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Abstract: PD-1/PD-L1 immune checkpoint blockade therapy has become an effective method for the treatment of 
cancers in the clinic. It has great clinical advantages and therapeutic effects in the treatment of various cancers. 
However, a considerable number of cancer patients currently have relatively low response rates and drug resistance 
to PD-1/PD-L1 immunotherapy. Therefore, an in-depth understanding of the regulatory mechanism of PD-L1 expres-
sion in tumor cells will provide new insights into PD-1/PD-L1 immunotherapy. This review will systematically review 
the regulatory mechanisms of PD-L1 including genomic amplification, epigenetic regulation, transcriptional regula-
tion, translational regulation and posttranslational modification. We will also discuss PD-L1 expression regulation in 
clinical applications. Finally, we hope to provide new routes for PD-1/PD-L1 immunotherapy in the clinic.
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Introduction

In recent years, immunotherapy has become  
a new method of cancer treatment. Currently, 
immune checkpoint blockade therapy is one of 
the most widely used methods of tumor immu-
notherapy. The pathway involving programmed 
death protein 1 (PD-1) and its ligand (PD-L1) is 
a well-characterized immune checkpoint and 
has been applied in the clinical treatment of 
various cancers. Antibodies targeting the PD- 
1/PD-L1 pathway have been approved for vari-
ous cancers, including melanoma, non-small 
cell lung cancer (NSCLC), Hodgkin’s lymphoma, 
bladder cancer, renal cell carcinoma (RCC), 
head and neck squamous cell carcinoma (HN- 
SCC), breast cancer, Merkel cell carcinoma, 
hepatocellular carcinoma (HCC) and gastric 
cancer (GC) [3]. However, these antibodies are 
only efficacious in a small portion of patients 
with certain cancers.

At present, the understanding of the resistance 
mechanism of immune checkpoint blockade 
therapy and the regulation of PD-L1 expressi- 
on is quite limited. To develop a more effective 

and lasting immune checkpoint blocking the- 
rapy strategy, it is necessary to gain insights 
into the multiple roles and complex regulatory 
mechanisms of PD-L1 in cancers. In this review, 
we will discuss the molecular mechanisms of 
PD-L1 expression in cancer cells at the levels  
of genomic amplification, epigenetic regulation, 
transcriptional regulation, posttranscriptional 
regulation, translational regulation, and post-
translational modification. These findings may 
provide new insights into targeting tumor im- 
mune escape after immunotherapy in the cli- 
nic.

Classification of PD-L1 expression in tumor 
cells

The expression of PD-L1 can be divided into 
constitutive expression and inducible expres-
sion depending on the extrinsic or intrinsic sti- 
muli (Figure 1). Constitutive expression of PD- 
L1 in tumor cells is induced by dysregulation of 
oncogenic or tumor suppressor gene signaling 
pathways, by activation of abnormal transcrip-
tion factors, or by genomic aberrations or ge- 
ne amplifications. Many oncogenic transcrip-
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tion factors have been found to directly regu-
late PD-L1 expression.

The oncogenic transcription factor MYC is 
abnormally expressed in many cancer patients 
[1, 2]. Inhibition of MYC gene expression in 
mouse or human tumor cells can reduce the 
expression of PD-L1 at both the gene and pro-
tein levels [3-6]. Further studies showed that 
MYC could bind to the promoter region of PD- 
L1 and regulate the expression of PD-L1 [3]. 
Approximately 41% of NSCLC patients show 
overexpression of MYC [7]. Immunostaining of 
NSCLC tissues revealed that MYC expression 
significantly correlated with PD-L1 expression 
in non-small cell lung cancer [8]. PD-L1 expres-
sion was up-regulated by a KRAS mutation and 
through p-ERK signaling in lung adenocarcino-
ma [9]. Other studies have shown that onco-
genic RAS signaling can drive PD-L1 expression 
through the RAS-MEK signaling pathway [10]. 
STAT3 has also been found to act on the PD-L1 

The highest frequency of CNAs of PD-L1 has 
been found in primary mediastinal B-cell lym-
phoma (PMBCL), classical Hodgkin lymphoma 
(cHL), and triple-negative breast cancer (TN- 
BC), at 63% [16], 40% [17] and 29% [18], 
respectively. However, in GC, small cell lung 
cancers, NSCLCs and diffuse large B-cell lym-
phoma (DLBCL), the CNAs were much lower, 
with frequencies of 15% [19], 1.9% [20], 5.3% 
[21] and 3% [22], respectively. In general, the 
increase in CNAs is positively correlated with 
PD-L1 protein levels [23] (Figure 2).

