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Abstract

When chemical or microbial contaminants are assessed for potential effect or possible regulation 

in ambient and drinking waters, a critical first step is determining if the contaminants occur and if 

they are at concentrations that may cause human or ecological health concerns. To this end, source 

and treated drinking water samples from29 drinking water treatment plants (DWTPs) were 

analyzed as part of a two-phase study to determine whether chemical and microbial constituents, 

many of which are considered contaminants of emerging concern, were detectable in the waters. 

Of the 84 chemicals monitored in the 9 Phase I DWTPs, 27 were detected at least once in the 

source water, and 21 were detected at least once in treated drinking water. In Phase II, which was a 

broader and more comprehensive assessment, 247 chemical and microbial analytes were measured 
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in 25 DWTPs, with 148 detected at least once in the source water, and 121 detected at least once in 

the treated drinking water. The frequency of detection was often related to the analyte’s 

contaminant class, as pharmaceuticals and anthropogenic waste indicators tended to be 

infrequently detected and more easily removed during treatment, while per and polyfluoroalkyl 

substances and inorganic constituents were both more frequently detected and, overall, more 

resistant to treatment. The data collected as part of this project will be used to help inform 

evaluation of unregulated contaminants in surface water, groundwater, and drinking water.

GRAPHICAL ABSTRACT

Keywords

Pharmaceuticals; Microorganisms; Contaminants of emerging concern; Drinking water; Source 
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1. Introduction

There is increasing public concern over the detection of chemicals in water whose presence 

results from the diverse array of frequently used consumer, health-, and personal-care 

products. Chemicals contained in these products—including pharmaceuticals, fragrances, 

surfactants, and pesticides— may be present in wastewater influent through excretion, 

bathing, or direct disposal. Many of these chemicals have been documented to survive 

wastewater treatment and be discharged to surface and groundwaters. Previous reviews 

(Halling-Sorensen et al., 1998; Daughton and Ternes, 1999; Heberer, 2002; Diaz-Cruz and 

Barcelo, 2004; Glassmeyer et al., 2008; Kostich et al., 2010; Delgado et al., 2012; Pal et al., 

2014; Li et al., 2015; Petrie et al., 2015) have summarized the peer-reviewed literature 

reporting the occurrences of these chemicals in water resources. Initially termed “emerging 

contaminants”, there is some misperception that the term suggests that these chemicals have 

only recently been released into the environment. In fact, these chemicals have been released 

as long as they have been in use, and some compounds (such as caffeine) have been detected 

in wastewater (Shuval and Gruener, 1973; Shackelford and Cline, 1986), surface water 

(Donaldson, 1977; Sheldon and Hites, 1978; Eganhouse et al., 1983; Richardson and 

Bowron, 1985), and drinking water (Coleman et al., 1980) for several decades. What is 

emerging is greater awareness by the general public of the presence of these contaminants in 

the environment and the direct link of environmental presence to household use. The ability 

of environmental scientists to detect extremely low ambient concentrations of these 

Glassmeyer et al. Page 2

Sci Total Environ. Author manuscript; available in PMC 2020 February 13.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



contaminants, aided by improvements to the analytical instrumentation, further fosters this 

awareness. Thus, the term “contaminants of emerging concern” (CECs) is a more 

appropriate choice when describing these contaminants in aggregate.

In the United States, the Safe Drinking Water Act (SDWA), as amended in 1996 (USEPA, 

1996) gives the US Environmental Protection Agency (USEPA) the authority to regulate 

contaminants in finished drinking water, as well as to protect drinking water sources. To 

regulate a contaminant in drinking water, the SDWA requires that three criteria must be met: 

1) the contaminant may have an adverse effect on the health of persons, 2) the contaminant 

is known to occur or there is a substantial likelihood the contaminant will occur in drinking 

water with a frequency and at levels of public health concern, and 3) in the sole judgment of 

the USEPA Administrator, regulation of the contaminant presents a meaningful opportunity 

for reducing health risks for persons served by public water systems. The SDWA requires 

the USEPA to evaluate unregulated chemical and microbial contaminants which may 

necessitate future regulation through the Contaminant Candidate List (CCL) process; the 

draft fourth CCL (CCL4) was proposed in 2015 (USEPA, 2015). Whether a contaminant is 

known or anticipated to occur in public water systems is considered as part of the CCL 

process, along with potential health effects.

