SR 

(VDSR) CNN architecture [46] that had 20 layers and used residual learning [47] was shown 

to yield much-improved performance over the shallower SRCNN approach. Even more 

recently, SR performance has been further boosted by leveraging generative adversarial 

networks (GANs) [48], although these methods are somewhat limited by the challenges of 

GAN training, which remains notoriously difficult. While many recent papers have 

successfully utilized deep neural networks for PET image denoising and radiation dose 

reduction [49]–[51], the application of deep learning for SR PET imaging is a less-explored 

research territory [52], [53]. Unlike the denoising problem which aims to create a smoother 

image from a noisy one while ideally preserving edges, the SR problem aims to create a 

sharper image from a blurry one. Accordingly, SR requires distinct network design strategies 

Song et al. Page 2

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and data preparation than denoising. Our previous work on SR PET spans a wide gamut, 

including both (classical) penalized deconvolution based on joint entropy [32], [54] and deep 

learning approach based on the VDSR CNN [53]. This work is an extension of the latter 

effort.

In this paper, we design, implement, and validate several CNN architectures for SR PET 

imaging, including both shallow and very deep varieties. As a key adaptation of these 

models to PET imaging, we supplement the LR PET input image with its HR anatomical 

counterpart, e.g. a T1-weighted MR image. Unlike uniformly-blurred natural images, PET 

images are blurred in a spatially-variant manner [10], [55]. We, therefore, further adjust the 

network to accommodate spatial location details as inputs to assist the SR process. “Ground-

truth” HR images are required for the training phase of all supervised learning methods. 

Though simulation studies are not constrained by this demand, it is a challenge for clinical 

studies where it is usually infeasible to obtain the “ground-truth” HR counterparts for LR 

PET scans of human subjects. To ensure clinical utility of this method, we extend it to 

training based on imperfect target images derived from a higher-resolution clinical scanner, 

thereby exploiting the SR framework to establish a mapping from an LR scanner’s image 

domain to an HR scanner’s image domain. In section II, we describe the underlying network 

architecture, the simulation data generation steps and the network training and validation 

procedures. In section III, we present simulation results comparing the performance of 

CNN-based SR with three well-studied reference approaches. A discussion of this method 

and our overall conclusions are presented in sections IV and V respectively.

II. Methods

A. Network Design

1) Network Inputs: One key contribution of this paper is the tailoring of the CNN inputs 

to address the needs of SR PET imaging. All CNNs implemented here have the LR PET as 

the main input. To further assist the resolution recovery process, additional inputs are 

incorporated as described below:

a) Anatomical Inputs:  In generating the SR PET images, we seek to exploit the 

similarities between the PET and its high-resolution anatomical counterpart. Most clinical 

and preclinical PET scanners come equipped with anatomical imaging capabilities in the 

form of computed tomography (CT) or MR imaging to complement the functional 

information in PET with structural information. As illustrated in the schematic in Fig. 1, we 

employ CNNs with multi-channel inputs, that include LR PET and HR MR input channels.

b) Spatial Inputs:  The spatial inputs are two 3D matrices of the same size as the image. 

One matrix stores the axial coordinates of each voxel, while the other stores the radial 

coordinates. In light of the cylindrical symmetry of PET scanners, these radial and axial 

inputs are sufficient for learning the spatially-variant structure of the blurring operator 

directly from the training data.

c) Fusion:  For natural RGB images, where the three input channels typically have a high 

degree of structural similarity, usually the same set of kernels is effective for feature 
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extraction. In contrast, our CNN architecture exhibits a higher degree of input heterogeneity. 

Our initial experiments indicated the need for greater network width to accommodate a 

diverse set of features based on the very different input channels. We found an efficient 

solution to this by using separate kernels at the lower levels and fusing this information at 

higher levels as demonstrated in Fig. 1.