Epigenetic regulation of PD-L1 expression

Epigenetic modifications, such as microRNAs 
(miRNAs), promoter DNA methylation and his-
tone modifications, can regulate the recogni-
tion and binding of transcription factors to DNA 
elements without affecting DNA sequences, 
thereby altering chromatin structure and regu-
lating PD-L1 expression [24] (Figure 2).

Figure 1. Classification of PD-L1 expression. PD-L1 expression can be di-
vided into constitutive expression and inducible expression. Constitutive 
expression is induced by dysregulation of signal transduction components 
in tumor cells. Inducible expression is induced by a number of inflammatory 
cytokines.

promoter to regulate PD-L1 ex- 
pression [4, 11] (Figure 1).

Inducible expression refers to 
the expression of PD-L1-con- 
trolled inflammatory signals fr- 
om tumor cells or other immu- 
ne cells, such as APCs and T 
cells, in the tumor microenvi-
ronment. A number of inflam-
matory cytokines have been 
found to induce the expression 
of PD-L1. These inflammatory 
factors include IFN-γ, TNF-α, 
IL-17, IL-27, IL-10, IL-4, IL-2 and 
IL-10 [12, 13] (Table 1).

Regulation of PD-L1 expres-
sion by genomic amplification

PD-L1 and PD-L1 are located 
on chromosome 9p24.1. The 
amplification of the 9p24.1 re- 
gion is closely related to an 
increase in PD-L1 levels in a 
wide range of cancers [14].

It has been found that copy 
number alterations (CNAs) of 
PD-L1 occur in various types of 
tumors, which lead directly to 
up-regulation of PD-L1 expres-
sion [15].
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Table 1. Classification of PD-L1 expression
Type Inducer Type of cancers Ref
Constitutive expression MYC NSCLC, lymphoma, HCC, melanoma [3-5, 8]

KRAS NSCLC, lung cancer [9, 10, 35, 71]

STAT3 HNSC, lymphoma, melanoma [4, 11, 72, 73]

JUN Lymphoma, melanoma, medulloblastoma [53, 72, 74]

PTEN Glioma, colorectal cancer, melanoma, breast cancer [72, 75-78]

EGFR Head and neck cancer, breast cancer, NSCLC [10, 61, 79]

MEK-ERK Melanoma, lymphoma, multiple myeloma [67, 80, 81]

Inducible expression IFN-γ Pancreatic cancer, colon cancer, HCC, melanoma, lung cancer, gastric cancers [82-86]

IL-6 HCC, lung cancer, prostate cancer [87-89]

IL-27 Lung cancer, epithelial ovarian cancer [88, 90]

TNF-α Breast cancer, HCC, prostate and colon cancer cells [52, 83, 91]

LPS Gastric cancers [92]

EGF NSCLC, breast cancer [10, 61, 71, 93]

IL-8 Gastric cancers, NSCLC, melanoma [94, 95]

Figure 2. Regulation of PD-L1 expression in cancer cells at different levels. PD-L1 expression can be regulated by 
genomic amplification, transcriptional regulation, epigenetic regulation and transcriptional regulation.

miRNAs are a class of non-coding single-st- 
randed RNAs that contain 22-24 nucleotides. 
miRNAs inhibit translation or degradation of 

target mRNA by binding to the 3’untranslated 
region (3’UTR) of the target mRNA. A number of 
miRNAs have been found to regulate PD-L1 
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expression in different types of cancers [24]. 
They can regulate PD-L1 expression directly or 
indirectly.

Direct effectors regulate PD-L1 expression  
primarily by binding to PD-L1 mRNA. miRNAs 
that directly regulate PD-L1 expression include 
miR513 [25], miR-34 [26], miR-570 [27, 28], 
miR-152 [29], miR-200 [30], miR-138 [31], miR-
142-5p [32], miR-424 [33], miR-193a [34] and 
miR-140/142/340/383 [35]. Indirect effects 
mainly occur through affecting the expression 
of other PD-L1 regulators. miRNAs that indi-
rectly regulate PD-L1 expression include miR-
20b, miR-21, miR-130b [36], and miR-197 [37].

Recently, it was found that the promoter meth-
ylation of PD-L1 was negatively correlated with 
PD-L1 expression in a number of cancers [38-
42]. PD-L1 promoter methylation has been 
found in many cancers, including acute myeloid 
leukemia [38], HNSCC [43-45], glioblastoma 
[41], glioma [42, 43], colorectal cancer [40], 
and prostate cancer [46]. Analysis of PD-L1 
promoter methylation has clinical significance 
for predicting the outcome of PD-1/PD-L1 
immune checkpoint blockade therapies. In 
PD-1/PD-L1 targeted drug-treated patients, 
increased PD-L1 promoter methylation is asso-
ciated with overall patient survival and recur-
rence-free survival [40].