Compared to other environmental matrices, there are a paucity of studies that have assessed 

occurrence of CECs in finished drinking water (Benotti et al., 2009; Stackelberg et al., 2004; 

Stackelberg et al., 2007; Snyder, 2008; Garcia-Ac et al., 2009; Loos et al., 2007; Togola and 

Budzinski, 2007), and these studies typically do not examine analytes from multiple 

contaminant classes. One mechanism to obtain nationally representative drinking water 

occurrence data is through the Unregulated Contaminant Monitoring Regulation (UCMR), 

an authority that allows the USEPA to gather occurrence data from all public water systems 

(PWS) serving >10,000 people, and a representative sample of PWSs serving 10,000 or 

fewer people, for no more than 30 contaminants in five-year cycles (USEPA, 2012a). 

Occurrence data of CECs in drinking water in published studies helps determine which 

analytes would be most appropriate for the UCMR. However, focused, national-scale studies 

of CEC presence and concentration in source-and treated drinking water samples that use 

consistent, state-of-the-art sample collection and analysis approaches and assessing the 

widest array of CECs offer the greatest benefit for identifying the most appropriate 

contaminants for any detailed UCMR assessments.

This paper is one of a series of papers describing a comprehensive study on the presence, 

concentrations, and persistence of chemical and microbial CECs in source and treated 

drinking waters of the United States (Batt et al., 2016; Benson et al., 2016; Conley et al., 

2016; Furlong et al., 2016; King et al., 2016; Kostich et al., 2016; Boone et al., unpublished 

results; Varughese et al., unpublished results). This was a joint effort of the USEPA and the 

U.S. Geological Survey (USGS), as part of a long-term interagency agreement. A primary 

goal of the overall study was to provide accurate, objective information for assessing the 

potential for human exposure to a comprehensive set of CECs via drinking water. A 

secondary goal was to evaluate removal, if any, of CECs from source waters by currently 

used drinking water treatment processes under typical plant operating conditions. The 

interdisciplinary approach of this nationwide study is unique in that it combined both the 
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measurement of CECs along with the evaluation of the potential effects of the contaminants, 

through both an in vitro estrogenic activity bioassay and screening level human and 

ecological health impact assessments.

2. Experimental design

This study was conducted in two phases. In Phase I (2007), source and treated drinking 

water from nine drinking water treatment plants (DWTPs) from eight states across the 

United States were sampled and analyzed for 84 chemicals using three different analytical 

methods. The Phase I effort provided an opportunity to test the experimental design, field 

sampling protocols, and analytical methods as applied to operator-collected samples from 

DWTPs. In Phase II (2010–2012), the quality assurance/quality control design was refined, 

the analyte list expanded (247 chemical and microbiological contaminants using 16 different 

methods, as well as an in vitro estrogenicity bioassay), and the number of DWTPs sampled 

increased to 25 DWTPs located in 24 states, including five that were also sampled in Phase 

I. Between the two phases, 29 DWTPs were investigated (five in both Phase I and II, four in 

Phase I only and 20 in Phase II only). A total of 77 common analytes were measured in both 

Phase I and II.

2.1. Site selection

An objective of this study was to better determine the upper boundary of CEC 

concentrations, rather than provide a nationwide average, so DWTP selection was skewed 

towards sample locations with known wastewater outfalls in the source water. Candidate 

locations were selected based on water sources with potential for a high wastewater 

contribution (Swayne et al., 1980), locations with and without existing pharmaceutical 

concentration data (Associated Press, 2008), nomination by USEPA and USGS regional 

personnel, and DWTP self-nomination. Sites were chosen to maximize the range in select 

attributes including geography, diversity in disinfectant type used in the treatment process, 

and drinking water plant production volume. Participation in the study was voluntary. Table 

1 provides a description of each participating DWTP, but the specific identity of each 

location is not given to provide anonymity of the participating DWTPs.