2) Network Depth and Width: A key finding of the VDSR paper was that the deeper 

the network, the better its performance. The paper showed that VDSR outperforms SRCNN 

by a great margin in terms of PSNR [46]. Here, we implement networks with different 

depths:

a) Shallow CNN:  We designed and implemented a set of “shallow” networks loosely 

inspired by the 3-layer SRCNN [45]. This network only has three convolutional layers, each 

followed by a rectified linear unit (ReLU), except for the last output layer. Two key 

modifications were made to the 3-layer SRCNN to adapt it for SR PET imaging: 1) residual 

learning and 2) modified inputs as described in section II-A1. While, as a rule of thumb, the 

qualifier “deep” is applied to networks with three or more layers, we use the word “shallow” 

in this paper in a relative way.

b) Very Deep CNN:  We designed and implemented a series of “very deep” CNNs based 

on the VDSR architecture in [46], but with a different input design and a fusion layer 

described in section II-A1. The very deep SR networks all have 20 convolutional layers, 

each followed by a ReLU, except for the last output layer.

For all the CNNs, the stride and padding for the convolution kernels were both set to 1. A 3 

× 3 kernel was adopted. All the convolutional layers had 64 filters except for the last layer, 

which had only 1 filter.

We implemented, validated, and compared both shallow (3-layer) and very deep (20-layer) 

CNN architectures with varying numbers of inputs. For the rest of the paper, we refer to 

these configurations as S1, S2, S3, S4, V1, V2, V3, and V4 as summarized in Table I.

3) Network Implementation and Optimization: All networks were trained using an 

L1 loss function. For an unknown SR PET image vectorized as x ∈ ℝN and a target HR PET 

image xHR ∈ ℝN, where N is the number of voxels in the HR image domain, the L1 loss 

function is computed as:

Φtraining(x ∣ xHR) = ‖x − xHR‖1 . (1)

Although the L2 loss is the more frequently used variety of loss functions, recent literature 

[56] shows that the L1 loss achieves improved performance with respect to most image 

quality metrics such as the peak signal-to-noise ratio and the structural similarity index.

All networks were implemented on the PyTorch platform. Training was performed using 

GPU-based acceleration achieved by using an NVIDIA GTX 1080 Ti graphics card. 
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Minimization of the L1 loss function was performed using Adam, an algorithm for 

optimizing stochastic objective functions via adaptive estimates of lower-order moments 

[57].

B. Simulation and Experimental Details

In the following, we describe two simulation studies using the BrainWeb digital phantom 

and the 18F-fluorodeoxyglucose (18F-FDG) radiotracer and a clinical patient study also 

based on 18F-FDG. The inputs and targets for the studies are summarized in Table II. All LR 

PET images were based on the Siemens ECAT EXACT HR+ scanner. For the first 

simulation study, the HR PET images were the “ground-ruth” images generated from 

segmented anatomical templates. For the second simulation study and the clinical study, the 

HR PET images were based on the Siemens HRRT scanner. Bicubic interpolation was used 

to resample all input and target images to the same voxel size of 1 mm × 1 mm × 1 mm with 

a 256×256×207 grid size. The LR and HR scanner properties are summarized in Table III 

[58].

1) Simulation Setup:

a) HR+ PSF Measurement:  An experimental measurement of the true PSF was made by 

placing 0.5 mm diameter sources filled with 18F-FDG inside the HR+ scanner bore, which is 

56.2 cm in diameter and 15.5 cm in length. The PSF images were reconstructed using 

ordered subsets expectation maximization (OSEM) with post-smoothing using a Gaussian 

filter. The PSFs were fitted with Gaussian kernels. We assumed radial and axial symmetry 

and calculated the PSFs at all other in-between locations as linear combinations of the PSFs 

measured at the nearest measurement locations. Interpolation weights for the experimental 

datasets were determined by means of bilinear interpolation over an irregular grid consisting 

of the quadrilaterals formed by the nearest radial and axial PSF sampling locations from a 

given point.

