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Abstract

When chemical or microbial contaminants are assessed for potential effect or possible regulation
in ambient and drinking waters, a critical first step is determining if the contaminants occur and if
they are at concentrations that may cause human or ecological health concerns. To this end, source
and treated drinking water samples from29 drinking water treatment plants (DWTPs) were
analyzed as part of a two-phase study to determine whether chemical and microbial constituents,
many of which are considered contaminants of emerging concern, were detectable in the waters.
Of the 84 chemicals monitored in the 9 Phase | DWTPs, 27 were detected at least once in the
source water, and 21 were detected at least once in treated drinking water. In Phase Il, which was a
broader and more comprehensive assessment, 247 chemical and microbial analytes were measured
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in 25 DWTPs, with 148 detected at least once in the source water, and 121 detected at least once in
the treated drinking water. The frequency of detection was often related to the analyte’s
contaminant class, as pharmaceuticals and anthropogenic waste indicators tended to be
infrequently detected and more easily removed during treatment, while per and polyfluoroalkyl
substances and inorganic constituents were both more frequently detected and, overall, more
resistant to treatment. The data collected as part of this project will be used to help inform
evaluation of unregulated contaminants in surface water, groundwater, and drinking water.

GRAPHICAL ABSTRACT
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1. Introduction

There is increasing public concern over the detection of chemicals in water whose presence
results from the diverse array of frequently used consumer, health-, and personal-care
products. Chemicals contained in these products—including pharmaceuticals, fragrances,
surfactants, and pesticides— may be present in wastewater influent through excretion,
bathing, or direct disposal. Many of these chemicals have been documented to survive
wastewater treatment and be discharged to surface and groundwaters. Previous reviews
(Halling-Sorensen et al., 1998; Daughton and Ternes, 1999; Heberer, 2002; Diaz-Cruz and
Barcelo, 2004; Glassmeyer et al., 2008; Kostich et al., 2010; Delgado et al., 2012; Pal et al.,
2014; Li et al., 2015; Petrie et al., 2015) have summarized the peer-reviewed literature
reporting the occurrences of these chemicals in water resources. Initially termed “emerging
contaminants”, there is some misperception that the term suggests that these chemicals have
only recently been released into the environment. In fact, these chemicals have been released
as long as they have been in use, and some compounds (such as caffeine) have been detected
in wastewater (Shuval and Gruener, 1973; Shackelford and Cline, 1986), surface water
(Donaldson, 1977; Sheldon and Hites, 1978; Eganhouse et al., 1983; Richardson and
Bowron, 1985), and drinking water (Coleman et al., 1980) for several decades. What is
emerging is greater awareness by the general public of the presence of these contaminants in
the environment and the direct link of environmental presence to household use. The ability
of environmental scientists to detect extremely low ambient concentrations of these
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contaminants, aided by improvements to the analytical instrumentation, further fosters this
awareness. Thus, the term “contaminants of emerging concern” (CECs) is a more
appropriate choice when describing these contaminants in aggregate.

In the United States, the Safe Drinking Water Act (SDWA), as amended in 1996 (USEPA,
1996) gives the US Environmental Protection Agency (USEPA) the authority to regulate
contaminants in finished drinking water, as well as to protect drinking water sources. To
regulate a contaminant in drinking water, the SDWA requires that three criteria must be met:
1) the contaminant may have an adverse effect on the health of persons, 2) the contaminant
is known to occur or there is a substantial likelihood the contaminant will occur in drinking
water with a frequency and at levels of public health concern, and 3) in the sole judgment of
the USEPA Administrator, regulation of the contaminant presents a meaningful opportunity
for reducing health risks for persons served by public water systems. The SDWA requires
the USEPA to evaluate unregulated chemical and microbial contaminants which may
necessitate future regulation through the Contaminant Candidate List (CCL) process; the
draft fourth CCL (CCL4) was proposed in 2015 (USEPA, 2015). Whether a contaminant is
known or anticipated to occur in public water systems is considered as part of the CCL
process, along with potential health effects.

