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Explainable artificial intelligence (AI) is attracting much interest in medicine.
Technically, the problem of explainability is as old as AI itself and classic AI repre-
sented comprehensible retraceable approaches. However, their weakness was in
dealing with uncertainties of the real world. Through the introduction of probabilis-
tic learning, applications became increasingly successful, but increasingly opaque.
Explainable AI deals with the implementation of transparency and traceability of
statistical black-box machine learning methods, particularly deep learning (DL).
We argue that there is a need to go beyond explainable AI. To reach a level of
explainable medicine we need causability. In the same way that usability encom-
passes measurements for the quality of use, causability encompasses measurements
for the quality of explanations. In this article, we provide some necessary defini-
tions to discriminate between explainability and causability as well as a use-case of
DL interpretation and of human explanation in histopathology. The main contribu-
tion of this article is the notion of causability, which is differentiated from explain-
ability in that causability is a property of a person, while explainability is a
property of a system
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1 | INTRODUCTION AND MOTIVATION

Artificial intelligence (AI) is perhaps the oldest field of computer science and very broad, dealing with all aspects of mimick-
ing cognitive functions for real-world problem solving and building systems that learn and think like people. Therefore, it is
often called machine intelligence (Poole, Mackworth, & Goebel, 1998) to contrast it to human intelligence (Russell & Norvig,
2010). The field revolved around the intersection of cognitive science and computer science (Tenenbaum, Kemp, Griffiths, &
Goodman, 2011). AI now raises enormous interest due to the practical successes in machine learning (ML). In AI there was
always a strong linkage to explainability, and an early example is the Advice Taker proposed by McCarthy in 1958 as a “pro-
gram with common sense” (McCarthy, 1960). It was probably the first time proposing common sense reasoning abilities as
the key to AI. Recent research emphasizes more and more that AI systems should be able to build causal models of the world
that support explanation and understanding, rather than merely solving pattern recognition problems (Lake, Ullman, Tenen-
baum, & Gershman, 2017).
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ML is a very practical field of AI with the aim to develop software that can automatically learn from previous data to gain
knowledge from experience and to gradually improve it's learning behavior to make predictions based on new data
(Michalski, Carbonell, & Mitchell, 1984). The grand challenges are in sense-making, in context understanding, and in decision
making under uncertainty (Holzinger, 2017). ML can be seen as the workhorse of AI and the adoption of data intensive ML
methods can meanwhile be found everywhere, throughout science, engineering and business, leading to more evidence-based
decision-making (Jordan & Mitchell, 2015). The enormous progress in ML has been driven by the development of new statis-
tical learning algorithms along with the availability of large data sets and low-cost computation (Abadi et al., 2016). One now-
adays extremely popular method is deep learning (DL).

DL is a family of ML models based on deep convolutional neural networks having a long history (Schmidhuber, 2015).
DL is very popular today because they are achieving amazing results even at human level performance (LeCun, Bengio, &
Hinton, 2015). A best practice example is a recent work of the Thrun group, where they achieved with a DL approach perfor-
mance on par with medical doctors, demonstrating that such approaches are able to classify skin cancer with a level of compe-
tence comparable to human dermatologists (Esteva et al., 2017). A further example is the promising results of identifying
diabetic retinopathy and related eye diseases (Ting et al., 2017). All these are very good examples of the progress and useful-
ness of AI, but even the most prominent proponents of these (automatic) approaches recently emphasize that usable intelli-
gence is difficult to reach because we need not only to learn from prior data, to extract knowledge, to generalize, and to fight
the curse of dimensionality, but to disentangle the underlying explanatory factors of the data in order to understand the context
in an application domain (Bengio, Courville, & Vincent, 2013), where to date a doctor-in-the-loop is indispensable
(Holzinger, 2016).