b) Target Image Generation for Study 1:  Realistic simulations were performed using 

the 3D BrainWeb digital phantom (http://brainweb.bic.mni.mcgill.ca/brainweb/). 20 distinct 

atlases with 1 mm isotropic resolution were used to generate a set of “ground-truth” PET 

images. The atlases contained the following region labels: gray matter, white matter, blood 

pool, and cerebrospinal fluid. Static PET images were generated based on a ~ 1 hour-long 
18F-FDG scan as described in our earlier paper [32]. This “ground-truth” static PET is 

referred to as “true PET” for the rest of the paper. In Study 1, our purpose was to train the 

networks using the perfect “ground-truth” (clean target images). The target HR PET images 

are, therefore, the true PET images.

c) Target Image Generation for Study 2:  In Study 2, we trained the networks using 

simulated HRRT PET images as our target HR images. The geometric model of the HRRT 

scanner was used to generate sinogram data. Poisson noise realizations were generated for 

the projected sinograms with a mean of 108 counts for a scan duration of 3640 s. The images 

were then reconstructed using the OSEM algorithm (6 iterations, 16 subsets). OSEM 

reconstruction results typically appear grainy due to noise. We, therefore, perform post-

filtering with a 2.4 mm full width at half maximum (FWHM) 3D Gaussian filter. Since the 
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intrinsic resolution of the HRRT scanner is in the 2.3-3.4 mm range, this step improves 

image quality without any appreciable reduction in the resolution.

d) Input Image Generation for Studies 1 and 2:  The geometric model of the HR+ 

scanner was used to generate sinogram data. Noisy data was generated using Poisson 

deviates of the projected sinograms, a noise model widely accepted in the PET imaging 

community [59]. The Poisson deviates were generated with a mean of 108 counts for the full 

scan duration of 3640 s. The data were then reconstructed using the OSEM algorithm (6 

iterations, 16 subsets). The images were subsequently blurred using the measured, spatially-

variant PSF to generate the LR PET images. In order to match HR PET image grid size, the 

LR PET images were interpolated into 256 × 256 × 207 from the HR+ output size of 128 × 

128 × 64 using bicubic interpolation. T1-weighted MR images with 1 mm isotropic 

resolution derived directly from the BrainWeb database were used as HR MR inputs.

2) Experimental Setup:

a) Clinical Data Source:  Clinical neuroimaging datasets for this paper were obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) 

database, a public repository containing images and clinical data from 2000+ human 

datasets. We selected 30 HRRT PET scans and the anatomical T1-weighted MPRAGE MR 

scans for clinical validation of our method. For consistency, all datasets were based on the 

ADNI1 protocol. 10 of the 30 subjects were from the cognitively normal (CN) category. The 

remaining 20 subjects had mild cognitive impairment (MCI). The full scan duration was 30 

minutes (6 × 5-minute frames). The OSEM algorithm (6 iterations, 16 subsets) was used for 

reconstruction.

b) Target Image Generation for Study 3:  The OSEM-reconstructed HRRT PET images 

were post-filtered using a 2.4 mm FWHM 3D Gaussian filter to generate target HR PET 

images for the clinical study. This post-filtering step, as previously explained in the context 

of Study 2, reduces the noise without substantially reducing the image resolution of the 

HRRT images.

c) Input Image Generation for Study 3:  The LR counterparts of the HRRT images were 

generated by applying the measured spatially-variant PSF of the HR+ scanner to the OSEM-

reconstructed HRRT images. While not directly derived from the HR+ scanner, the use of a 

measured image-domain PSF ensures parity in terms of spatial resolution with true HR+ 

images. Rigidly co-registered T1-weighted MR images with 1 × 1 × 1 voxels were used as 

HR MR inputs. Cross-modality registration was performed using FSL (https://

fsl.fmrib.ox.ac.uk) [60], [61].

