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Summary

Cyanobacteria are prokaryotic phototrophs that, in
addition to being excellent model organisms for study-
ing photosynthesis, have tremendous potential for
light-driven synthetic biology and biotechnology. These
versatile and resilient microorganisms harness the
energy of sunlight to oxidise water, generating chemi-
cal energy (ATP) and reductant (NADPH) that can be
used to drive sustainable synthesis of high-value natu-
ral products in genetically modified strains. In this com-
mentary article for the Synthetic Microbiology Caucus
we discuss the great progress that has been made in
engineering cyanobacterial hosts as microbial cell fac-
tories for solar-powered biosynthesis. We focus on
some of the main areas where the synthetic biology
and metabolic engineering tools in cyanobacteria are
not as advanced as those in more widely used hetero-
trophic chassis, and go on to highlight key improve-
ments that we feel are required to unlock the full power
of cyanobacteria for future green biotechnology.

Introduction

Cyanobacteria are a diverse group of prokaryotic
microorganisms that inhabit a range of environmental
niches. They perform oxygenic photosynthesis like plants
and algae, utilizing solar energy and water to generate
chemical energy (ATP) and reducing power (NADPH) to

fix atmospheric carbon dioxide (CO2) to make carbohy-
drates (Fig. 1). Oxygen is a ‘waste’ product of this pro-
cess and ancient cyanobacteria oxygenated the Earth’s
atmosphere, permitting the evolution of complex, multi-
cellular life forms. Cyanobacteria are excellent model
organisms for fundamental photosynthesis research
because of their relation to eukaryotic plastids, amenabil-
ity to genetic engineering and relatively rapid generation
time. They are also promising chassis for light-powered
biotechnological applications, requiring only sunlight,
water, CO2 and trace inorganic minerals for growth, and
tolerating variations in light, pH, salinity and temperature.
Much progress has been made towards developing
cyanobacteria as green microbial cell factories for the
sustainable production of valuable natural products,
chemicals and biofuels (see reviews by Oliver et al.,
2016; Khan et al., 2019; Khan and Fu, 2019; Lin and
Pakrasi, 2019); however, while the ‘synthetic biology
toolkit’ for cyanobacterial metabolic engineering is
advancing rapidly, it still lags behind those of model het-
erotrophic microorganisms (e.g. Escherichia coli) and
yeast (Saccharomyces cerevisiae). Here, we consider
the current situation with genetic engineering of
cyanobacteria and highlight some key limitations that
must be overcome in order to realize the full biotechno-
logical potential of these versatile microorganisms.

Modifying cyanobacterial genomes is simple but
slow

For an organism to be a suitable chassis for metabolic
engineering an annotated genome sequence should be
available, and it must be amenable to genetic manipula-
tion to allow efficient and rapid generation of knockout and
‘knock-in’ strains. Many genetically tractable cyanobacte-
ria meet these criteria (e.g. Synechocystis sp. PCC 6803,
Synechococcus sp. PCC 7002, Synechococcus elongatus
PCC 7942 and Anabaena sp. PCC 7120). Fast-growing
(e.g. S. elongatus UTEX 2973) and ‘non-model’ species
are also promising candidates for industrial applications
(Yu et al., 2015; Gale et al., 2019; Mukherjee et al., 2019).
Suicide constructs for making targeted genomic modifica-
tions by double homologous recombination can be trans-
ferred into cyanobacteria by natural transformation,
conjugation or electroporation. A number of ‘neutral’ chro-
mosomal sites are available for integrating heterologous
DNA, avoiding polar effects and undesirable changes in
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cell metabolism and physiology (Ng et al., 2015; Pinto
et al., 2015). Some cyanobacteria also contain endoge-
nous plasmids that can be used for expression of foreign
genes (Xu et al., 2011).
Marked genomic modifications are common in

cyanobacteria as they allow positive selection and main-
tenance of engineered strains; however, only a limited
number of antibiotic markers are available, restricting the
number of sequential genetic manipulations that can be
made. Furthermore, the metabolic load of multiple resis-
tances can negatively affect cell performance, and antibi-
otic use is economically and ecologically undesirable in
scaled-up ‘real world’ applications. Strategies utilizing
alternative phosphorus (phosphite) and nitrogen (me-
lamine) sources for selection circumvent the antibiotic
issue (Polyviou et al., 2015; Sel~ao et al., 2019), but the
problem of marker recycling remains. Marker-less editing
is therefore desirable and two-stage selection/counter-