2.2. Sample collection

Samples were collected by operating staff at each of the DWTPs with project-provided 

protocols and sampling materials. Sample collection bottles for each method were pre-

spiked (if needed) with an appropriate dechlorination agent. Supplementary information 

Table 1 details method specific bottles, sample volumes, dechlorination agent, and sample 

holding times. Although the dechlorination agent was not needed for the source water 

samples, it was added to all chemical contaminant samples analyzed by a given method, if 

needed for finished water sample preservation to maintain sample consistency. For the 

chemical analyses, bioassays, and the majority of the microbial tests, grab samples were 

collected. Most of the DWTPs were plumbed with sampling taps at different locations in the 

plant. These taps allow collection either directly, or have piping back to a sink in the 

facility’s laboratory. The DWTP operators were instructed to collect the source water sample 

prior to any treatment, including settling basins. The treated water sample was to be 
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collected at a sampling point after final disinfection but prior to the clear well. The DWTP 

operators were requested to time sampling between the source water and the treated water to 

match the hydraulic residence time of the plant, so approximately the same parcel of water 

would be analyzed entering and exiting the plant. In some instances, however, this was not 

possible (Table 1). Sample collection at most locations was performed by DWTP personnel 

by simply filling the bottle at the tap to the appropriate volume. DWTP 10 did not have a 

source water tap, so an empty sampling bottle was dipped into the source water and the 

sample was decanted into appropriate sample bottles. Since the perfluorinated analytes were 

known to sorb to container surfaces, and since no dechlorination agent or preservatives were 

used for that method, the sample bottle was directly dipped into the DWTP 10 source water 

to collect the sample.

For the protozoa and virus samples in Phase II, field filtration was required. The utilities 

were supplied with two sets of sterile tubing, filters with appropriate housing cartridges, and 

flow meters (one for source and one for treated samples). For source water samples, 10 L 

was filtered on an Envirochek™ (Pall Corporation, Port Washington, NY) for protozoa 

analysis and up to 200 L was filtered on a NanoCeram® filter (Argonide, Sanford, FL) for 

viruses. For the treated water samples, since residual chlorine can inactivate viruses attached 

to the filter, the virus samples were collected at a point just before the introduction of 

disinfectant. Since 13 of the 25 DWTPs used pre-chlorination, only 12 treated pre-

disinfection water samples were collected in Phase II for analyzing viruses. For these treated 

non-disinfected samples, 2000 L of water was filtered. More details on the virus collection 

procedure will be provided in a forthcoming manuscript (Varughese et al., unpublished 

results). Protozoa samples were not collected from the treated water.

In Phase I, all samples were collected in duplicate. One sample was analyzed as the primary 

sample, and the second analyzed alternately as a replicate sample or as a laboratory fortified 

matrix sample (matrix spike). In Phase II, all samples for organic chemical analysis were 

collected in triplicate, with a primary, replicate, and laboratory fortified matrix analyzed at 

all locations. Only the primary sample was analyzed for inorganic and microbial constituents 

at all sampling points.

Field blanks were included to monitor for potential contamination during sampling, 

processing, or transport, because many of the measured analytes occur in products 

commonly consumed and used by DWTP and other personnel, and gloves and other 

personal protective equipment may not be sufficient to avert contamination. In Phase I, 

DWTPs were asked to supply a sample of laboratory grade water, either a decanted bottled 

sample or produced water, such as Milli-Q (EMD Millipore, Billerica, MA). In Phase II, 

bottled laboratory grade water (Omni-Solv®, EMD Millipore, Billerica, MA), validated to 

be free of many organic contaminants, was supplied to all DWTPs for decanting into sample 

collection bottles on-site.

