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ABSTRACT
Background. Esophageal squamous cell carcinoma (ESCC) is the main subtype of
esophageal carcinoma. Protein coding genes and non-coding RNAs can be powerful
prognostic factors in multiple cancers, including ESCC. However, there is currently no
model that integrates multiple types of RNA expression signatures to predict clinical
outcomes.
Methods. The sequencing data (RNA-sequencing andmiRNA-sequencing) and clinical
data of ESCC patients were obtained fromThe Cancer Genome Atlas (TCGA) database,
and Differential gene expression analysis, Cox regression analysis and Spearman
correlation analysis were used to construct prognosis-related lncRNA-mRNA co-
expression network and scoring system with multiple types of RNA. The potential
molecular mechanisms of prognostic mRNAs were explored by functional enrichment
analysis.
Results. A total of 62 prognostic lncRNAs, eight prognostic miRNAs and 66 prognostic
mRNAs were identified in ESCC (P-value < 0.05) and a prognosis-related lncRNA-
mRNA co-expression network was created. Five prognosis-related hub RNAs (CDCA2,
MTBP, CENPE, PBK, AL033384.1) were identified. Biological process analysis revealed
that mRNAs in prognosis-related co-expression RNA network were mainly enriched
in cell cycle, mitotic cell cycle and nuclear division. Additionally, we constructed a
prognostic scoring system for ESCC using ten signature RNAs (MLIP, TNFSF10, SIK2,
LINC01068, LINC00601, TTTY14, AC084262.1, LINC01415, miR-5699-3p, miR-552-
5p). Using this system, patients in the low-risk group had better long-term survival
than those in the high-risk group (log-rank, P-value < 0.0001). The area under the
ROC curve (AUCs) revealed that the accuracy of the prediction model was higher than
the accuracy of single type of RNA prediction model.
Conclusion. In brief, we constructed a prognostic scoring system based on multiple
types of RNA for ESCC that showed high predicting prognosis performance, and
deeply understood the regulatory mechanism of prognosis-related lncRNA-mRNA co-
expression network.
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INTRODUCTION
Esophageal cancer is one of themost commonmalignancies, ranking 7th in globalmorbidity
and 6th in cancer-related mortality (Bray et al., 2018). The pathological types of esophageal
cancer are mainly squamous cell carcinoma and adenocarcinoma. Esophageal squamous
cell carcinoma (ESCC) is prevalent in Asia, Africa, and South America, especially in China,
where ESCC accounts for more than 90% (Malhotra et al., 2017). The main treatments for
esophageal cancer include surgical resection, radiotherapy and chemotherapy. Although
progress has been made in the diagnosis and treatment of esophageal cancer, the 5-year
overall survival rate is only about 15–20% (Chen et al., 2016; Fitzmaurice et al., 2015; Gavin
et al., 2012). At present, the gold standard of tumor treatment and survival prediction is
still tumor nodemetastasis (TNM) staging system, but there are some limitations in clinical
application (Amin et al., 2017). TNM staging can only include categorical variables such as
tumor, lymph node or metastasis, while neglecting other important prognostic variables,
such as genomics or transcriptome differences. TNM staging also is difficult to explain why
patients of the same stage have different clinical outcomes after the same treatment, that is,
it cannot distinguish individual differences in patients with the same stage. Therefore, it is
necessary to establish a genome or transcriptome based prognostic score system to predict
the clinical prognosis of individual patients more accurately.