selection (Lea-Smith et al., 2016) and site-specific
recombinase (Tan et al., 2013) systems can be used in
cyanobacteria. However, because many cyanobacteria
are relatively slow growing (compared with E. coli) and
display polyploidy (multiple genome copies per cell),
time-consuming segregation to generate homozygous
strains in which every copy of the genome has been
modified slows down genetic engineering. This is doubly
laborious for generating marker-less strains, which
require segregation after each transformation/recombina-
tion event. A better understanding of polyploidy may per-
mit generation of organisms with only one genome copy
per cell, which would speed up further genome modifica-
tion but may come with an undesirable cost to cell fit-
ness. The recently announced CyanoSource barcoded
mutant library for the model species Synechocystis sp.
PCC 6803 (Gale et al., 2019) will be a valuable resource
of knockout strains for the community.

Fig. 1. Engineering cyanobacterial chassis for light-driven product synthesis.
A. Schematic overview of a cyanobacterial ‘chassis’. The photosynthetic light reactions generate ATP and NADPH using solar energy and
water. The ATP and NADPH are consumed by the Calvin–Benson–Bassham (CBB) cycle to convert atmospheric CO2 into carbohydrates.
B. Genetic engineering approaches can be used to engineer cyanobacteria so that photosynthetically generated ATP and reductant can be
used for light-driven product synthesis.
C. We suggest three overlapping and complementary areas for improvement that we believe will benefit the cyanobacterial synthetic biology
community. (1) First, reducing polyploidy and/or improving CRISPR-based genome editing would increase the speed, ease and efficiency of
generating genetically modified strains. (2) New replicative shuttle plasmids for extra-chromosomal expression of foreign genes and pathways
are needed to enhance the ‘design-build-test-learn’ cycle that lies at the heart of the synthetic biology process. (3) An improved ‘synthetic biol-
ogy toolkit’ that can be used in a combinatorial fashion to allow precise temporal and orthogonal gene expression/protein production to improve
product yields and minimize instability of engineered strains.
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The potential of CRISPR genome editing in
cyanobacteria

A better solution to the segregation time and multi-loci/
marker rescue problems is the use of clustered regu-
larly interspaced short palindromic repeats (CRISPR)
genome editing, which has been employed successfully
in several cyanobacterial species (see Behler et al.,
2018 for a detailed review). CRISPR genome editing
can target multiple genes in parallel, is precise, marker-
less and scar-free, and can edit every copy of the chro-
mosome with just one round of cell viability-based
selection. To date, the CRISPR-machinery is introduced
into cyanobacteria on an exogenous replicative plasmid
(see below) that must be cured from the modified strain,
slowing down the overall process. There are also issues
with toxicity and ‘off-target’ effects of the CRISPR nucle-
ase and the efficiency of editing. These difficulties must
be resolved for the true power of CRISPR genome
editing in cyanobacteria to be unlocked, but it looks set
to be an invaluable method for strain editing in the
future.

The need for replicative plasmids for propagation of
exogenous DNA

While genome editing is essential in some circum-
stances, genes can also be introduced to cyanobacteria
on self-replicating plasmids, as is common with other
synthetic biology chassis. Replicative plasmids over-
come the time-constraint of strain segregation and the
difficulty of integrating larger inserts into the genome,
and gene expression is often higher from plasmids than
from the bacterial chromosome (Chen et al., 2016). As
discussed above, CRISPR- and recombinase-based
genome engineering also require expression of plasmid-
borne genes (Tan et al., 2013; Wendt et al., 2016). How-
ever, the use of plasmids in cyanobacterial genetic engi-
neering is somewhat limited; only pRSF1010 derivatives
or fusions of native cyanobacterial and E. coli plasmids
have been widely used in cyanobacteria due to stabil-
ity issues with other platforms (see Xia et al., 2019 for
an overview of replicative plasmids in cyanobacteria). A
better understanding of cyanobacterial plasmid replica-
tion and the development of exogenous self-replicating
vectors based on alternatives to the RSF1010 backbone
would be of great benefit to the cyanobacterial metabolic
engineering community. Shuttle vectors that are main-
tained in both E. coli/ yeast and the cyanobacterial host
are particularly useful as they facilitate high throughput
assembly of constructs using modular DNA assembly
methods in the former prior to transferring into the latter,
speeding up the ‘design-build-test-learn’ optimization
cycle of synthetic biology.