Medicine as application domain is among the greatest challenges of AI/ML/DL. In medical decision support we are con-
fronted with uncertainty, with probabilistic, unknown, incomplete, imbalanced, heterogeneous, noisy, dirty, erroneous, inaccu-
rate and missing data sets in arbitrarily high-dimensional spaces (Holzinger, Dehmer, & Jurisica, 2014), (Lee & Holzinger,
2016). Often we are simply lacking of large data sets (Holzinger, 2016). A grand goal of future medicine is in modeling the
complexity of patients to tailor medical decisions, health practices and therapies to the individual patient (Holzinger, 2014).
This poses challenges particularly in the integration, fusion and mapping of various distributed and heterogeneous data up to
the visual analysis of these heterogeneous data (Turkay, Jeanquartier, Holzinger, & Hauser, 2014). Consequently, explain-
able-AI in the context of medicine must take into account that diverse data may contribute to a relevant result. This requires
that medical professionals must have a possibility to understand how and why a machine decision has been made (Holzinger,
Biemann, Pattichis, & Kell, 2017).

Explainability is at least as old as AI itself and rather a problem that has been caused by it. In the pioneering days of AI
(Newell, Shaw, & Simon, 1958), reasoning methods were logical and symbolic. These approaches were successful, but only
in a very limited domain space and with extremely limited practical applicability. A typical example is MYCIN (Shortliffe &
Buchanan, 1975), which was an expert system developed in Lisp to identify bacteria causing severe infections and to recom-
mend antibiotics. MYCIN was never used in clinical routine, maybe because of its stand-alone character and the high effort in
maintaining its knowledge base. However, these early AI systems reasoned by performing some form of logical inference on
human readable symbols, and were able to provide a trace of their inference steps. This was the basis for explanation, and
there is some early related work available, for example, (Johnson, 1994; Lacave & Diez, 2002; Swartout, Paris, & Moore,
1991). Here, we should mention that there are three types of explanations: (1) a peer-to-peer explanation as it is carried out
among physicians during medical reporting; (2) an educational explanation as it is carried out between teachers and students;
(3) A scientific explanation in the strict sense of science theory (Popper, 1935). We emphasize that in this article we mean the
first type of explanation.

In medicine there is growing demand for AI approaches, which are not only performing well, but are trustworthy, transpar-
ent, interpretable and explainable for a human expert; in medicine, for example, sentences of natural language (Hudec, Bed-
nrov, & Holzinger, 2018). Methods and models are necessary to reenact the machine decision-making process, to reproduce
and to comprehend both the learning and knowledge extraction process. This is important, because for decision support it is
necessary to understand the causality of learned representations (Gershman, Horvitz, & Tenenbaum, 2015; Pearl, 2009;
Peters, Janzing, & Schölkopf, 2017).

Moreover, explainability of AI could help to enhance trust of medical professionals in future AI systems. Research
towards building explainable-AI systems for application in medicine requires to maintain a high level of learning performance
for a range of ML and human-computer interaction techniques. There is an inherent tension between ML performance (predic-
tive accuracy) and explainability. Often the best-performing methods such as DL are the least transparent, and the ones provid-
ing a clear explanation (e.g., decision trees) are less accurate (Bologna & Hayashi, 2017).

Currently, explanations of why predictions are made, or how model parameters capture underlying biological mechanisms
are elusive. A further constraint is that humans are limited to visual assessment or review of explanations for a (large) number
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of axioms. This result in one of the main question: Can we deduce properties without experiments—directly from pure obser-
vations? (Peters et al., 2017).

Understanding, interpreting, or explaining are often used synonymously in the context of explainable-AI (Doran, Schulz, &
Besold, 2017), and various techniques of interpretation have been applied in the past. There is a helpful discussion on the
“Myth of model interpretability” by Lipton (2016). In the context of explainable-AI the term “understanding” usually means a
functional understanding of the model, in contrast to a low-level algorithmic understanding of it, that is, to seek to characterize
the model's black-box behavior, without trying to elucidate its inner workings or its internal representations. Montavon,
Samek, and Müller (2017) discriminate in their work between interpretation, which they define as a mapping of an abstract
concept into a domain that the human expert can perceive and comprehend; and explanation, which they define as a collection
of features of the interpretable domain, that have contributed to a given example to produce a decision.