After collection, all samples and field blanks were immediately packed on ice and shipped 

overnight to USEPA and USGS laboratories for analysis within sample holding times 

(Supplementary information Table 1).
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2.3. Sample analysis

In Phase I, samples were analyzed using three methods, two for pharmaceuticals (Cahill et 

al., 2004 adapted as an official USGS method in Furlong et al., 2008; Schultz and Furlong, 

2008) and one for a diverse suite of chemicals commonly found in wastewater, such as 

detergent metabolites, fragrances, and pesticides, described herein as anthropogenic waste 

indicators (AWIs; Zaugg et al., 2006) These three methods were also utilized in Phase II, 

along with three additional pharmaceutical methods (a modified version of Ternes et al., 

2005; Batt et al., 2008; Furlong et al., 2014), a method for hormones and other endocrine 

disrupting chemicals (Conley et al., 2016), a per- and polyfluoroalkyl substances (PFAS) 

method (Boone et al., 2014), a method for fungi (Haugland et al., 2004), two bacteria 

methods (Covert et al., 1999 and Beumer et al., 2010 for mycobacteria; Donohue et al., 2014 

for Legionella), a method for enteric viruses (Varughese et al., unpublished results), and a 

method for protozoa (USEPA, 2005a). While they are not CECs, three methods for inorganic 

constituents (USEPA, 2005b; USEPA, 2001; USEPA, 1994) were also used to analyze 

samples. Three analytes were evaluated in multiple methods in Phase I; a total of 53 

compounds (46 organic and 7 inorganic) were measured in multiple methods in Phase II. In 

addition to the direct concentration measurements, an aliquot of the extracts prepared for the 

hormone analysis was also evaluated for estrogen receptor-mediated bioactivity using the 

T47D-KBluc bioassay (Wilson et al., 2004; Conley et al., 2016). Supplementary information 

Table 1 has a brief summary of each method used for this study. More methodological detail 

can be found in the above referenced papers, as well as in the accompanying detailed 

manuscripts on pharmaceuticals (Furlong et al., 2016), hormones (Conley et al., 2016), 

PFASs (Boone et al., unpublished results), bacteria, fungi and protozoa (King et al., 2016) 

and viruses (Varughese et al., unpublished results).

2.4. Quality control

Since the concentrations measured in this study were expected to be close to the instrument 

detection limits, a considerable number of quality assurance/quality control (QA/QC) 

samples were incorporated into the sampling design. Over 50% of the samples analyzed in 

Phase I and over 70% of the Phase II samples were for QA/QC purposes. When possible, the 

lowest concentration minimum reporting level (LCMRL; USEPA, 2010) was determined for 

each analyte. If the LCMRL could not be calculated, a reporting limit (RL) was used at the 

quantified detection threshold (USEPA, 2012b). Samples that did not exceed their associated 

LCMRL or RL but were above the instrument detection limit were considered qualitative 

detections, and the numerical concentrations were removed from the results. Likewise, 

samples in Phase II with associated laboratory fortified matrix samples with >150% 

recoveries were considered as qualitative detections as the matrix exhibited signal 

enhancement. Sample measurements that did not exceed the concentrations measured in the 

associated field and/or laboratory blanks by a factor of three were censored from the data 

set. A detailed discussion of the QA/QC analysis is available in an accompanying 

manuscript (Batt et al., 2016) as well as in the individual papers on specific aspects of 

contaminant results (Conley et al., 2016; Furlong et al., 2016; Boone et al., unpublished 

results; King et al., 2016).
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3. Results and discussion

Table 2 lists the analytes qualitatively detected in at least 30% of either the source or treated 

drinking water samples for both Phase I and II. In this table, and in the remainder of the 

paper, the analytes are separated into five contaminant classes: 1) pharmaceuticals, 2) 

perfluoroalkyl and polyfluoroalkyl substances (PFASs), 3) anthropogenic waste indicators 

(AWIs), 4) inorganic constituents, and 5) microorganisms. Detailed discussions of the 

individual analytes are presented in the associated papers ( Conley et al., 2016; Furlong et 

al., 2016; Boone et al., unpublished results; King et al., 2016; Varughese et al., unpublished 

results). Tables enumerating all analytes detected and not detected are presented in 

alphabetical order by contaminant class in Supplementary information Tables 2 and 3, 

respectively. Concentrations of inorganic constituents and AWIs detected at each location 

are presented in Supplementary information Table 4. Of the 84 analytes in Phase I and 247 

analytes in Phase II, 57 and 99 (68% and 40%) were never detected in source water samples 

and 63 and 126 (75% and 51%) were never detected in treated drinking water samples, 

respectively.