3) Training and Validation:

a) Cohort Sizes:  A cohort size of 20 human subjects was used for Studies 1 and 2. The 

size was dictated by the number of subjects in the BrainWeb database. For Study 3, the 

cohort comprised a total of 30 human subjects. The training and validation subsets each 

included a mix of MCI and CN subjects. For all the studies, training was performed using 15 

subjects to predict a residual image that is an estimated difference between the input LR 
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PET and the ground truth HR PET. For Studies 1 and 2, the validation dataset consisted of 5 

simulation subjects, while for Study 3, the validation dataset consisted of 15 clinical 

subjects.

b) Input Dimensions:  We trained all the networks using multi-channel 2D transverse 

patches. For instance, when training S4 and V4, we sliced the four 3D input channels with 

combined dimensions of 256 × 256 × 207 × 4 into 207 samples of size 256 × 256 × 4 (2D 

slices + 4 channels). The input intensities were normalized into the range [0, 1]. Data 

augmentation was achieved by randomly rotating the inputs by 1 to 360° and randomly 

cropping them to the size of 96 × 96 × 4.

c) Training Parameters:  Consistent selections of training parameters were used for all 

the CNN types and for all the studies. The learning rate was initially set to 0.0003 and 

decreased by 5 × 10−7 at every epoch. The batch size was 10. The networks were trained for 

400 epochs.

C. Reference Approaches

We compared the SR images generated by the networks S1, V1, S2, V2, S3, V3, S4, and V4 

with the following approaches: deconvolution stabilized by a joint entropy (JE) penalty 

based on an anatomical MR image, deconvolution stabilized by the total variation (TV) 

penalty, and region-based voxel-wise (RBV) correction (a partial volume correction 

technique).

For an unknown SR PET image vectorized as x ∈ ℝN and a scanner-reconstructed LR PET 

image b ∈ ℝn, the least squares cost function for data fidelity is:

ΦPSF(x ∣ b) = 1
2(Ax − b)T(Ax − b) . (2)

Here N and n are the respective numbers of voxels in the SR/HR and LR images and 

A ∈ ℝn × N represents a blurring and downsampling operation based on the measured 

spatially-variant PSF of the scanner [32]. The two deconvolution techniques used as 

reference in this paper seek to minimize a composite cost function, ΦPSF + βΦreg, where β is 

a regularization parameter and Φreg is a regularization penalty function. Given an HR MR 

image, denoted by a vector y ∈ ℝN, the JE penalty is defined as [32]:

Φreg‐JE(x ∣ y) = − ∑
i = 1

M
∑
j = 1

M
δu δv p(ui, v j) log p(ui, v j) . (3)

Here u ∈ ℝM and v ∈ ℝM are intensity histogram vectors based on the PET and MR images 

respectively and M is the number of intensity bins [32]. The TV penalty is defined as:

Φreg‐TV(x) = (‖Δ1x‖1 + ‖Δ2x‖1 + ‖Δ3x‖1), (4)
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where Δk (k = 1, 2, or 3) are finite difference operators along the three cartesian coordinate 

directions [32].

The RBV technique [26] is a voxel-based extension of the popular geometric transfer matrix 

(GTM) method [8], a popular partial volume correction technique used in PET. It computes 

the corrected image x ∈ ℝN from an upsampled blurry image of the same size, b ∈ ℝN as 

follows:

x = b ⊙ [s ⊘ (s ⊗ h)],

s = ∑
i = 1

NROI
gi pi .

(5)

Here h ∈ ℝN is the approximate, spatially-invariant PSF, ⊙ and ⊘ represent Hadamard 

(entrywise) multiplication and division respectively, ⊗ represents 3D convolution, NROI = 2 

represents the two gray and white matter anatomical ROIs, pi is a binary mask for the ith 

ROI (pij = 1 if voxel j belongs to ROI i, 0 otherwise), and gi is the GTM-corrected intensity 

for the ith ROI [8].

D. Evaluation Metrics

The evaluation metrics used in this paper are defined below. In the following, the true and 

estimated images are denoted x and x respectively. We use the notation μx and σx 

respectively for the mean and standard deviation of x.