According to some estimates, about 70% of the human genome is transcribed into RNA,
the portion of the genome which codes for proteins is only about 2% (Birney et al., 2007;
Esteller, 2011). In recent decades, protein coding genes and non-coding RNAs have been
confirmed to play key roles in tumorigenesis and tumor progression. For ESCC, researchers
have identified multiple driving genes, including TP53, NOTCH1, FAM135B, EP300, and
TET2, and the mutation status of FAM135B, EP300 and TET2 are associated with the
prognosis of patients (Gao et al., 2014; Sawada et al., 2016; Song et al., 2014). Wen et al.
(2019) analyzed the expression profile of small non-coding RNAs in 145 ESCC samples,
and established a prediction model composed of four-miRNAs, which was used to predict
overall survival in LN-positive locoregional ESCC patients. Sun et al. (2015) analyzed the
expression of GASC1-targeted gene in 149 tumor specimens from patients with ESCC, and
identified a prediction model composed of three-gene (PPARG, MDM2, and NANOG),
which may serve as a predictor for the poor prognosis of ESCC patients. Li et al. (2016)
conductedwhole-genome sequencing analysis of lncRNA expression in 12 ESCC tumor and
normal tissues, and constructed a co-expression network composed of 119 differentially
expressed lncRNA and 1350 correlated mRNAs to reveal the potential mechanism of ESCC.
However, the individualized prognosis prediction model based on multiple types of RNA
has not been reported in ESCC, and the prognosis-related lncRNA-mRNA co-expression
network is lacking.
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In this study, we comprehensively analyzed the expression and clinical data of lncRNAs,
miRNAs and mRNAs of ESCC in the TCGA database. Using multivariate Cox regression
analysis, we constructed a prognostic scoring system based on multiple types of RNA
that divided ESCC patients into two groups (high-risk and low-risk) with a significant
difference in overall survival (OS). The accuracy of the prognostic scoring system was
higher than the accuracy of single type of RNA prediction model. Besides, we constructed
a prognosis-related lncRNA-mRNA co-expression network in ESCC and the potential
molecular mechanisms of prognostic mRNAs were explored by functional enrichment
analyses. The presented analysis, we aim to provide novel clues for effective prediction of
clinical outcomes.

MATERIAL AND METHODS
Data collection and pretreatment
The sequencing data (RNA-sequencing and miRNA-sequencing) and clinical information
of ESCC patients were obtained from the TCGA database (https://portal.gdc.cancer.gov/).
Based on the annotation file (Homo_sapiens.GRCh38.95.chr.gtf) downloaded from the
Ensembl database (http://asia.ensembl.org/info/data/ftp/index.html), we identified 19876
lncRNAs and 19645 protein-coding genes. At the same time, we identified 2069 miRNA
according to the annotation file (mature.fa) downloaded from miRBase database (http:
//mirbase.org/ftp.shtml). LncRNAs, mRNAs and miRNAs expressing raw count value >1
were screened for subsequent operation. This studywas in line with the published guidelines
provided by TCGA (https://cancergenome.nih.gov/publications/publicationguidelines).
Since our data was obtained from the TCGA database, no ethics committee approval was
required.

Differentially expressed analysis
The analysis and extraction of differentially expressed lncRNAs and mRNAs between
81 tumor tissues and 11 normal tissues were conducted by using the edgeR package
of R language (Robinson, McCarthy & Smyth, 2010; R Core Team, 2013). Similarly, the
differentially expressed miRNAs between 95 tumor tissues and 13 normal tissues were
analyzed and extracted using edgeR package. |log2FC|> 2 and FDR< 0.05 (FC, fold change;
FDR, false discovery rate) were considered to be significant. After edgeR normalization,
log2 (normalized value +1) transformation was performed on the expression profiles of
miRNAs, mRNAs and lncRNAs for subsequent manipulation.

Survival analysis
The clinical datasets of the ESCC cohort were downloaded from TCGA. Samples with a
survival time of t = 0 days were removed to avoid introducing more mixed factors, and the
remaining 80 samples were retained for the survival analysis. The clinical and pathological
characteristics of the remaining 80 samples are summarized in Table 1. Univariate Cox
regression analysis was used in R software to evaluate whether lncRNA, miRNA andmRNA
were correlated with OS. RNAs with P < 0.05 were screened as prognostic biomarkers.
RNAs with hazard ratio (HR) <1 were defined as protective signature, while RNAs with
HR for death > 1 were defined as risky RNAs.
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Table 1 Clinical characteristics of 80 patients with esophageal squamous cell carcinoma.