Phases I and II had 77 analytes in common, 24 pharmaceuticals and 53 AWIs. Fig. 1 

illustrates the frequency of qualitative detections of these analytes in all of the Phase I and II 

locations, as a whole as well as separated by chemical class. In general, detections were 

infrequent, with typically fewer than 5 pharmaceuticals and 10 AWIs detected in any given 

sample. For the five locations that were sampled in both Phases I and II, the detection trends 

remained similar, with the exception of the Phase IAWI detections for DWTP 4 (Fig. 1; 

Supplementary information Table 5). Seven of the AWIs were detected in the field blank 

from that location, and thus the concentrations in the associated samples were censored. It 

was field blank detections such as these that triggered the enhanced field blank QC design 

for Phase II. By supplying a uniform, verified laboratory-grade water in Phase II, better 

control and assessment of potential contamination from field personnel and/or transport was 

possible. The similarity of detection at these five locations may be a function of the fact that 

in both Phases the samples at these five locations were collected between September and 

March. The concentrations of contaminants in wastewater have been demonstrated to 

fluctuate diurnally, weekly, and seasonally (Petrie et al., 2015). This variability in 

wastewater-driven contaminant inputs, as well as temperature-dependent environmental 

attenuation ability, results in seasonal trends observable in surface waters (Wen et al., 2014; 

Robles-Molina et al., 2014) and in treated drinking water (Houtman et al., 2014). To fully 

understand the overall contaminant load at a given location, multiple samples collected on 

daily, weekly, and monthly time scales are required. A more detailed discussion of the Phase 

I pharmaceutical detections can be found in Furlong et al. (2016).

The carbamazepine detections at DWTP 5 triggered another modification to our QA/QC 

design between Phase I and Phase II. Surprisingly high concentrations of carbamazepine 

were measured in the treated water sample. Carbamazepine was an analyte in two methods, 

and this location happened to have the second sample collected as a duplicate rather than a 

laboratory fortified matrix sample. Therefore, for both the source water and the treated 

drinking water, we had four independent measurements of the carbamazepine concentration, 

and all eight measurements pointed to the higher levels in the treated water sample. Since 
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chlorination was the only treatment performed at this location, the time required to collect 

the samples was enough that slightly different parcels of water were examined before and 

after treatment. Without the verification of a second method or duplicate sample, the validity 

of this detection would have been questioned. Because of this, in Phase II, both a duplicate 

and a laboratory fortified matrix sample were collected for all organic chemicals at all 

locations. A further discussion of the QA/QC results can be found in the pharmaceutical 

(Furlong et al., 2016), PFAS (Boone et al., unpublished results), and quality control (Batt et 

al., 2016) papers.

Fig. 2 depicts the number of analytes qualitatively detected in each of the Phase II locations, 

ordered by the number of detections in the source water. The number of qualitatively 

detected analytes in the source water ranged from 30 in DWTP 29 to a maximum of 104 in 