1) Peak Signal-to-Noise Ratio (PSNR): The PSNR is the ratio of the maximum signal 

power to noise power and is defined as:

PSNR(x, x) = 20 log10
max (x)

RMSE(x, x) , (6)

where the root-mean-square error (RMSE) is defined as:

RMSE(x, x) = 1
N ∑

k
(xk − xk)2 . (7)

2) Structural Similarity Index (SSIM): The SSIM [62] is a well-accepted measure of 

perceived image quality and is defined as:

SSIM(x, x) =
(2μxμx + c1)(2σxx + c2)

(μx
2 + μx

2 + c1)(σx
2 + σx

2 + c2)
. (8)

Here c1 and c2 are parameters stabilizing the division and σxx is the covariance of x and x.
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3) Contrast-to-Noise Ratio (CNR): The CNR for a target ROI ℛ and a reference ROI 

ℛref is defined as:

CNR =
μx

ℛ − μx
ℛref

[(σx
ℛ)2 + (σx

ℛref)2]
. (9)

In this work, the gray matter ROI is treated as the target and the white matter ROI as the 

reference.

III. Results

A. Study 1: Simulation Results

Fig. 2a showcases results from Study 1 — transverse slices from the HR MR, HR PET 

(same as the true PET in this case), LR PET, RBV PET, and the SR imaging results from the 

two deconvolution methods and eight CNNs described in Table I. The image frames are 

from one subject from the validation dataset. Magnified subimages in Fig. 2b highlight 

artifacts/inaccuracies indicated by purple arrows that are observed in all the techniques that 

lack anatomical guidance, namely TV, S1, V1, S3, and V3. Comparison of the subimage 

pairs (S1, S3) and (V1, V3) illustrates that, in the absence of anatomical information, spatial 

information greatly enhanced image quality. Comparison of the subimage pairs (S1, V1) and 

(S3, V3) also shows that the addition of more convolutional layers (increased network depth) 

is also very effective in the absence of anatomical information. Among the non-deep-

learning methods, JE and RBV, which incorporate anatomical information, show better edge 

recovery than TV. The performance metrics (PSNR, SSIM, and gray-to-white CNR) for the 

different methods are tabulated in Table IV. The values of these metrics computed for the 

HR images (true PET images for Study 1) are also included in this table for reference. This 

table indicates that methods with anatomical information perform better than methods 

without this information. CNN-based approaches that incorporate anatomical information 

vastly exceed the performance of classical methods.

In terms of PSNR, the supervised CNNs outperform the classical approaches by a wide 

margin. S2, S4, V2, and V4, the networks that have anatomical guidance, show stronger 

performance in terms of PSNR, SSIM and CNR than S1, V1, S3, and V3, the networks 

which lack anatomical guidance. The PSNR, SSIM, and CNR values for S1 vs. S3 show that 

these metrics increase noticeably with the addition of spatial information for the shallow 

case.

B. Study 2: Simulation Results

Fig. 3a showcases results from Study 2 — transverse slices from the HR MR, true PET, HR 

PET, LR PET, RBV PET, and the SR imaging results from the two deconvolution methods 

and eight CNNs described in Table I. The displayed images are all from the same subject 

from the validation dataset. As with Study 1, the CNNs with MR-based anatomical inputs 

(S2, V2, S4, and V4) continue to produce the best results. However, since the target image is 
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now a corrupt image with diminished structural similarity with the MR image, the margin of 

gain from using anatomical information is now reduced. Magnified subimages in Fig. 3b 

highlight artifacts/inaccuracies indicated by purple arrows that are more preponderant in this 

study compared to Study 1. Interestingly, for this more challenging problem, the deeper 

networks (V2 and V4) have reduced background noise variations than their shallower 

counterparts (S2 and S4), as indicated by purple arrows in the latter. It should be noted that 

the JE, TV, and RBV images, which are unsupervised, are the same as those showcased in 

Fig. 2.

The PSNR, SSIM, and gray-to-white CNR of the different methods are tabulated in Table V. 