Genetic instability necessitates regulation of
heterologous gene expression/protein production

Achieving specific and tuneable regulation of introduced
genes and pathways is another significant hurdle in
cyanobacterial metabolic engineering, and it can avoid
uncontrolled expression of heterologous genes, and
the accompanying negative effects on the cell (Jones,
2014). As cyanobacteria display adaptive evolution in
response to stress, tight control of gene expression can
prevent selection of faster-growing loss of function sup-
pressor mutations.
Control can be exerted at the transcriptional, transla-

tional and post-translational levels, but well-characterized
regulatory elements used in other organisms do not tend
to work as predicted when ported into cyanobacteria
(Sengupta et al., 2018). There has therefore been an
enormous effort to develop and characterize genetic
parts for cyanobacteria that can be used with standard-
ized assembly methods such as the SyneBrick vectors
(Kim et al., 2017) and the CyanoGate modular cloning
(MoClo) system (Vasudevan et al., 2019). For example,
promoters responding to isopropyl b-D-1-thiogalactopyra-
noside (Huang et al., 2010), anhydrotetracycline (Huang
and Lindblad, 2013), sugars (Kelly et al., 2018), light
(Abe et al., 2014), metals (Englund et al., 2016), temper-
ature (Mermet-Bouvier and Chauvat, 1994) and meta-
bolic/environmental signals (Immethun et al., 2017) have
been investigated, but in general their use is affected by
poor dynamic range, leakiness, toxicity or photo-lability
of the inducer, and/or incompatibility with cyanobacterial
growth conditions (Camsund and Lindblad, 2014). Native
and synthetic promoters of different strengths can be
used when constitutive gene expression is permitted/de-
sired (Markley et al., 2015; Ruffing et al., 2016), although
there may be unpredictable diurnal regulation as expres-
sion is often only tested under constant illumination.
Regulation of cyanobacterial transcription can also be

achieved with riboswitches (Nakahira et al., 2013; Ma
et al., 2014) or CRISPR interference (CRISPRi), which
allows simultaneous repression of multiple genes (multi-
plexing) (Gordon et al., 2016; Yao et al., 2016).
Other synthetic RNA-based systems such as antisense
repression and trans-activating sRNAs are also effective
in cyanobacteria (Ueno et al., 2018). Transcriptional ter-
minator libraries to prevent readthrough to downstream
genes have been developed (Lui and Pakrasi, 2018),
while at the post-transcriptional level, ribosome binding
site libraries for varying the strength of translation initia-
tion (Wang et al., 2018; Lui and Pakrasi, 2018) and
degradation tags to control protein levels (Huang et al.,
2010; Landry et al., 2013), have been described in
cyanobacteria. A big challenge for the future is to com-
bine this ever-expanding range of genetic parts to
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achieve tight, dynamic, specific and orthogonal regula-
tion of multiple components, allowing stable pathway
maintenance and predictable performance under condi-
tions relevant to scaled commercial applications.

Concluding remarks: a bright, green future for
cyanobacterial biotechnology

Great progress has been made in engineering cyanobac-
terial chassis as microbial cell factories for renewable and
light-driven synthesis of biochemicals and biofuels, but
further improvements are now required to develop these
processes into economically viable options for bioproduc-
tion. We suggest three main areas for improvement, sum-
marized below and in Fig. 1. (i) Increase the speed and
efficiency of marker-less genome modification, for exam-
ple by optimization of CRISPR-based technologies. (ii)
Development of new replicative shuttle plasmids for
expression of heterologous genes and operons. (iii)
Achieving tighter regulatory control of introduced path-
ways to increase long-term strain stability. By combining
such advances in the constantly developing cyanobacte-
rial synthetic biology toolkit with knowledge from ‘omics’
and genome-scale metabolic flux analyses/models
(Hagerman and Hess, 2018; Hendry et al., 2019), and
new developments in the field of protein and pathway
engineering, significant optimization of strain performance
and product yield should be achievable. We are confident
of a bright, green future for cyanobacterial biotechnology.
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