In addition, histone modifications, including 
methylation, acetylation, phosphorylation, ade-
nylation, ubiquitination, and ADP ribosylation, 
can also regulate PD-L1 gene expression [24]. 
The histone acetylation of the promoter region 
of the PD-L1 gene is essential for the expres-
sion of PD-L1 [24].

Transcriptional activation of PD-L1 expression

A number of transcription factors have been 
found to regulate PD-L1 transcriptional activa-
tion. These transcription factors include MYC, 
STAT3, NF-kβ, AP1, and HIF-1 (Figure 2).

The oncogene MYC is a transcription factor that 
is overexpressed and activated in a variety of 
tumors and involved in tumorigenesis [47]. 
However, there is controversy about the regu- 
lation of PD-L1 expression by MYC. Casey et  
al. found that inhibition of MYC in tumor cells 
resulted in a decrease in PD-L1 mRNA and pro-
tein expression. MYC can bind directly to the 
promoters of PD-L1 and enhance the anti-

tumor immune response [3]. In contrast, Hogg 
and Durand-Panteix et al. reported that MYC 
transcriptional levels inhibited PD-L1 mRNA 
expression [48, 49]. Future research is also 
needed to clarify these discrepancies.

STAT3 is another reported transcription factor 
that is involved in the regulation of PD-L1 
expression. In chimeric nucleophosmin (NPM)/
ALK-carrying T cell lymphoma, STAT3 upregu-
lates PD-L1 expression by binding to the PD-L1 
promoter. This effect can be suppressed by 
silencing STAT3 with siRNA [49]. It was also 
reported that latent membrane protein-1 
(LMP1) of the Epstein–Barr virus can induce 
PD-L1 expression through inducing the phos-
phorylation of STAT3 [50].

NF-kβ is a nuclear transcription factor that  
also regulates PD-L1 expression. However, the 
mechanism of regulation is still unclear. In nat-
ural killer/T-cell lymphoma (NKTCL), inhibition 
of the NF-kβ signaling pathway reduces PD-L1 
expression [51]. Recently, Lim et al. found that 
the inflammatory factor TNF-α activates the 
NF-kβ signaling pathway and activates COP9 
signalosome 5 (CSN5) to inhibit ubiquitination 
and degradation of PD-L1 protein [52].

The transcription factor AP-1 is a dimeric com-
plex composed of c-Jun, FOS, MAF, or ATF. 
Expression of PD-L1 in Hodgkin’s lymphoma is 
induced by AP1 via binding to the enhancer 
region of the first intron of the PD-L1 gene  
[53].

Hypoxia-inducible factor 1α (HIF-1α) is another 
important carcinogenic factor and has clinical 
significance in regulating the expression of 
PD-L1 in tumor cells [54]. Binding of HIF-1α to 
the PD-L1 proximal promoter stimulates tran-
scription of PD-L1. Overexpression of HIF-1α 
induces an increase in PD-L1 levels [54, 55].

Translation-level regulation of PD-L1

It has been found that ubiquitination, deubi- 
quitination, glycosylation and phosphorylation 
can affect the stability of PD-L1 protein in can-
cer cells, thereby regulating the expression of 
PD-L1 protein (Figure 2).

Several proteins were reported to regulate the 
stability of the PD-L1 protein through ubiquiti-
nation. CSN5 is the fifth component of the CSN 
complex, which contains a conserved JAMM 
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motif. CSN5 has deubiquitination activity th- 
rough the JAMM motif and plays an important 
role during tumorigenesis. Lim et al. found that 
macrophages secrete TNF-α to activate NF-kβ 
and then induce transactivation of CSN5. Ac- 
tivation of CSN5 results in deubiquitination of 
PD-L1 in breast cancer cells and enhances the 
stability of PD-L1 [52]. Cyclin-dependent kinase 
4/6 is a key regulator of the cell cycle. Cyclin 
D-CDK4 induces ubiquitination degradation of 
PD-L1 via cullin 3-SPOP to control therapeutic 
efficacy in human cancers [56]. CMTM6 was a 
recently identified type 3 transmembrane pro-
tein involved in regulating PD-L1 expression 
[57, 58]. A genome-wide CRISPR-Cas9 screen-
ing technology revealed that CMTM6 inhibits 
ubiquitination and inhibits lysosomal-mediated 
degradation of PD-L1 by interacting with PD-L1 
on the surface of tumor cells [57]. In addition to 
CMTM6, its closest family member, CMTM4, 
has similar functions [58]. Epidermal growth 
factor (EGF) treatment also induces ubiqui- 
tination of PD-L1 and regulates PD-L1 protein 
expression [59].