The values of these metrics computed for the HR images (HRRT PET images for Study 2) 

are also included in this table for reference. An additional goal for this study was to 

understand the variability in results that could be anticipated when imperfect HR images 

were used for training. We, therefore, computed two sets of PSNR, SSIM, and CNR 

measures: one with respect to the target HR PET and another with respect to the true PET. 

Our results show that there is an overall reduction in performance when the true PET is used 

as the reference. This is expected with the HR PET used for training deviates substantially 

from the true PET. But a key observation here is that the CNNs exhibit consistent relative 

levels of accuracy for the two reference images. As with Study 1, anatomically-guided 

networks showed better performance than the non-anatomically guided networks and the 

three classical methods. Also, interestingly, when the true PET is used as the reference, all 

CNN-based SR images show lower PSNR values than the HR image (HRRT in this case). 

This can be attributed to the denoising properties of CNNs that lead to SR results that are 

smoother than the noisy and imperfect target images used for training.

C. Study 2: Network Depth and Width

To examine the impact of CNN depth and width, we extended Study 2 to compare three 

different network depths (3, 12 and 20 layers) and two different network widths (32 and 64 

filters). More specifically, all the networks compared had either 32 or 64 filters in each layer, 

except for their output layers which had only 1 filter. For this study, all networks were 

trained using the 4-channel inputs (LR PET, HR MR, radial coordinates, and axial 

coordinates) to ensure a fair comparison. As shown in Table VI, the 20-layer network 

yielded the best performance in terms of PSNR and SSIM, while the 12-layer network 

outperformed the 3-layer network. Also, as expected, the networks with 64 filters led to 

consistently higher PSNR and SSIM than those with 32 filters. Fig. 4 shows the plots of 

mean squared error (MSE) against the epoch numbers. As demonstrated in this figure, the 

20-layer network leads to the fastest convergence rate, followed the 12-layer and 3-layer 

networks respectively.

D. Study 3: Experimental Results

Fig. 5a showcases results from Study 3 — the HR MR, HR PET, LR PET, RBV PET, and 

the SR imaging results from the two deconvolution methods and eight CNNs described in 

Table I. For this study, the deeper networks (V1, V2, V3, and V4) produced visually sharper 

images than their shallower counterparts (S1, S2, S3, and S4). This is clearly evident from 

the magnified subimages in Fig. 5b. This is consistent with our previous observation that, in 
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the absence of a strong contribution of the anatomical inputs, the extra layers lead to a 

stronger margin of improvement. That said, V4, which is deeper and uses anatomical 

information, led to the highest levels of gray matter contrast as highlighted by red arrows.

The PSNR, SSIM, and gray-to-white CNR of the different methods are tabulated in Table 

VII. The values of these metrics computed for the HR images (HRRT PET images for Study 

3) are also included in this table for reference. As displayed in the table, V4 continues to 

exhibit the best performance in terms of PSNR, SSIM, and CNR. As in Studies 1 and 2, all 

CNN-based methods outperformed RBV, JE, and TV.

IV. Discussion

Overall, our results indicate that CNNs vastly outperform penalized deconvolution and 

partial volume correction at the SR imaging task. Among different CNN architectures, 

relative performance depends on the problem at hand. Our simulation and clinical studies all 

agree that deep CNNs outperform shallow CNNs and that the additional channels contribute 

to the improvement of overall performance. Like network depth, network width also helped 

improve performance. These improvements, however, come at the expense of added 

computational cost. With 4-channel inputs, for example, the training times for 3-, 12-, and 

20-layer networks based on 64 filters were 4.7, 7.8, and 12.2 hours respectively. 

Furthermore, based on our experiments, we concluded that the relative importance of 

anatomical and spatial input channels depends on the underlying structural similarity 

between the HR MR and the true PET.

One limitation of our simulation study is the limited size of the validation dataset, which 

consisted of only 5 subjects. This limitation was overcome in the clinical datasets, where the 

validation cohort size was increased to 15 subjects. We observed that the performance trends 

of the compared methods are similar for the experimental and simulation studies. This 

observation enhances the credibility of our simulation results, despite the small cohort size.