DWTP 4; in the treated drinking water, the number of qualitative detections ranged from 30 

in DWTP 5 to 73 in DWTP 4. The number of analytes detected in the source water shows 

some relation to the type of water body from which the sample was drawn. DWTPs that used 

rivers or streams as sources tended to have generally higher numbers of analytes than those 

that used lakes, reservoirs, or groundwater sources (Fig. 2, tabled data); this trend was also 

observed in previous research (Sun et al., 2015). One explanation for this trend would be 

that environmental attenuation, including processes such as adsorption and biodegradation, 

is greater in lakes, reservoirs, and groundwater due to extended residence times. Another 

possible explanation for the lower number of analytes in lake, reservoir, or groundwater 

sources is that these sources were, in general, less affected by anthropogenic inputs. The 

presence of fewer contaminants in reservoirs, lakes, or groundwater is not constant across 

chemical classes, which is consistent with attenuation processes being chemical specific and 

with detected analytes originating from various sources. Fig. 3 presents the frequency of 

detection by the five different contaminant classes. Pharmaceuticals and AWIs generally 

show the same overall relation between water type and frequency of detection, with the 

river-based systems showing generally higher frequencies of detection. Additionally, both of 

these classes of compounds were rather infrequently detected in both source and treated 

drinking water as compared to the number of analytes in each class.

The PFASs (Boone et al., discussed more fully in a forthcoming publication) and inorganic 

constituents demonstrated a different relation between frequency of detection and source 

water type, with the number of analytes measured in each location remaining fairly constant 

and independent of water type, and a larger percentage of each class detected. This 

difference, when compared to pharmaceuticals and AWIs, may result from greater 

detectability due to LCMRLs/RLs for these analytes that are substantially lower than the 

observed ambient environmental concentrations. The microorganisms presented a more 

temporal pattern; detections were more related to sampling month, with detections higher in 

the winter months than the summer months (see Fig. 2, tabled data).

However, frequency of detection does not fully explain analyte distributions. Fig. 4 

illustrates the sum of the concentrations of all analytes measured in a given chemical class 

for each location. Since the inorganic constituents had units of measurement that differed by 

three orders of magnitude, they were separated into two graphs. The pharmaceuticals still 

showed the same relation to water source, with samples from river systems having greater 
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summed concentrations. The AWIs were more variable, with a marked total concentration 

increase in some of the treated waters, due primarily to production of the disinfection 

byproduct bromoform during treatment. PFASs and inorganics, which showed little 

variability between locations in terms of frequency of qualitative detection, show greater 

variability in concentrations between locations.

In order to compare total chemical concentrations between locations with analytes that vary 

by six orders of magnitude (mg/L to ng/L), in Fig. 5 concentrations were normalized for 

each class by dividing the summed concentrations for each class in all samples by the site 

with the highest summed concentration for each class (DWTP 4 source for pharmaceuticals, 

DWTP 22 source for the PFASs, DWTP 2 treated for the AWIs, DWTP 24 source for the 

inorganics on the μg/L scale and DWTP 15 treated for the inorganics on the mg/L scale). 

The class-normalized concentrations from all 5 classes were then summed to give a total 

normalized concentration by DWTP and presented in the bottom panel of Fig. 5. None of the 

DWTPs had a summed normalized concentration >2, indicating that any one DWTP 

typically had relative elevated concentrations in only one of the chemical classes and that 

concentrations were not uniformly elevated among all classes at a particular DWTP.

The number of qualitatively detected analytes and their concentration typically vary between 

the source and treated drinking water samples from each location (Figs. 3 and 4). It is also 

apparent that these changes are analyte-class specific. These trends in qualitative and 

quantitative detections are summarized in Table 3. Since many of the detections of 

pharmaceuticals and AWIs were less than the LCRML or RL, typical statistical analyses 

requiring uniformly numerical concentrations were not appropriate. To examine these 

concentration trends, the percent change between the source and the treated sample was 

calculated for each analyte by dividing the difference between the source and treated 

samples by the concentration in the source water. Non-detects and blank corrected detections 

were assumed to have a concentration of zero. Changes between qualitatively detected 

analytes and non-detects were assumed to be either a −100% or a 100% change, depending 

on if the qualitative detection was in the source or treated water, respectively. Changes 

between quantitatively detected analytes and qualitatively detected analytes were assigned a 

−50% or a 50% change, also depending on if the qualitative detection was in the source or 

treated water, respectively. No calculation was made if both the source and the treated 

sample had a qualitative detection, or if both were non-detects. The calculated percent 

change trends are in general agreement with the relations graphically depicted in Figs. 1 and 