Glycosylation is an important posttranslational 
modification of proteins. N-linked glycosylation 
is a key protein modification that determines 
the structure and function of proteins and plays 
an important role in regulating membrane pro-
teins. N-linked glycosylation of PD-L1 was 
shown to stabilize the PD-L1 protein and pre-
vent degradation by the 26S proteasome [60, 
61]. In triple-negative breast cancer, β-1,3-N-
acetylglucosaminyl transferase (B3GNT3) was 
required for the interaction between PD-L1 and 
PD-1 [60].

Clinical application of PD-L1 expression regu-
lation

Due to tumor heterogeneity and genetic differ-
ences between individuals, there are signifi-
cant defects in the therapeutic effects of tar-
geting the PD-1/PD-L1 pathway alone. Recent 
studies have found that combining PD-L1/PD1 
immunotherapy with targeted therapy signifi-
cantly improves therapeutic effects by regulat-
ing PD-L1 at a very low level [62]. This strategy 
inhibits PD-L1 expression by regulating key pro-
teins in the signaling pathway, and it combines 
with the immunotherapy of PD-L1 or PD-1 anti-
body to achieve a greater therapeutic effect.

In NSCLC, EGFR mutations can induce PD-L1 
expression. The combination of osimertinib 

and durvalumab in the treatment of NSCLC 
patients with EGFR mutations showed signifi-
cant efficacy and an overall response rate 
(ORR) of up to 70% [63-65]. Patients with 
advanced NSCLC treated with nivolumab in 
combination with erlotinib for EGFR mutations 
showed a durable clinical benefit [66]. The use 
of the KRAS/MEK inhibitor trametinib in combi-
nation with anti-PD-1 antibodies also signifi-
cantly reduced PD-L1 expression and showed 
better therapeutic effects than individual treat-
ments in NSCLC [67, 68].

On the other hand, the expression of PD-L1 is 
also regulated by MAPK and PI3K/Akt signal- 
ing pathways, and inhibition of these pathways 
also reduces PD-L1 expression [69]. Inhibition 
of these signaling pathways can inhibit cell  
proliferation and regulate PD-L1 expression. 
Clinical studies have found that receptor tyro-
sine kinase inhibitors have a better therapeutic 
effect in lung cancers with high PD-L1 expres-
sion [70].

Conclusions and future challenges

Immunotherapies are a new direction in cancer 
therapy and have many advantages over tradi-
tional treatments. Currently, immunotherapy 
that targets the PD-1/PD-L1 axis has been clin-
ically approved in many countries for the treat-
ment of various human cancers. It has shown 
unprecedented efficacy in the treatment of a 
wide range of human cancers. However, only a 
small proportion of patients show an effect 
with PD-1/PD-L1 immune checkpoint blockade 
therapy. The expression of PD-L1 varies greatly 
in tumor tissues. At present, methods to de- 
tect PD-L1 expression in tumor tissues include 
immunostaining, Western blotting, qPCR and 
microarray. However, these methods for detect-
ing the expression of PD-L1 vary greatly. An in-
depth understanding of the regulatory mecha-
nism of PD-L1 expression has been very helpful 
for PD-1/PD-L1 immunotherapy in the clinic. 
Although the regulatory mechanism of PD-L1 
expression has been investigated to some 
extent, there are still many questions that ne- 
ed to be solved. For example, new mechanisms 
that regulate PD-L1 expression need to be 
investigated in future studies.

The expression of PD-L1 can be regulated at 
different levels; however, it is necessary to 
study which regulatory mechanism plays a cri- 
tical role in certain types of cancer. A number of 
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transcription factors that regulate the expres-
sion of PD-L1 regulate it by binding to the PD- 
L1 promoter, but the transcription factors that 
play key roles in certain types of cancer also 
need to be identified. In addition, the expres-
sion of PD-L1 varies greatly in different stages 
of tumor development, such as in primary can-
cer and metastatic cancer. In addition to anti-
body drugs, it is also necessary to develop a 
small molecule inhibitor of PD-L1 for treatment 
of cancer patients. Finally, these studies will 
provide new ideas for immunological check-
point blocking therapy.

The understanding of the regulatory mecha-
nism of PD-L1 expression will continue to deep-
en and will finally provide more choices and 
more effective methods for tumor immunother-
apy of the PD-1/PD-L1 pathway.
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