We argue that in medicine explainable AI is urgently needed for many purposes including medical education, research and
clinical decision making (Holzinger, 2018). If medical professionals are complemented by sophisticated AI systems and in
some cases future AI systems even play a huge part in the decision making process, human experts must still have the
means—on demand—to understand and to retrace the machine decision process.

At the same time, it is interesting to know that while it is often assumed that humans are always able to explain their deci-
sions, this is often not the case! Sometimes experts are not able to provide an explanation based on the various heterogeneous
and vast sources of different information. Consequently, explainable-AI calls for confidence, safety, security, privacy, ethics,
fairness and trust (Kieseberg, Weippl, & Holzinger, 2016), and brings usability (Holzinger, 2005) and Human-AI Interaction
into a new and important focus (Miller, Howe, & Sonenberg, 2017). All these aspects together are crucial for applicability in
medicine generally, and for future personalized medicine, in particular (Hamburg & Collins, 2010).

First we provide some definitions to explain what kind of explainability we mean—this will lead us to the term “Causabil-
ity” in contrast to the well-known term “Causality”; then we discuss briefly the state-of-the-art of some current explainable
models, and continue with an example and a medical use-case from histopathology. We conclude with pointing to the urgent
need of a systems causability scale to measure the quality of an explanation (Hoffman, Mueller, Klein, & Litman, 2018),
which must also include social aspects of human communication (Miller, 2019).

2 | FROM EXPLAINABILITY TO CAUSABILITY

In an ideal world both human and machine statements would be identical, and congruent with the ground truth, which is
defined for machines and humans equally. However, in the real world we face two problems:

(i) Ground truth cannot always be well defined, especially when making a medical diagnosis.
(ii) Human (scientific) models are often based on causality as an ultimate aim for understanding underlying mechanisms,

and while correlation is accepted as a basis for decisions, it is viewed as an intermediate step. In contrast today's successful
ML algorithms are typically based on probabilistic models and provide only a crude basis for further establishing causal
models. When discussing the explainability of a machine statement, we therefore propose to distinguish between:

Explainability in a technical sense highlights decision-relevant parts of the used representations of the algorithms and active parts in the algorithmic model, that
either contribute to the model accuracy on the training set, or to a specific prediction for one particular observation. It does not refer to an
explicit human model.

Causability as the extent to which an explanation of a statement to a human expert achieves a specified level of causal understanding with effectiveness,
efficiency and satisfaction in a specified context of use.

As causability is measured in terms of effectiveness, efficiency, satisfaction related to causal understanding and its trans-
parency for a user, it refers to a human understandable model. This is always possible for an explanation of a human state-
ment, as the explanation is per se defined related to a human model. However, to measure the causability of an explanation of
a machine statement this has to be based on a causal model, which is not the case for most ML algorithms, or a mapping
between both has to be defined.

Here, we must distinguish between an explainable model (“explainable AI”) and an explanation interface which makes the
results gained in the explainable model not only usable but also useful to the expert. As a measure for the usability of such an
Human-AI interaction interface we propose to use the term causability (see Figure 1).

The term AI itself is actually an unfortunate one for engineering, since the phenomenon of intelligence is very difficult to
define and is dependent on a wealth of different factors; Therefore, we limit ourselves here only to explicitly relevant facts for
explainability.
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Understanding is not only recognizing, perceiving and reproducing (stimulus–response on a physiological level), and not only
the content comprehension and mere representation of facts, but the intellectual understanding of the context in which these facts
appear. Rather, understanding can be seen as a bridge between perceiving and reasoning. From capturing the context, without
doubt an important indicator of intelligence, the current state-of-the-art AI is still many miles away. On the other hand, people are
very well able to instantaneously capture the context and make very good generalizations from very few data points.