Compared to other environmental matrices, there are a paucity of studies that have assessed
occurrence of CECs in finished drinking water (Benotti et al., 2009; Stackelberg et al., 2004;
Stackelberg et al., 2007; Snyder, 2008; Garcia-Ac et al., 2009; Loos et al., 2007; Togola and
Budzinski, 2007), and these studies typically do not examine analytes from multiple
contaminant classes. One mechanism to obtain nationally representative drinking water
occurrence data is through the Unregulated Contaminant Monitoring Regulation (UCMR),
an authority that allows the USEPA to gather occurrence data from all public water systems
(PWS) serving >10,000 people, and a representative sample of PWSs serving 10,000 or
fewer people, for no more than 30 contaminants in five-year cycles (USEPA, 2012a).
Occurrence data of CECs in drinking water in published studies helps determine which
analytes would be most appropriate for the UCMR. However, focused, national-scale studies
of CEC presence and concentration in source-and treated drinking water samples that use
consistent, state-of-the-art sample collection and analysis approaches and assessing the
widest array of CECs offer the greatest benefit for identifying the most appropriate
contaminants for any detailed UCMR assessments.

This paper is one of a series of papers describing a comprehensive study on the presence,
concentrations, and persistence of chemical and microbial CECs in source and treated
drinking waters of the United States (Batt et al., 2016; Benson et al., 2016; Conley et al.,
2016; Furlong et al., 2016; King et al., 2016; Kostich et al., 2016; Boone et al., unpublished
results; Varughese et al., unpublished results). This was a joint effort of the USEPA and the
U.S. Geological Survey (USGS), as part of a long-term interagency agreement. A primary
goal of the overall study was to provide accurate, objective information for assessing the
potential for human exposure to a comprehensive set of CECs via drinking water. A
secondary goal was to evaluate removal, if any, of CECs from source waters by currently
used drinking water treatment processes under typical plant operating conditions. The
interdisciplinary approach of this nationwide study is unique in that it combined both the
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measurement of CECs along with the evaluation of the potential effects of the contaminants,
through both an in vitro estrogenic activity bioassay and screening level human and
ecological health impact assessments.

2. Experimental design

This study was conducted in two phases. In Phase | (2007), source and treated drinking
water from nine drinking water treatment plants (DWTPs) from eight states across the
United States were sampled and analyzed for 84 chemicals using three different analytical
methods. The Phase | effort provided an opportunity to test the experimental design, field
sampling protocols, and analytical methods as applied to operator-collected samples from
DWTPs. In Phase 11 (2010-2012), the quality assurance/quality control design was refined,
the analyte list expanded (247 chemical and microbiological contaminants using 16 different
methods, as well as an in vitro estrogenicity bioassay), and the number of DWTPs sampled
increased to 25 DWTPs located in 24 states, including five that were also sampled in Phase
|. Between the two phases, 29 DWTPs were investigated (five in both Phase | and 11, four in
Phase I only and 20 in Phase 11 only). A total of 77 common analytes were measured in both
Phase I and II.

2.1. Site selection

An objective of this study was to better determine the upper boundary of CEC
concentrations, rather than provide a nationwide average, so DWTP selection was skewed
towards sample locations with known wastewater outfalls in the source water. Candidate
locations were selected based on water sources with potential for a high wastewater
contribution (Swayne et al., 1980), locations with and without existing pharmaceutical
concentration data (Associated Press, 2008), nomination by USEPA and USGS regional
personnel, and DWTP self-nomination. Sites were chosen to maximize the range in select
attributes including geography, diversity in disinfectant type used in the treatment process,
and drinking water plant production volume. Participation in the study was voluntary. Table
1 provides a description of each participating DWTP, but the specific identity of each
location is not given to provide anonymity of the participating DWTPs.