Characteristics Number Percent (%)

Gender
Male 68 85
Female 12 15

Age (years)
≤58 46 57.5
>58 34 42.5

Histologic grade
G1 15 18.75
G2 38 47.5
G3 18 22.5
GX 9 11.25

Tumor stage
T1 7 8.75
T2 29 36.25
T3 40 50
T4 4 5

Node stage
N0 42 52.5
N1+ N2 30 37.5
NX 8 10

Metastasis stage
M0 70 87.5
M1 5 6.25
MX 5 6.25

Pathologic stage
I 7 8.75
II 46 57.5
III 22 27.5
IV 4 5
– 1 1.25

Survival status
No 24 30
Yes 56 70

LncRNA-mRNA co-expression network
The correlation between prognostic lncRNA and mRNA expression profiles was analyzed
by Spearman method, and the lncRNA-mRNAs pairs that the absolute value of correlation
coefficients >=0.4 and p< 0.05 were selected to construct the co-expression network.
The co-expression network result was displayed using Cytoscape software version 3.6.0
(https://cytoscape.org/) (Shannon, 2003). CytoHubba, a plugin in the Cytoscape software,
was adopted to calculate the degree of each node and select modules of hub genes from the
network (Chin et al., 2014).
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Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
and pathway enrichment analysis were performed for mRNAs in prognosis-related co-
expression RNA network using the Database for Annotation, Visualization and Integrated
Discovery bioinformatics resources (DAVID) (https://david-d.ncifcrf.gov/), and P < 0.05
was considered as the cut-off criterion to screen the Enriched terms and pathways
(Altermann & Klaenhammer, 2005; Ashburner et al., 2000; Huang, Sherman & Lempicki,
2009a; Huang, Sherman & Lempicki, 2009b).

Prognostic scoring system
RNAs with univariate Cox regression P < 0.01 were selected for the stepwise Cox regression
procedures. Akaike information criterion (AIC) was used to evaluate the relative goodness
of fitted model. Furthermore, Multivariate Cox regression coefficient was multiplied by the
expression level of independent biomarkers (P < 0.05) to construct prognostic Cox models
of lncRNA, miRNA and mRNA, respectively. Finally, a prognostic scoring system in ESCC
was constructed, based on above-described multiple types of RNA. Receiver operating
characteristics curves (ROC) and area under ROC curves (AUCs) were applied to evaluate
the efficiency of each model. Statistical computing was performed using R software version
3.5.2. A flow diagram of the prognostic scoring system is presented in Fig. 1.

Statistical analysis
The statistical analyses in the present study were conducted by SPSS Statistics 18.0 and R
software version 3.5.2. P value <0.05 was defined as statistically significance. Univariate
Cox and multivariate Cox regression analyses were used to identify prognostic biomarkers.
Survival curves were plotted by Kaplan–Meier (K-M) analysis, and differences in survival
rates were assessed using a log-rank test.

RESULTS
Differentially expressed lncRNA, miRNA and mRNA
Analysis of expression profiles in ESCC compared with normal esophageal tissues identified
a total of 1662 lncRNAs, 79 miRNAs and 2063 mRNAs (Table S1). Among them, 818 and
844 lncRNAs were respectively up-regulated and down-regulated (Fig. 2A); 52 miRNAs
were up-regulated, and 27 were down-regulated (Fig. 2B); 869 up-regulated mRNAs
and 1196 down-regulated mRNAs were obtained (Fig. 2C). Expression heatmaps were
constructed by the top 50 up-regulation and the top 50 down-regulation to visualize the
most significant lncRNAs, miRNAs and mRNAs (Fig. S1). The heatmap of the lncRNAs
(Fig. S1A), miRNAs (Fig. S1B) and mRNAs (Fig. S1C) showed that the tumors clustered
separately from the normal tissues.

Prognostic lncRNAs, miRNAs, mRNAs and co-expression network
Using univariate Cox regression analysis on the remaining 80 samples with survival times
>0, 62 prognostic lncRNAs, eight prognostic miRNAs, and 66 prognostic mRNAs were
identified in ESCC (P-value <0.05) (Table S2). The prognostic lncRNAs and mRNAs
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Figure 1 Flow diagram of the prognostic scoring system construction.
Full-size DOI: 10.7717/peerj.8368/fig-1

in ESCC were used to generate the co-expression network consisting of 22 lncRNAs,
40 mRNAs, and 77 interaction pairs (Fig. 3) (Table S3). Cytoscape analysis of the co-
expression network revealed the top five prognostic RNAs (CDCA2, MTBP, CENPE, PBK,
AL033384.1) (Table 2). Based on the median expression of each top 5 RNAs, 80 ESCC
patients were divided into two groups (high expression vs low expression). The prognostic
value of RNA was demonstrated by K-M plots (Fig. 4).