Another limitation of the presented SR approach is the lack of portability of the trained 

models to inputs with image characteristics (e.g., noise, blur, contrast) substantially different 

from those used for training. This is a shortcoming that is shared by most supervised 

learning models. The results presented here correspond to the HRRT-HR+ scanner pair and 

the 18F-FDG radiotracer. Additionally, our experimental study relied on data based on a 

single acquisition protocol. While the network can be easily retrained for alternative scanner 

pairs, tracer types, and acquisition protocols, the performance characterization may need to 

be repeated for these specific scenarios. The SR performance is expected to drop when the 

LR inputs are based on a much lower or higher tracer dose than the datasets used for 

training. Our future work will characterize the performance of these networks when input 

noise levels are varied. One remedial approach to address noise sensitivity is the use of 

transfer learning for easy retraining of the networks with a much smaller training dataset 

containing LR inputs with altered SNR. Another more sophisticated strategy is to use the 

CNN output as a prior in reconstruction. We have previously used this approach and 

produced promising results for denoising [63] and anticipate that it will work for deblurring 

and SR by extension.
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The presence of axial and radial inputs makes the overall network well-equipped to handle 

3D inputs as well as 2D slice stacks from all three coordinate directions in a given training 

dataset. In the current analysis, we used 2D transverse slices alone for training and 

validation. In this setting, the axial inputs are particularly critical for modeling axial 

variation of resolution. The radial slices offer some redundancy as the radial location 

information for each voxel could be derived from the PET or MR image slices directly. 

However, based on our experience, explicitly providing this information serves as additional 

feature guidance and is helpful in tackling spatially-variant blurring. Due to the 

computational cost, we resorted to 2D convolutions instead of 3D. 3D kernels are expected 

to perform better than 2D ones. However, with 3D kernels, the computational cost is 

expected to skyrocket. This could prove to be a major bottleneck toward implementing a 

very deep network (a key contribution of this paper).

In this paper, we exclusively focused on neuroimaging applications. However, the 

methodology is well generalizable to other parts of the body subject to the availability of 

appropriate training data. It should be noted that the utilization of anatomical images in 

conjunction with functional images required co-registration. To ensure robustness, a well-

tested standardized registration tool was used for the task. Since the registration is intra-

subject, rigid registration based on mutual information suffices for this application.

Another limitation of CNN-based SR (and perhaps the most significant one) is that it relies 

on supervised learning and, therefore, requires paired LR PET and HR PET images for 

training. This requirement is easy to address while training using simulated datasets. But 

paired LR and HR clinical scans are rare. To address this limitation, we are currently 

exploring self-supervised learning strategies based on adversarial training of generative 

adversarial networks, that circumvent the need for paired training inputs.

V. Conclusion

We have designed, implemented, and validated a family of CNN-based SR PET imaging 

techniques. To facilitate the resolution recovery process, we incorporated both anatomical 

and spatial information. In the studies presented here, the anatomical information was 

provided as an HR MR image. So as to easily provide spatial information, we supplied 

patches containing the radial and axial coordinates of each voxel as additional input 

channels. This strategy is well-consistent with standard CNN multi-channel input formats 

and, therefore, convenient to implement. Both simulation and clinical studies showed that 

the CNNs greatly outperform penalized deconvolution both qualitatively (e.g., edge and 

contrast recovery) and quantitatively (as indicated by PSNR, SSIM, and CNR).