2.2. Sample collection

Samples were collected by operating staff at each of the DWTPs with project-provided
protocols and sampling materials. Sample collection bottles for each method were pre-
spiked (if needed) with an appropriate dechlorination agent. Supplementary information
Table 1 details method specific bottles, sample volumes, dechlorination agent, and sample
holding times. Although the dechlorination agent was not needed for the source water
samples, it was added to all chemical contaminant samples analyzed by a given method, if
needed for finished water sample preservation to maintain sample consistency. For the
chemical analyses, bioassays, and the majority of the microbial tests, grab samples were
collected. Most of the DWTPs were plumbed with sampling taps at different locations in the
plant. These taps allow collection either directly, or have piping back to a sink in the
facility’s laboratory. The DWTP operators were instructed to collect the source water sample
prior to any treatment, including settling basins. The treated water sample was to be
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collected at a sampling point after final disinfection but prior to the clear well. The DWTP
operators were requested to time sampling between the source water and the treated water to
match the hydraulic residence time of the plant, so approximately the same parcel of water
would be analyzed entering and exiting the plant. In some instances, however, this was not
possible (Table 1). Sample collection at most locations was performed by DWTP personnel
by simply filling the bottle at the tap to the appropriate volume. DWTP 10 did not have a
source water tap, so an empty sampling bottle was dipped into the source water and the
sample was decanted into appropriate sample bottles. Since the perfluorinated analytes were
known to sorb to container surfaces, and since no dechlorination agent or preservatives were
used for that method, the sample bottle was directly dipped into the DWTP 10 source water
to collect the sample.

For the protozoa and virus samples in Phase 11, field filtration was required. The utilities
were supplied with two sets of sterile tubing, filters with appropriate housing cartridges, and
flow meters (one for source and one for treated samples). For source water samples, 10 L
was filtered on an Envirochek™ (Pall Corporation, Port Washington, NY) for protozoa
analysis and up to 200 L was filtered on a NanoCeram® filter (Argonide, Sanford, FL) for
viruses. For the treated water samples, since residual chlorine can inactivate viruses attached
to the filter, the virus samples were collected at a point just before the introduction of
disinfectant. Since 13 of the 25 DWTPs used pre-chlorination, only 12 treated pre-
disinfection water samples were collected in Phase |1 for analyzing viruses. For these treated
non-disinfected samples, 2000 L of water was filtered. More details on the virus collection
procedure will be provided in a forthcoming manuscript (Varughese et al., unpublished
results). Protozoa samples were not collected from the treated water.

In Phase I, all samples were collected in duplicate. One sample was analyzed as the primary
sample, and the second analyzed alternately as a replicate sample or as a laboratory fortified
matrix sample (matrix spike). In Phase I, all samples for organic chemical analysis were
collected in triplicate, with a primary, replicate, and laboratory fortified matrix analyzed at
all locations. Only the primary sample was analyzed for inorganic and microbial constituents
at all sampling points.

Field blanks were included to monitor for potential contamination during sampling,
processing, or transport, because many of the measured analytes occur in products
commonly consumed and used by DWTP and other personnel, and gloves and other
personal protective equipment may not be sufficient to avert contamination. In Phase I,
DWTPs were asked to supply a sample of laboratory grade water, either a decanted bottled
sample or produced water, such as Milli-Q (EMD Millipore, Billerica, MA). In Phase I,
bottled laboratory grade water (Omni-Solv®, EMD Millipore, Billerica, MA), validated to
be free of many organic contaminants, was supplied to all DWTPs for decanting into sample
collection bottles on-site.