Explaining (Interpretation) means to provide causes of observed phenomena in a comprehensible manner through a lin-
guistic description of its logical and causal relationships. In the theory of science, according to the hypothetical-deductive
model of Karl Popper, causal explanations are the foundation of science in order to derive facts from laws and conditions in a
deductive way. Consequently, causality and causal reasoning is an extremely important area for explainable AI (Pearl & Mac-
kenzie, 2018). Understanding and explaining are prerequisites for retraceability. The question remains open: “What is princi-
pally understandable for a human?”.

Directly understandable, hence explainable for humans are data, objects or any graphical representations ≤R3, for example,
images (arrays of pixels, glyphs, correlation functions, graphs, 2D/3D projections etc., or text (sequences of natural language).
Humans are able to perceive data as images or words and process it as information in a physiological sense, cognitively inter-
pret the extracted information with reference to their subjective previous knowledge (humans have a lot of prior knowledge)
and integrating this new knowledge into their own cognitive knowledge space. Strictly speaking, there must be made a distinc-
tion between understanding natural images (pictures), understanding text (symbols) and understanding spoken language.

Not directly understandable, thus not explainable for humans are abstract vectorspaces >R3(e.g., word-embeddings) or
undocumented, that is, previously unknown input features (e.g., sequences of text with unknown symbols (e.g., Chinese for
an English speaker). An example shall illustrate it: in the so-called word embedding (Mikolov, Chen, Corrado, & Dean,
2013), words and/or phrases are assigned to vectors. Conceptually, this is a mathematical embedding of a space with one
dimension per word into a continuous vector space with a reduced dimension. Methods to generate such a “mapping” include,
for example, deep neural nets and probabilistic models with an explicit representation in relation to the context in which the
words appear.

For more details on the theory behind scientific explainability we refer to the principles of abductive reasoning (Ma et al.,
2010) and point to some current work (Babiker & Goebel, 2017; Goebel et al., 2018).

3 | GENERAL APPROACHES OF EXPLAINABLE AI MODELS

We can distinguish two types of explainable AI, which can be denominated with Latin names used in law (Fellmeth & Hor-
witz, 2009): posthoc explainability = “(lat.) after this”, occurring after the event in question; for example, explaining what the
model predicts in terms of what is readily interpretable; ante-hoc explainability = “(lat.) before this”, occurring before the

Why did the algorithm do that?

Can I trust these results?

How can I correct an error?

A possible solution

The domain expert can understand why...

The domain expert can learn and correct errors...

The domain expert can re-enact on demand...
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FIGURE 1 The best performing statistical approaches today are black-boxes and do not foster understanding, trust and error correction (above). This implies
an urgent need not only for explainable models, but also for explanation interfaces—and as a measure for the human-AI interaction we need the concept of
causability—analogous to usability in classic human-computer interaction
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event in question; for example, incorporating explainability directly into the structure of an AI-model, explainability by
design.

Posthoc systems aim to provide local explanations for a specific decision and make it reproducible on demand (instead of
explaining the whole systems behavior). A representative example is local interpretable model-agnostic explanations (LIME)
developed by Ribeiro, Singh, and Guestrin (2016b), which is a model-agnostic system, where x 2 Rd is the original represen-
tation of an instance being explained, and x

0 2 Rd0 is used to denote a vector for its interpretable representation (e.g., x may be
a feature vector containing word embeddings, with x

0
being the bag of words). The goal is to identify an interpretable model

over the interpretable representation that is locally faithful to the classifier. The explanation model is g : Rd0 ! R, g 2 G,
where G is a class of potentially interpretable models, such as linear models, decision trees, or rule lists; given a model g 2 G,
it can be visualized as an explanation to the human expert (for details please refer to (Ribeiro, Singh, & Guestrin, 2016a)).
Another example for a posthoc system is black box explanations through transparent approximations (BETA), a model-
agnostic framework for explaining the behavior of any black-box classifier by simultaneously optimizing for fidelity to the
original model and interpretability of the explanation introduced by Lakkaraju, Kamar, Caruana, and Leskovec (2017).