While PSNR and SSIM are metrics that are well-trusted in the image processing and 

computer vision communities, CNR is probably is a more clinically-meaningful 

performance metric. Our results confirm that the PSNR and SSIM improvements are also 

accompanied by improvements in CNR. We, therefore, conclude that SR PET imaging using 

very deep CNNs is clinically promising. As future work, we will develop new networks 

based on self-supervised learning that will enable us to circumvent the need for paired 

training datasets. We will also explore avenues to ensure the applicability of this method to 
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super-resolve inputs with noise levels different from those in the training data. Furthermore, 

as a strategy for ensuring more robust performance with clinical data, we plan to use a 

hybrid (simulation + clinical) dataset for CNN training and validation. From an applications 

perspective, we are interested in using this technique to super-resolve PET images of tau 

tangles, a neuropathological hallmark of Alzheimer’s disease, with the goal of developing 

sensitive image-based biomarkers for tau [38].
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Fig. 1. 
CNN architecture for SR PET. The network uses up to 4 inputs: (i) LR PET (the main input), 

(ii) HR MR, (iii) radial locations, and (iv) axial locations. The network consists of 

alternating convolutional (Conv) layers and rectified linear units (ReLUs) for nonlinear 

activation. It predicts the residual PET image which is later added to the input LR PET to 

generate the SR PET.
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Fig. 2. 
Study 1: Simulation results from one subject belonging to the validation dataset. (a) 

Transverse slices from the T1-weighted HR MR image, true PET image (also the HR image 

for this case), LR PET image (HR+ scanner), RBV-corrected PET image, JE-penalized 

deconvolution result, TV-penalized deconvolution result, and the Sr outputs from the 

following CNNs: S1, V1, S2, V2, S3, V3, S4, and V4. The blue box on the MR image 

indicates the region that is magnified for closer inspection. (b) The corresponding magnified 

subimages. Purple arrows indicate areas in the white-matter background region where 

prominent noise-induced artifacts arise for TV and for the CNNs without anatomical inputs, 

namely S1, V1, S3, and V3.
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Fig. 3. 
Study 2: Simulation results from one subject belonging to the validation dataset. (a) 

Transverse slices from the T1-weighted HR MR image, true PET image, HR PET image 

(HRRT scanner), LR PET image (HR+ scanner), RBV-corrected PET image, JE-penalized 

deconvolution result, TV-penalized deconvolution result, and the SR outputs from the 

following CNNs: S1, V1, S2, V2, S3, V3, S4, and V4. The blue box on the MR image 

indicates the region that is magnified for closer inspection. (b) The corresponding magnified 

subimages. Purple arrows indicate areas in the white-matter background region where 

prominent noise-induced artifacts arise. These artifacts are the least prominent for V2 and 

V4 — very deep CNNs with anatomical inputs.
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Fig. 4. 
Convergence curves for different depths: 3, 12, and 20 layers.
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Fig. 5. 
Study 3: Clinical results from one subject belonging to the validation dataset. (a) Transverse 

slices from the T1-weighted HR MR image, HR PET image (HRRT scanner), LR PET 

image (HR+ scanner), RBV-corrected PET image, JE-penalized deconvolution result, TV-

penalized deconvolution result, and the Sr outputs from the following CNNs: S1, V1, S2, 

V2, S3, V3, S4, and V4. The blue box on the MR image indicates the region that is 

magnified for closer inspection. (b) The corresponding magnified subimages. The very deep 

CNNs (V1, V2, V3, and V4) yield sharper images than their shallow counterparts (S1, S2, 

S3, and S4). The red arrows points to bright gray matter areas in the HR image that are 

recovered with the highest contrast in V4.
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TABLE II

Simulation and experimental studies

Study index Study type LR image (input) HR image (target)

1 Simulation HR+ PET True PET

2 Simulation HR+ PET HRRT PET

3 Clinical HR+ PET HRRT PET
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TABLE III

LR and HR image sources

Image
Image

Scanner Spatial
resolution

Bore
diameter

Axial
length

LR HR+ 4.3 - 8.3 mm 562 mm 155 mm

HR HRRT 2.3 - 3.4 mm 312 mm 250 mm
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TABLE VI

Depth and width comparison

Metric # of Filters╲# of Layers 3 12 20

PSNR 32 37.72 38.48 38.60

SSIM 32 0.882 0.905 0.907

PSNR 64 38.46 38.55 38.69

SSIM 64 0.905 0.907 0.908
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