After collection, all samples and field blanks were immediately packed on ice and shipped
overnight to USEPA and USGS laboratories for analysis within sample holding times
(Supplementary information Table 1).
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2.3. Sample analysis

In Phase I, samples were analyzed using three methods, two for pharmaceuticals (Cahill et
al., 2004 adapted as an official USGS method in Furlong et al., 2008; Schultz and Furlong,
2008) and one for a diverse suite of chemicals commonly found in wastewater, such as
detergent metabolites, fragrances, and pesticides, described herein as anthropogenic waste
indicators (AWIs; Zaugg et al., 2006) These three methods were also utilized in Phase I,
along with three additional pharmaceutical methods (a modified version of Ternes et al.,
2005; Batt et al., 2008; Furlong et al., 2014), a method for hormones and other endocrine
disrupting chemicals (Conley et al., 2016), a per- and polyfluoroalkyl substances (PFAS)
method (Boone et al., 2014), a method for fungi (Haugland et al., 2004), two bacteria
methods (Covert et al., 1999 and Beumer et al., 2010 for mycobacteria; Donohue et al., 2014
for Legionella), a method for enteric viruses (Varughese et al., unpublished results), and a
method for protozoa (USEPA, 2005a). While they are not CECs, three methods for inorganic
constituents (USEPA, 2005b; USEPA, 2001; USEPA, 1994) were also used to analyze
samples. Three analytes were evaluated in multiple methods in Phase I; a total of 53
compounds (46 organic and 7 inorganic) were measured in multiple methods in Phase 1. In
addition to the direct concentration measurements, an aliquot of the extracts prepared for the
hormone analysis was also evaluated for estrogen receptor-mediated bioactivity using the
T47D-KBluc bioassay (Wilson et al., 2004; Conley et al., 2016). Supplementary information
Table 1 has a brief summary of each method used for this study. More methodological detail
can be found in the above referenced papers, as well as in the accompanying detailed
manuscripts on pharmaceuticals (Furlong et al., 2016), hormones (Conley et al., 2016),
PFASs (Boone et al., unpublished results), bacteria, fungi and protozoa (King et al., 2016)
and viruses (Varughese et al., unpublished results).

2.4. Quality control

Since the concentrations measured in this study were expected to be close to the instrument
detection limits, a considerable number of quality assurance/quality control (QA/QC)
samples were incorporated into the sampling design. Over 50% of the samples analyzed in
Phase | and over 70% of the Phase 11 samples were for QA/QC purposes. When possible, the
lowest concentration minimum reporting level (LCMRL; USEPA, 2010) was determined for
each analyte. If the LCMRL could not be calculated, a reporting limit (RL) was used at the
quantified detection threshold (USEPA, 2012b). Samples that did not exceed their associated
LCMRL or RL but were above the instrument detection limit were considered qualitative
detections, and the numerical concentrations were removed from the results. Likewise,
samples in Phase 11 with associated laboratory fortified matrix samples with >150%
recoveries were considered as qualitative detections as the matrix exhibited signal
enhancement. Sample measurements that did not exceed the concentrations measured in the
associated field and/or laboratory blanks by a factor of three were censored from the data
set. A detailed discussion of the QA/QC analysis is available in an accompanying
manuscript (Batt et al., 2016) as well as in the individual papers on specific aspects of
contaminant results (Conley et al., 2016; Furlong et al., 2016; Boone et al., unpublished
results; King et al., 2016).
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3. Results and discussion

Table 2 lists the analytes qualitatively detected in at least 30% of either the source or treated
drinking water samples for both Phase | and I1. In this table, and in the remainder of the
paper, the analytes are separated into five contaminant classes: 1) pharmaceuticals, 2)
perfluoroalkyl and polyfluoroalkyl substances (PFASSs), 3) anthropogenic waste indicators
(AWIs), 4) inorganic constituents, and 5) microorganisms. Detailed discussions of the
individual analytes are presented in the associated papers ( Conley et al., 2016; Furlong et
al., 2016; Boone et al., unpublished results; King et al., 2016; Varughese et al., unpublished
results). Tables enumerating all analytes detected and not detected are presented in
alphabetical order by contaminant class in Supplementary information Tables 2 and 3,
respectively. Concentrations of inorganic constituents and AWIs detected at each location
are presented in Supplementary information Table 4. Of the 84 analytes in Phase | and 247
analytes in Phase I1, 57 and 99 (68% and 40%) were never detected in source water samples
and 63 and 126 (75% and 51%) were never detected in treated drinking water samples,
respectively.