Bach et al. (2015) presented a general solution to the problem of understanding classification decisions by pixel-wise
decomposition of nonlinear classifiers which allows visualization of the contributions of single pixels to predictions for
kernel-based classifiers over bag of words features and for multilayered neural networks.

Ante-hoc systems are interpretable by design towards glass-box approaches (Holzinger et al., 2017, 2018); typical exam-
ples include linear regression, decision trees and fuzzy inference systems. The latter have a long tradition and can be designed
from expert knowledge or from data and provides—from the viewpoint of Human-AI interaction—a good framework for the
interaction between human expert knowledge and hidden knowledge in the data (Guillaume, 2001). A further example was
presented by Caruana et al. (2015), where high-performance generalized additive models with pairwise interactions (GAMs)
were applied to problems from the medical domain yielding intelligible models, which uncovered surprising patterns in the
data that previously had prevented complex learned models from being fielded in this domain; of importance is that they dem-
onstrated scalability of such methods to large data sets containing hundreds of thousands of patients and thousands of attri-
butes while remaining intelligible and providing accuracy comparable to the best (unintelligible) ML methods. A further
example for ante-hoc methods can be seen in Poulin et al. (2006), where they described a framework for visually explaining
the decisions of any classifier that is formulated as an additive model and showed how to implement this framework in the
context of three models: naïve Bayes, linear support vector machines and logistic regression, which they implemented success-
fully into a bioinformatics application (Szafron et al., 2004).

3.1 | Example: interpreting a deep neural network

Deep neural networks (DNN), particularly convolutional neural networks (CNN) and recurrent neural networks (RNN) have
been demonstrated to be applicable to a wide range of practical problems, from image recognition (Simonyan & Zisserman,
2014) and image classification (Esteva et al., 2017) to movement recognition (Singh et al., 2017). At the same time these
approaches are also remarkable from a scientific point of view, since they reflect human processes. For instance, humans orga-
nize their ideas hierarchically (Bengio, 2009; Schmidhuber, 2015), and recent work has observed evidence about how learned
models in CNNs are similar to those found in the human visual ventral pathway (Khaligh-Razavi & Kriegeskorte, 2014).
Since the early phases of research on artificial neural networks, people have tried to make them explainable. One of the early
approaches was the approach of gradients in the form of sensitivity analysis (Simonyan & Zisserman, 2014).

An artificial neural network (NN) is a collection of neurons organized in a sequence of multiple layers, where neurons
receive as input the neuron activations from the previous layer, and perform a simple computation (e.g., a weighted sum of the
input followed by a nonlinear activation). The neurons of the network jointly implement a complex nonlinear mapping from
the input to the output. This mapping is learned from the data by adapting the weights of each individual neuron using back-
propagation, which repeatedly adjusts the weights of the connections in the network in order to minimize the difference
between the current output vector and the desired output vector. As a result of the weight adjustments, internal hidden units
which are not part of the input or output come to represent important features of the task domain, and the regularities in the
task are captured by the interactions of these units (refer to the original paper of Rumelhart, Hinton, and Williams (1986) and
the review by Widrow and Lehr (1990) for an overview).

Typically, deep neural networks are trained using supervised learning on large and carefully annotated data sets. However,
the need for such data sets restricts the space of problems that can be addressed. On one hand, this has led to a proliferation of
deep learning results on the same tasks using the same well-known data sets (Rolnick, Veit, Belongie, & Shavit, 2017). On
the other hand, to the emerging relevance of weakly- and un-supervised approaches that aim at reducing the need for annota-
tions (Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, & Langs, 2017; Seeböck et al., 2018).
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Several approaches to probe and interpret deep neural networks exist (Kendall & Gal, 2017). Uncertainty provides a mea-
sure of how small perturbations of training data would change model parameters, the so-called model uncertainty or epistemic
uncertainty, or how input parameter changes would affect the prediction for one particular example, the predictive uncertainty,
or aleatoric variability (Gal, 2016). In a Bayesian Deep Learning approach, Pawlowski, Brock, Lee, Rajchl, and Glocker
(2017) approximate model parameters through variational methods, resulting in uncertainty information of model weights,
and a means to derive predictive uncertainty from the model outputs. Providing uncertainty facilitates the appropriate use of
model predictions in scenarios where different sources of information are combined as typically the case in medicine. We can
further differentiate aleatoric uncertainty, into homoscedatic uncertainty independent of a particular input, and heteroscedatic
uncertainty possibly changing with different inputs to the system.