2. Grand median (median of median) percent changes of −100% and −67% were observed 

for pharmaceuticals and AWIs, respectively, indicating that the treated water concentrations 

were lower than the source water concentrations. Conversely, the grand median percent 

changes for PFASs and inorganics were −1% and −3%, respectively. The calculation for the 

microorganisms were difficult, since the protozoa were not collected in any of the source 

water samples, and the viruses could not be collected in nearly half of the DWTPs due to the 

use of pre-chlorination, and the virus samples that were collected were before final 

disinfection. But, for those DWTPs where source and treated water pairs were collected, a 

grand median of −100% was observed, indicating generally lower microorganism densities 

in the treated water as compared to the source. The locations in Table 3 were ranked by 

increasing percent change between the source and treated samples. The locations with the 
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greatest percent change tended to be the river systems, presumably because lake/reservoir 

and groundwater systems provide greater environmental attenuation, thus making the 

efficacy of engineered treatment difficult to evaluate based solely on a comparison of source 

and treated water samples.

For quantitative detections, a statistical analysis was possible. The bottom of Table 3 

presents the results of the Wilcoxon paired sample test (statistiXL, Nedlands, Western 

Australia) between the source and treated drinking water samples, for all quantitative 

detections at a given DWTP, as well as for each analyte class. A one-tailed test was used, 

with the concentration in the source assumed to be greater than the treated drinking water 

samples. For these calculations, non-detects, blank corrected samples, and values lower than 

the LCMRL or RL were assumed to be equal to zero. The limitations of left censoring data 

have been recognized (Helsel, 2010); however, since the Wilcoxon test is nonparametric, the 

impact to the conclusions is minimal. Either the source water or the treated drinking water 

for a contaminant at a given location had to have a quantitated detection for the pair to be 

included in the analysis. Numbers in bold indicate statistically significant differences 

between the source and treated samples at the 0.05 significance level. The locations are 

again ranked in order of decreasing difference between the source and treated water samples. 

Eleven of the DWTPs showed statistically significant overall differences between the source 

and treated drinking water. Nine of the 11 DWTPs with statistically significant differences 

were from river systems. The two non-river locations, DWTPs 24 (groundwater) and 28 

(lake/reservoir), were the locations that had greater numbers of qualitative detections of 

analytes than some of the river systems, as depicted in the qualitative detection ranking in 

Fig. 2. Part of the high number of locations showing statistically significant differences may 

be attributed to the high degree of freedom due to the number of pairs across all analyte 

classes. When one examines the differences between source and treated water concentrations 

within an analyte class, the number of statistically significant differences decreases 

substantially. No location showed statistically significant differences for the AWIs and only 

three locations showed significant differences in the number of microorganisms. Three 

DWTPs show significant differences between the source and treated drinking water samples 

for the PFASs. The inorganic constituents had the largest number of pairs at each location, 

but only three DWTPs exhibited statistically significant differences between the source and 

treated water samples. For the pharmaceuticals, six locations have statistically significant 

decreases between the source and treated samples. Out of the five analyte classes 

investigated in this paper, pharmaceuticals have the most paired source and treated water 

data available in the literature. These studies (Benotti et al., 2009; Simazaki et al., 2015; Cai 

et al., 2015) show similar reductions during drinking water treatment. Detailed analyte-

specific discussions can be found in the pharmaceutical (Furlong et al., 2016), PFAS (Boone 

et al., unpublished results), and microorganism (King et al., 2016) papers.

Overall, source and treated water samples from DWTPs of diverse volume and water sources 

that employ typical treatment processes contain a range of CECs and other associated 

contaminants. These overview results indicate that while the majority of CECs are either not 

observed in source or treated water samples, or are below detection after treatment, many 

CECs are incompletely removed during treatment and thus are present in water distributed 

for potable use. The concentrations of most CECs are low, typically in the part-per-trillion 
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range; even so, their persistent presence suggests that there is exposure via water 

consumption. Taken together these results identify the range of CECs and other 

contaminants that may be found in source and treated waters where discharged wastewater 

effluent is potentially a substantial component in source water. It should be noted that the 

measurements in this study may not represent global maximum concentrations, and greater 

exposures are possible, if not probable, in developing countries (Rehman et al., 2015). It is 

also critical to note that most of the results from this study were collected at a single point in 

time and thus comprise a snapshot in time; future studies would benefit from more detailed 

and focused time series sample collection designs that better capture temporal variation. 