Phases I and Il had 77 analytes in common, 24 pharmaceuticals and 53 AWIs. Fig. 1
illustrates the frequency of qualitative detections of these analytes in all of the Phase I and 11
locations, as a whole as well as separated by chemical class. In general, detections were
infrequent, with typically fewer than 5 pharmaceuticals and 10 AWIs detected in any given
sample. For the five locations that were sampled in both Phases | and 11, the detection trends
remained similar, with the exception of the Phase IAWI detections for DWTP 4 (Fig. 1;
Supplementary information Table 5). Seven of the AWIs were detected in the field blank
from that location, and thus the concentrations in the associated samples were censored. It
was field blank detections such as these that triggered the enhanced field blank QC design
for Phase I1. By supplying a uniform, verified laboratory-grade water in Phase I, better
control and assessment of potential contamination from field personnel and/or transport was
possible. The similarity of detection at these five locations may be a function of the fact that
in both Phases the samples at these five locations were collected between September and
March. The concentrations of contaminants in wastewater have been demonstrated to
fluctuate diurnally, weekly, and seasonally (Petrie et al., 2015). This variability in
wastewater-driven contaminant inputs, as well as temperature-dependent environmental
attenuation ability, results in seasonal trends observable in surface waters (Wen et al., 2014;
Robles-Molina et al., 2014) and in treated drinking water (Houtman et al., 2014). To fully
understand the overall contaminant load at a given location, multiple samples collected on
daily, weekly, and monthly time scales are required. A more detailed discussion of the Phase
| pharmaceutical detections can be found in Furlong et al. (2016).

The carbamazepine detections at DWTP 5 triggered another modification to our QA/QC
design between Phase | and Phase 1. Surprisingly high concentrations of carbamazepine
were measured in the treated water sample. Carbamazepine was an analyte in two methods,
and this location happened to have the second sample collected as a duplicate rather than a
laboratory fortified matrix sample. Therefore, for both the source water and the treated
drinking water, we had four independent measurements of the carbamazepine concentration,
and all eight measurements pointed to the higher levels in the treated water sample. Since
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chlorination was the only treatment performed at this location, the time required to collect
the samples was enough that slightly different parcels of water were examined before and
after treatment. Without the verification of a second method or duplicate sample, the validity
of this detection would have been questioned. Because of this, in Phase I, both a duplicate
and a laboratory fortified matrix sample were collected for all organic chemicals at all
locations. A further discussion of the QA/QC results can be found in the pharmaceutical
(Furlong et al., 2016), PFAS (Boone et al., unpublished results), and quality control (Batt et
al., 2016) papers.

Fig. 2 depicts the number of analytes qualitatively detected in each of the Phase Il locations,
ordered by the number of detections in the source water. The number of qualitatively
detected analytes in the source water ranged from 30 in DWTP 29 to a maximum of 104 in
DWTP 4; in the treated drinking water, the number of qualitative detections ranged from 30
in DWTP 5 to 73 in DWTP 4. The number of analytes detected in the source water shows
some relation to the type of water body from which the sample was drawn. DWTPs that used
rivers or streams as sources tended to have generally higher numbers of analytes than those
that used lakes, reservoirs, or groundwater sources (Fig. 2, tabled data); this trend was also
observed in previous research (Sun et al., 2015). One explanation for this trend would be
that environmental attenuation, including processes such as adsorption and biodegradation,
is greater in lakes, reservoirs, and groundwater due to extended residence times. Another
possible explanation for the lower number of analytes in lake, reservoir, or groundwater
sources is that these sources were, in general, less affected by anthropogenic inputs. The
presence of fewer contaminants in reservoirs, lakes, or groundwater is not constant across
chemical classes, which is consistent with attenuation processes being chemical specific and
with detected analytes originating from various sources. Fig. 3 presents the frequency of
detection by the five different contaminant classes. Pharmaceuticals and AWIs generally
show the same overall relation between water type and frequency of detection, with the
river-based systems showing generally higher frequencies of detection. Additionally, both of
these classes of compounds were rather infrequently detected in both source and treated
drinking water as compared to the number of analytes in each class.