Methods for attribution seek to link a particular output of the deep neural network to input variables. Sundararajan, Taly,
and Yan (2017) analyze the gradients of the output when changing individual input variables. In a sense this traces the predic-
tion uncertainty back to the components of a multivariate input. Zhou, Khosla, Lapedriza, Oliva, and Torralba (2016) use acti-
vation maps to identify parts of images relevant for a network prediction. Recently attribution approaches for generative
models have been introduced. Baumgartner, Koch, Tezcan, Ang, and Konukoglu (2017) demonstrate how image areas that
are specific to the foreground class in Wasserstein Generative Adversarial Networks (WGAN) can be identified and high-
lighted in the data. Biffi et al. (2018) learn interpretable features for variational auto encoders (VAE) by learning gradients in
the latent embedding space that it linked to the classification result.

Activation maximization (Montavon et al., 2017) identifies input patterns that lead to maximal activations relating to spe-
cific classes in the output layer (Berkes & Wiskott, 2006; Simonyan & Zisserman, 2014). This makes the visualization of pro-
totypes of classes possible, and assesses which properties the model captures for classes1 (Erhan, Bengio, Courville, &
Vincent, 2009). For a neural network classifier mapping data points x to a set of classes (ωc)c, the approach identifies highly
probable regions in the input space, that create high output probabilities for a particular class. These positions can be found by
introducing a data density model in the standard objective function logp(ωc | x) − λkxk2 that is maximized during model
training. Instead of the ℓ2-norm regularizer that implements a preference for inputs that are close to the origin, the density
model or “expert” (Montavon et al., 2017) results in the term logp(ωc| x) + logp(x) that is to be maximized. Here, the proto-
type is encouraged to simultaneously produce strong class response and to resemble the data. By application of Bayes' rule,
the newly defined objective can be identified, up to modeling errors and a constant term, as the class-conditioned data density
p(x| ωc). The learned prototype thus corresponds to the most likely input x for the class ωc (Figure 2).

A possible choice for the expert is a Gaussian restricted Boltzmann machine (RBM). The RBM is a two-layer, bipartite,
undirected graphical model with a set of binary hidden units p(h), a set of (binary or real-valued) visible units p(v), with sym-
metric connections between the two layers represented by a weight matrix W. The probabilistic semantics for an RBM is
defined by its energy function (for details see the chapter by Hinton (2012). Its probability function can be written as:

log p xð Þ = P
j
f j xð Þ− 1

2 x
>Σ− 1x + cst:, where f j xð Þ = log 1 + exp w>

j x + bj
� �� �

are factors with parameters learned from the

data. When interpreting more complex concepts such as natural images classes, other density models such as convolutional
RBM's (Lee, Grosse, Ranganath, & Ng, 2009) or pixel RNN's (Oord, Kalchbrenner, & Kavukcuoglu, 2016) are suitable.

The selection of the so-called expert p(x) plays an important role. Basically, there are four different cases: In the case
where “the expert” is absent, that is, the optimization problem reduces to the maximization of the class probability function p

FIGURE 2 An overview of how deep learning models can be probed for information regarding uncertainty, attribution, and prototypes
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(ωc| x). In the case where we see the other extreme, that is, the expert is overfitted on some data distribution, and thus, the
optimization problem becomes essentially the maximization of the expert p(x) itself.