We then performed GO functional enrichment analysis of mRNAs in prognosis-related
co-expression RNA network (Fig. 5). The results showed that the prognostic mRNAs
mainly enriched in biological process (BP) including cell cycle, mitotic cell cycle and
nuclear division. Cellular component (CC) analysis indicated enrichment in intracellular
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Figure 2 Volcano plot of differentially expressed RNAs between ESCC and normal tissues. (A) lncRNAs; (B)miRNAs; (C) mRNAs. Orange dots
indicate upregulated RNAs, while blue dots indicate downregulated RNAs with statistical significance.
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Table 2 Top five in the prognosis-related co-expression RNA network ranked by degree method.

Rank Name Score HR

1 CDCA2 13 0.508863
2 MTBP 12 0.566911
3 CENPE 10 0.63653
4 PBK 6 0.627698
5 AL033384.1 5 1.460057

non-membrane-bounded organelle, non-membrane-bounded organelle and cytoskeletal
part. Besides, in the molecular function (MF), the mRNAs were significantly clustered into
purine nucleotide binding, ribonucleotide binding and ATP binding terms (Table S4).
No pathways were significantly enriched in the KEGG enrichment analysis of prognostic
mRNAs.

Prognostic scoring system
To create prognostic scoring system, RNAs with univariate Cox regression P < 0.01 were
selected for the stepwise Cox regression procedures. Next, based on 5 lncRNAs, 2 miRNAs
and 3mRNAs respectively, we constructed three predictionmodels with single type of RNA
to calculated the risk scores for predicted survival (Table S5). The formulas for the three
prognostic models were as follows: lncRNA-based prognostic score = (0.447 × expression
level of LINC01068) + (0.3677 × expression level of LINC00601) + (0.3075 × expression
level of TTTY14)+ (−0.8750× expression level of AC084262.1)+ (−0.4744× expression
level of LINC01415); miRNA-based prognostic score = (1.2932 × expression level of
miR-5699-3p) + (0.7202 × expression level of miR-552-5p); mRNA-based prognostic
score= (0.5139× expression level of MLIP)+ (0.5746× expression level of TNFSF10)+
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(−1.0069× expression level of SIK2). Of three prognostic models, seven RNAs were shown
to be risky RNAs (LINC01068, LINC00601, TTTY14, miR-5699-3p, miR-552-5p, MLIP,
TNFSF10, HR >1) and three RNAs were the protective RNAs (AC084262.1, LINC01415,
SIK2, HR <1) (Figs. 6A–6C).

Using these three formulas, we calculated the prognostic score for each of the 80 patients
separately and ranked them according to the increased prognostic scores. we divided the
ESCC patients into two group (high-risk or low-risk) using the median prognostic score as
a cutoff. As shown in Figs. 6D–6F, patients in the high-risk group had a worse prognosis
than the low-risk group in all three models (P < 0.0001). We also used ROC curves to
estimate the specificity and sensitivity of these prognostic models. All three prognostic
models showed moderate prognostic evaluation ability, with AUC of 1 year values of
0.855, 0.859 and 0.785, separately, and AUC of 3 year values of 0.909, 0.709 and 0.762,
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Figure 4 Kaplan–Meier (K–M) survival curves for top5 RNAs in the prognosis-related co-expression RNA network. (A) CDCA2; (B) MTBP;
(C)CENPE; (D) PBK; (E) AL033384.1.

Full-size DOI: 10.7717/peerj.8368/fig-4

separately (Fig. 7). Figure 8 shows the distribution of patient prognostic scores, the survival
status and tumor RNAs expression of all 80 ESCC patients. Patients in the high-risk group
had more deaths than those in the low-risk group in all three models (Figs. 8D–8F).
Moreover, patients in the low-risk group tend to express protective RNA, while patients in
the high-risk group tend to express risky RNA (Figs. 8G–8I).