The PFASs (Boone et al., discussed more fully in a forthcoming publication) and inorganic
constituents demonstrated a different relation between frequency of detection and source
water type, with the number of analytes measured in each location remaining fairly constant
and independent of water type, and a larger percentage of each class detected. This
difference, when compared to pharmaceuticals and AWIs, may result from greater
detectability due to LCMRLS/RLs for these analytes that are substantially lower than the
observed ambient environmental concentrations. The microorganisms presented a more
temporal pattern; detections were more related to sampling month, with detections higher in
the winter months than the summer months (see Fig. 2, tabled data).

However, frequency of detection does not fully explain analyte distributions. Fig. 4
illustrates the sum of the concentrations of all analytes measured in a given chemical class
for each location. Since the inorganic constituents had units of measurement that differed by
three orders of magnitude, they were separated into two graphs. The pharmaceuticals still
showed the same relation to water source, with samples from river systems having greater
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summed concentrations. The AWIs were more variable, with a marked total concentration
increase in some of the treated waters, due primarily to production of the disinfection
byproduct bromoform during treatment. PFASs and inorganics, which showed little
variability between locations in terms of frequency of qualitative detection, show greater
variability in concentrations between locations.

In order to compare total chemical concentrations between locations with analytes that vary
by six orders of magnitude (mg/L to ng/L), in Fig. 5 concentrations were normalized for
each class by dividing the summed concentrations for each class in all samples by the site
with the highest summed concentration for each class (DWTP 4 source for pharmaceuticals,
DWTP 22 source for the PFASs, DWTP 2 treated for the AWIs, DWTP 24 source for the
inorganics on the pg/L scale and DWTP 15 treated for the inorganics on the mg/L scale).
The class-normalized concentrations from all 5 classes were then summed to give a total
normalized concentration by DWTP and presented in the bottom panel of Fig. 5. None of the
DWTPs had a summed normalized concentration >2, indicating that any one DWTP
typically had relative elevated concentrations in only one of the chemical classes and that
concentrations were not uniformly elevated among all classes at a particular DWTP.

The number of qualitatively detected analytes and their concentration typically vary between
the source and treated drinking water samples from each location (Figs. 3 and 4). It is also
apparent that these changes are analyte-class specific. These trends in qualitative and
quantitative detections are summarized in Table 3. Since many of the detections of
pharmaceuticals and AWIs were less than the LCRML or RL, typical statistical analyses
requiring uniformly numerical concentrations were not appropriate. To examine these
concentration trends, the percent change between the source and the treated sample was
calculated for each analyte by dividing the difference between the source and treated
samples by the concentration in the source water. Non-detects and blank corrected detections
were assumed to have a concentration of zero. Changes between qualitatively detected
analytes and non-detects were assumed to be either a —100% or a 100% change, depending
on if the qualitative detection was in the source or treated water, respectively. Changes
between quantitatively detected analytes and qualitatively detected analytes were assigned a
-50% or a 50% change, also depending on if the qualitative detection was in the source or
treated water, respectively. No calculation was made if both the source and the treated
sample had a qualitative detection, or if both were non-detects. The calculated percent
change trends are in general agreement with the relations graphically depicted in Figs. 1 and
2. Grand median (median of median) percent changes of —100% and —67% were observed
for pharmaceuticals and AWIs, respectively, indicating that the treated water concentrations
were lower than the source water concentrations. Conversely, the grand median percent
changes for PFASs and inorganics were —1% and —3%, respectively. The calculation for the
microorganisms were difficult, since the protozoa were not collected in any of the source
water samples, and the viruses could not be collected in nearly half of the DWTPs due to the
use of pre-chlorination, and the virus samples that were collected were before final
disinfection. But, for those DWTPs where source and treated water pairs were collected, a
grand median of —100% was observed, indicating generally lower microorganism densities
in the treated water as compared to the source. The locations in Table 3 were ranked by
increasing percent change between the source and treated samples. The locations with the
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greatest percent change tended to be the river systems, presumably because lake/reservoir
and groundwater systems provide greater environmental attenuation, thus making the
efficacy of engineered treatment difficult to evaluate based solely on a comparison of source
and treated water samples.