When using activation maximization for the purpose of model validation, an overfitted expert must be especially avoided,
as the latter could hide interesting failure modes of the model p(ωc| x). A slightly underfitted expert (case b), for example, that
simply favors images with natural colors, can already be sufficient. On the other hand, when using AM to gain knowledge on
a correctly predicted concept ωc, the focus should be to prevent underfitting. Indeed, an underfitted expert would expose
optima of p(ωc| x) potentially distant from the data, and therefore, the prototype x? would not be truly representative of ωc.

Unsupervised learning and generative models. In certain applications, it is helpful to not only predict based on input data,
but learn the structure of a set of training examples, to either provide a parametric representation of its density p(x), or at least
be able to sample from this density generating examples of the same type as the training examples. Examples are Boltzmann
machines, autoencoders, or generative adversarial networks) which do not provide the density function directly, but are able
to sample from it, usually via the following two steps:

1. Sample from a simple distribution q zð Þ � N 0, Ið Þ which is defined in an abstract code space Z;
2. Apply to the sample a decoding function g : Z ! X, that maps it back to the original input domain.

There are two aspects of models learned by unsupervised learning that are relevant in the context of explainability. First,
the latent representations learned in these models can hold structure that reflects relatively complex relationship patterns in the
data. For instance, in Mikolov et al. (2013) the authors show that word embeddings can reflect semantic similarity. Second,
being able to generate instances, or even instances that are as close as possible to an observation, provides means to study the
difference of examples to a class. This is relevant in medicine, where the discovery and study of anomalies that are potentially
linked to disease is relevant Schlegl et al. (2017).

One example is the generative adversarial network (GAN) introduced by Goodfellow et al. (2014). It consists of two
models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability
that a sample came from the training data rather than from G. The training procedure for G is to maximize the probability of
D making an error—which works like a minimax (minimizing a possible loss for a worst case maximum loss) two-player
game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution
and D equal to 1

2 everywhere; in the case where G and D are defined by multilayer perceptrons, the entire system can be
trained with backpropagation.

To learn the generator's distribution pg over data x, a prior must be defined on the input noise variables pz(z), and then a
mapping to the data space as G(z; θg), where G is a differentiable function represented by a multilayer perceptron with param-
eters θg. The second multilayer perceptron D(x; θd) outputs a single scalar. D(x) represents the probability that x came from
the data rather than pg. D can be trained to maximize the probability of assigning the correct label to both training examples
and samples from G. Simultaneously G can be trained to minimize log(1 − D(G(z))); in other words, D and G play the follow-
ing two-player minimax game with value function V(G, D):

min
G

max
D

V D,Gð Þ = Ex�pdata xð Þ logD xð Þ½ � + Ez�pz zð Þ log 1−D G zð Þð Þð Þ½ �: ð1Þ

Nguyen, Dosovitskiy, Yosinski, Brox, and Clune (2016) proposed building a prototype for ωc by incorporating such a
generative model in the activation maximization framework. The optimization problem is redefined as:

max
z2Z

log p ωcjg zð Þð Þ− λ zk k2, ð2Þ

where the first term is a composition of the newly introduced decoder and the original classifier, and where the second term is
an ℓ2-norm regularizer in the code space. Once a solution z? to the optimization problem is found, the prototype for ωc is
obtained by decoding the solution, that is, x? = g(z?).

The ℓ2-norm regularizer in the input space can be understood in the context of image data as favoring gray-looking
images. The effect of the ℓ2-norm regularizer in the code space can instead be understood as encouraging codes that have high
probability. High probability codes do not necessarily map to high density regions of the input space; for more details refer to
the excellent tutorial given by Montavon et al. (2017).

3.2 | Example use-case histopathology

This section demonstrates the complexity of explanations of a human pathologist. For the following diagnosis
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Steatohepatitis with mild portal and incomplete-septal fibrosis and mild centrilobular fibrosis of chicken wire
type. The morphological picture corresponds to alcoholic steatohepatitis. History of alcohol abuse?