In order to improve the prediction accuracy and understand the potential molecular
mechanism of prognostic markers, we constructed a prognostic Cox model with multiple
types of RNA for ESCC using the ten RNAs provided above (Table S6). The formula was
as follows: RNA-based prognostic score = (0.42895 × expression level of LINC01068) +
(0.34829 × expression level of LINC00601) + (0.2185 × expression level of TTTY14) +
(−1.393× expression level of AC084262.1)+ (−0.33364× expression level of LINC01415)
+ (1.06024× expression level of miR-5699-3p)+ (0.34784× expression level of miR-552-
5p) + (0.3418 × expression level of MLIP) + (0.05437 × expression level of TNFSF10) +
(−1.38365× expression level of SIK2). The ten RNAs forest plots of RNA-based prognostic
model was presented in Fig. 9. K-M analysis showed patients in the low-risk group had
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better long-term survival than those in the high-risk group (P-value <0.0001; Fig. 10A).
Furthermore, the AUC of 1 year value was 0.916 and 3 year value was 0.917 (Fig. 10B),
indicating that the combination of different types of RNA patterns is a more accurate
prognostic model than single type of RNA prediction model. For tumor staging, we also
generated K-M plots and corresponding ROC curves. ESCC patients were also divided
into two groups by tumor, node and metastasis (TNM) stage, and the prognosis of the
two groups was different (P-value <0.05; Fig. 10C). The AUC of 1 year value and 3 year
value based on TNM staging were 0.612 and 0.548, respectively (Fig. 10D). Although TNM
staging is often used in clinical prognostic prediction, its prognostic AUC value is limited.
Besides, combining multiple clinical parameters, we performed cox regression analysis of
the prognostic score. As shown in Table 3, in both univariate Cox and multivariate Cox
regression analysis, prognostic score was significantly correlated with survival (P < 0.001),
that is, prognostic score was an independent prognostic factor in ESCC patients.

DISCUSSION
ESCC is one of the leading causes of cancer-associated mortality worldwide. Several
studies have shown that lncRNAs, miRNAs, and mRNAs can be powerful prognostic
factors in multiple cancers, including ESCC. MALAT1 has been identified as an important
predictor of survival in ESCC (Hu et al., 2015). Luo & Wu (2019) verified that miR-375
may be a new prognostic marker of ESCC by meta-analysis. Pan et al. (2014) measured
FOXCUT/FOXC1 in 82 ESCC tissues and adjacent noncancerous tissues by real-time
quantitative PCR (qPCR), and found patients with upregulated FOXCUT or FOXC1
experienced a significantly worse prognosis than those with downregulated FOXCUT or
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FOXC1. However, the prediction models constructed in the previous studies mainly focus
on one kind of RNA, which has limited prognostic efficacy.

In the present study, we comprehensively analyzed the expression data and clinical
data of ESCC in the TCGA database, and identified 62 prognostic lncRNAs, 8 prognostic
miRNAs, and 66 prognostic mRNAs. Using Cox regression analysis, We proposed three
different prognostic models based on 5 lncRNAs, 2 miRNAs and 3 mRNAs respectively,
which showed moderate prognostic assessment ability in predicting long-term survival
of ESCC patients. Furthermore, a novel prognostic scoring system that included multiple
types of RNA was proposed, which showed high predicting prognosis performance and
was validated as an independent prognostic factor in ESCC patients. Of prognostic models,
seven RNAs were shown to be risky RNAs (LINC01068, LINC00601, TTTY14, miR-5699-
3p, miR-552-5p, MLIP, TNFSF10, HR >1) and three RNAs were the protective RNAs
(AC084262.1, LINC01415, SIK2, HR <1).