For quantitative detections, a statistical analysis was possible. The bottom of Table 3
presents the results of the Wilcoxon paired sample test (statistiXL, Nedlands, Western
Australia) between the source and treated drinking water samples, for all quantitative
detections at a given DWTP, as well as for each analyte class. A one-tailed test was used,
with the concentration in the source assumed to be greater than the treated drinking water
samples. For these calculations, non-detects, blank corrected samples, and values lower than
the LCMRL or RL were assumed to be equal to zero. The limitations of left censoring data
have been recognized (Helsel, 2010); however, since the Wilcoxon test is nonparametric, the
impact to the conclusions is minimal. Either the source water or the treated drinking water
for a contaminant at a given location had to have a quantitated detection for the pair to be
included in the analysis. Numbers in bold indicate statistically significant differences
between the source and treated samples at the 0.05 significance level. The locations are
again ranked in order of decreasing difference between the source and treated water samples.
Eleven of the DWTPs showed statistically significant overall differences between the source
and treated drinking water. Nine of the 11 DWTPs with statistically significant differences
were from river systems. The two non-river locations, DWTPs 24 (groundwater) and 28
(lake/reservoir), were the locations that had greater numbers of qualitative detections of
analytes than some of the river systems, as depicted in the qualitative detection ranking in
Fig. 2. Part of the high number of locations showing statistically significant differences may
be attributed to the high degree of freedom due to the number of pairs across all analyte
classes. When one examines the differences between source and treated water concentrations
within an analyte class, the number of statistically significant differences decreases
substantially. No location showed statistically significant differences for the AWIs and only
three locations showed significant differences in the number of microorganisms. Three
DWTPs show significant differences between the source and treated drinking water samples
for the PFASs. The inorganic constituents had the largest number of pairs at each location,
but only three DWTPs exhibited statistically significant differences between the source and
treated water samples. For the pharmaceuticals, six locations have statistically significant
decreases between the source and treated samples. Out of the five analyte classes
investigated in this paper, pharmaceuticals have the most paired source and treated water
data available in the literature. These studies (Benotti et al., 2009; Simazaki et al., 2015; Cai
et al., 2015) show similar reductions during drinking water treatment. Detailed analyte-
specific discussions can be found in the pharmaceutical (Furlong et al., 2016), PFAS (Boone
et al., unpublished results), and microorganism (King et al., 2016) papers.

Overall, source and treated water samples from DWTPs of diverse volume and water sources
that employ typical treatment processes contain a range of CECs and other associated
contaminants. These overview results indicate that while the majority of CECs are either not
observed in source or treated water samples, or are below detection after treatment, many
CECs are incompletely removed during treatment and thus are present in water distributed
for potable use. The concentrations of most CECs are low, typically in the part-per-trillion
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range; even so, their persistent presence suggests that there is exposure via water
consumption. Taken together these results identify the range of CECs and other
contaminants that may be found in source and treated waters where discharged wastewater
effluent is potentially a substantial component in source water. It should be noted that the
measurements in this study may not represent global maximum concentrations, and greater
exposures are possible, if not probable, in developing countries (Rehman et al., 2015). It is
also critical to note that most of the results from this study were collected at a single point in
time and thus comprise a snapshot in time; future studies would benefit from more detailed
and focused time series sample collection designs that better capture temporal variation.
Nevertheless, the use of a stringent QA/QC design and consistent field protocols and
laboratory methods has resulted in a unique, consistent dataset of chemical and
microbiological contaminants reflective of water supply conditions in typical DWTPs during
the time of the sampling campaign (2007-2012). As a result, this dataset provides a
benchmark and framework for future monitoring of CECs.