Nevertheless, the use of a stringent QA/QC design and consistent field protocols and 

laboratory methods has resulted in a unique, consistent dataset of chemical and 

microbiological contaminants reflective of water supply conditions in typical DWTPs during 

the time of the sampling campaign (2007–2012). As a result, this dataset provides a 

benchmark and framework for future monitoring of CECs.

Four associated papers further explore the implications, if any, of the detections of these 

analytes to aquatic life and human health. The first two papers conduct risk quotient 

assessments on the source water for aquatic life (Kostich et al., 2016) and the margin-of-

exposure assessments for the detected unregulated chemicals in treated drinking water for 

human health (Benson et al., 2016); the concentrations of the 17 chemicals in this study 

which are regulated in the United States (Code of Federal Regulations, 2015; USEPA, 2016) 

were compared to the regulatory thresholds in Supplementary information Table 6. The third 

paper compares the measured endocrine disrupting chemicals to bioactivity results from an 

estrogenicity bioassay (Conley et al., 2016). The fourth paper examines the microorganism 

detection (King et al., 2016). This health-based context is vital in determining the impact of 

these contaminants in the environment and to human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AWI anthropogenic waste indicator

CEC contaminant of emerging concern

CCL Contaminant Candidate List

DWTP drinking water treatment plant

LCMRL lowest concentration minimum reporting level

PFAS per- and polyfluoroalkyl substances

PWS public water system

QA/QC quality assurance/quality control

RL reporting level

SDWA Safe Drinking Water Act

UCMR Unregulated Contaminant Monitoring Rule

USEPA United States Environmental Protection Agency

USGS United States Geological Survey
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HIGHLIGHTS

• Nationwide study of 29 paired source water and treated drinking water 

samples

• Chemicals: pharmaceuticals, PFASs, anthropogenic waste indicators, and 

inorganics

• Microorganisms: bacteria, fungi, protozoa and viruses

• 148 contaminants detected in source water; 121 detected in treated drinking 

water.

• Provides a baseline for future drinking water monitoring for these constituents
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Fig. 1. 
Qualitative frequency of detection for analytes monitored in both Phases I and II. Number of 

analytes in each class - total, 77; pharmaceuticals, 24; anthropogenic waste indicators, 53.
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Fig. 2. 
Qualitative detections of all Phase II analytes and watershed characteristics. The qualitative 

detections ranked according the number of source water analytes detected. The watershed 

characteristics table lists the type of source water (R, river or stream; L, lake or reservoir; G, 

groundwater (includes under the influence of surface water)), as well as size and use 

characteristics of the watershed.
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Fig. 3. 
Qualitative detections in each Phase II DWTP, separated by chemical/microbial class. 

Number of analytes in each class: pharmaceuticals, 121; PFASs, 17; AWIs, 55; inorganics, 

40; microorganisms, 14.
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Fig. 4. 
Concentrations summed by chemical class at each Phase IIDWTP. For these figures, lithium 

is treated as an inorganic analyte instead of a pharmaceutical due to differences in units 

(μg/L for lithium versus ng/L for the other pharmaceuticals). Inorganics were divided 

between those with μg/L and mg/L concentrations (see Supplementary information Table 2 

for analytes in each class).
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Fig. 5. 
Normalized chemical concentrations. Concentrations in each chemical class were 

normalized to the location with the greatest concentration. The summed normalized 

concentration figure is the sum of the normalized concentrations of five chemical class 

subunits (pharmaceuticals, PFASs, AWIs, inorganics with μg/L units and inorganics with 

mg/L units).
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