A number of RNAs in the prognostic system used in the present study have been
previously implicated in malignant tumors. TTTY14 (testis-specific transcript, Y-linked
14) was significantly correlated with overall survival for gastric cancer (GC) patients and
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oral squamous cell carcinoma (OSCC) patients and has been suggested to be involved
in HPV (human papillomavirus)-Induced Oncogenesis (Cheng et al., 2019; Goedert et al.,
2016; Li et al., 2017). miR-552-5p facilitates osteosarcoma cell proliferation and metastasis
by targeting WIF1, which means miR-552-5p may become a new target for the treatment
of osteosarcoma (Cai et al., 2019). TNFSF10 (TNF superfamily member 10), a cytokine
that belongs to the tumor necrosis factor (TNF) ligand family,preferentially induces
apoptosis in transformed and tumor cells, and TNFSF10 was significantly associated with
overall survival in patients with liver cancer, breast cancer, non-small cell lung cancer
and other tumors (Koç Erbaşoğlu et al., 2019; McCarthy, 2005; Piras-Straub et al., 2015).
Frequent amplification of TNFSF10 was associated with the development and progression
of esophageal cancer (Chen et al., 2008). SIK2 (salt inducible kinase 2) was a potential breast
cancer suppressor, and compared with normal control, its expression level of breast cancer
tissues and cell lines was reduced (Maxfield et al., 2016). However, functional studies of
the other RNAs (LINC01068, LINC00601, AC084262.1, LINC01415, miR-5699-3p, MLIP)
have not been reported in cancer research.

LncRNAs play an important role in a variety of biological processes (Kornienko et al.,
2013). Accumulating evidence, suggesting that lncRNAs influence the expression of target
gene by regulating the transcription and stability of target gene (Batista & Chang, 2013;
Tripathi et al., 2013). LncRNA-mRNA co-expression network is an important way to
analyze the function and regulation mechanism from a comprehensive perspective. We
proposed a prognosis-related lncRNA-mRNA co-expression network in ESCC consisting
of 22 lncRNAs, 40 mRNAs, and 77 interaction pairs. Five prognosis-related hub RNAs
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Table 3 Univariate andmultivariate Cox regression analysis of overall survival in ESCC. Age,
pathologic stage, tumor stage, histologic grade and prognostic score were continuous variable. Specifically,
pathologic stage: I= 1, II= 2, III= 3, IV= 4; Tumor stage: T1= 1,T2= 2, T3= 3, T4= 4; Histologic
grade: G1= 1, G2= 2, G3= 3.

Variables Univariate analysis Multivariate analysis

Hazard radio (95% CI) P Hazard radio (95% CI) P

Age 1.023 (0.965–1.086) 0.445 1.087 (0.969–1.221) 0.156
Gender (male/female) 0.033 (0.000–4.833) 0.180 0.000 (0.000–Inf) 0.973
Pathologic stage 1.868 (0.982–3.552 ) 0.057 7.133 (0.064–79.317) 0.110
Tumor stage 0.869 (0.427–1.768) 0.698 0.206 (0.035–1.218) 0.081
Node stage (N-/N+) 3.105 (1.077–8.953) 0.036 1.043 (0.184–5.908) 0.962
Metastasis stage (M-/M+) 3.431 (0.948–12.413) 0.060 0.004 (0.000–1.544) 0.069
Histologic grade 0.869 (0.418–1.807) 0.707 0.330 (0.088–1.234) 0.099
Prognostic score 1.090 (1.041–1.141) <0.001 1.091 (1.034–1.15) 0.001
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(CDCA2, MTBP, CENPE, PBK, AL033384.1) were identified and their prognostic value
was verified by K-M plots.

Considering that mRNAs are the implementers of molecular function, GO enrichment
analysis revealed that mRNAs in the prognosis-related co-expression RNA network were
mainly enriched in cell cycle, mitotic cell cycle and nuclear division. Previous studies have
shown that cell cycle pathway played an important role in the occurrence and development
of esophageal squamous cell carcinoma (Gao et al., 2014; Sanchez-Vega et al., 2018), our
observations were consistent with these results.

However, there were some limitations to this study, which should be considered
when interpreting our results. First, in this study, only lncRNA, miRNA, and mRNA
with both differential expression and prognostic value were included in the analysis.
Therefore, the prognostic scoring system and co-expression network may not represent
all molecular features that may be associated with ESCC overall survival. Second, several
novel signature molecules with important prognostic significance in ESCC lack in vivo or
in vitro experiments to determine their underlying molecular mechanisms. Finally, another
limitation of the study was that the prognostic scoring system was not validated in another
independent cohort.

CONCLUSIONS
In brief, we constructed a prognostic scoring system based on multiple types of RNA for
ESCC that showed high predicting prognosis performance, and deeply understood the
regulatory mechanism of prognosis-related lncRNA-mRNA co-expression network. These
findings provide promising clues for effective prediction of clinical outcomes.
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