Four associated papers further explore the implications, if any, of the detections of these
analytes to aquatic life and human health. The first two papers conduct risk quotient
assessments on the source water for aquatic life (Kostich et al., 2016) and the margin-of-
exposure assessments for the detected unregulated chemicals in treated drinking water for
human health (Benson et al., 2016); the concentrations of the 17 chemicals in this study
which are regulated in the United States (Code of Federal Regulations, 2015; USEPA, 2016)
were compared to the regulatory thresholds in Supplementary information Table 6. The third
paper compares the measured endocrine disrupting chemicals to bioactivity results from an
estrogenicity bioassay (Conley et al., 2016). The fourth paper examines the microorganism
detection (King et al., 2016). This health-based context is vital in determining the impact of
these contaminants in the environment and to human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

. Nationwide study of 29 paired source water and treated drinking water
samples

. Chemicals: pharmaceuticals, PFASs, anthropogenic waste indicators, and
inorganics

. Microorganisms: bacteria, fungi, protozoa and viruses

. 148 contaminants detected in source water; 121 detected in treated drinking
water.

. Provides a baseline for future drinking water monitoring for these constituents
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Fig. 1.
Qualitative frequency of detection for analytes monitored in both Phases | and Il. Number of

analytes in each class - total, 77; pharmaceuticals, 24; anthropogenic waste indicators, 53.
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Fig. 2.

Qualitative detections of all Phase 11 analytes and watershed characteristics. The qualitative
detections ranked according the number of source water analytes detected. The watershed

characteristics table lists the type of source water (R, river or stream; L, lake or reservoir; G,

groundwater (includes under the influence of surface water)), as well as size and use
characteristics of the watershed.
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Fig. 3.
Qualitative detections in each Phase Il DWTP, separated by chemical/microbial class.
Number of analytes in each class: pharmaceuticals, 121; PFASs, 17; AWIs, 55; inorganics,

40; microorganisms, 14.
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DWTP

Concentrations summed by chemical class at each Phase IIDWTP. For these figures, lithium
is treated as an inorganic analyte instead of a pharmaceutical due to differences in units
(ug/L for lithium versus ng/L for the other pharmaceuticals). Inorganics were divided
between those with pg/L and mg/L concentrations (see Supplementary information Table 2

for analytes in each class).
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Source M Treated
—_ - - - p— — - —
} 1 ) 1 10 1 0 1¢ 18 1 1 1 1
PFASs
a— — I -_— — — — — - — —
| 1 1 10 0 8 ( 1 ( 1
AW!Is
1 1 0 1 ) 18 8 ( ) 1 1 - 1
Inorganic (ug/L)
4 3 26 27 21 22 1 10 2 17 20 19 18 28 25 24 11 23 16 12 15 14 5

Inorganic (mg/L)

.l.l.l...-l-.ll._.. I--
19 18 28 25 24 ‘

4 3 260 27 21 22 1 10 2 17 20 11 16 12 15 14

Summed Normalized Concentrations

||.|I||||.|.|III.||||..
4 3 26 27 21 22 1 10 2 17 20 19 18 28 25 24 11 23 16 12 15 14 5

Fig. 5.
Normalized chemical concentrations. Concentrations in each chemical class were

normalized to the location with the greatest concentration. The summed normalized
concentration figure is the sum of the normalized concentrations of five chemical class
subunits (pharmaceuticals, PFASs, AWIs, inorganics with pg/L units and inorganics with
mg/L units).
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