3.2.1 | Example for human posthoc explanation

We asked an experienced pathologist to explain what he considered relevant in the histology slides. A very small portion of
the histological sections are shown in Figure 3 as illustration. For this specific diagnosis the pathologist gave the following
facts as posthoc explanation:

• Liver biopsy with 10 evaluable portal fields.
• Lobule architecture preserved.
• Liver cells arranged in regular plates one cell layer thick.
• Portal fields slightly widened and slightly fibrotic.
• Isolated incomplete porto-portal and porto-central septa.
• Portal fields slightly inflamed with mixed-cell (lymphocytes, sporadic neutrophil granulocytes) inflammatory inflitrates.

Inflammation restricted to portal field.
• Parenchymatous border plate intact, liver cells with low anisocaryosis, moderately large droplet fatty liver (estimated

parenchyma fatty degeneration at 30% of parenchymal area).
• Lobular central hepatic cells balloonized, light cytoplasmic with incorporation of Mallory-Denk bodies.
• Most of these liver cells are surrounded by neutrophil granulocytes and some of them are interspersed (satelliteosis).
• Minor perivenular fibrosis (=central sclerosis).
• Kupffer cells slightly diffusely increased, isolated Kupffer cell nodules detectable.
• In the Berliner blue stain minor parenchymatous and Kupffer cell siderosis.

3.2.2 | Example for the ante-hoc structure of explanations

We also asked the pathologist to explain the process and most relevant concepts in liver pathology. Please note, that the fol-
lowing description just demonstrates the structure and complexity and is far away from a textbook on liver pathology. The
pathologist described the following procedure and observation as an ante-hoc explanation for liver pathology:

• Describe in the macroscopic evaluation of the histological section the following features:
–type, number and size of specimens (surgical specimen or biopsy)
–tissue cohesion of biopsies
–staining quality (H & E/CAB/Sirius red/iron/ev. PAS, immunohsistochemistry)
–already visible exogenous tissue (tumor)

• Describe in microscopic evaluation at low magnification the following features:
–lobular architecture preserved/disturbed in the sense of fibrosis or necrosis/destroyed in the context of cirrhosis or tumors
–number of assessable portal fields (optimal 10–15 per slide)
–liver cell (hepatocyte) plates regular-one cell layer thick/several cell layers thick

Portal track

Kupffer cell Erythrocyte
Sinusoid
endothelial cell nucleus

Hepatocyte
nucleus Hepatocyte

large lipid droplet

Bile ducts Portal vein Artery

FIGURE 3 Features in a histology slide annotated by a human expert pathologist
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–inflammatory changes portal/lobular/combined; necrosis lobular peripheral/lobular central)
–presence or absence of tissue

• Describe in microscopic evaluation at higher magnification the following features:

–portal tracts: regular/extended/fibrotic/rounded/edematous
–connective tissue parenchyma border: sharp/unsharp
–parenchymatous border plate: preserved/partially destroyed/mostly destroyed/nonexistent inflammatory infiltrates portal/-

periportal-interface, sparse/tight/localized-follicular/ lymphocytic/ lymphohistiocytic/neutrophil-granulocytic/ stressed-eosino-
phil-granulocytic/granulomatous;

–abnormal content of the portal field not present (tumor cells/foreign bodies/parasites)
–portal vessels (arteria hepatica, vena portae, and lymphatic vessels) present/expanded/narrowed/inflammatory;
–Bile ducts: present/elongated/absent/single-layer epithelium/multilayer epithelium/polymorphic epithelium/inflammatory

changes/partially destructed/scarred/content (bile thrombus/porphyrinthrombus);
–ductal reaction absent/low/pronounced /ductal cholestasis.
–lobules (lobulus, liver parenchyma): Liver cells large/balloonized/small-atrophic/anisocytosis/apoptosis
–cytoplasm: granular/net-like/light cytoplasmic-glycogen-rich/diffuse homogenized/focally homogenized
–cytoplasmic inclusions fat large droplet/fat small droplet/ lipofuscin granules/siderin granules/AAT inclusions/Fibrinogen

inclusions/Mallory Denk bodies (MDB), Hyaline bodies/bilirubin
–canalicular bilirubinostasis
–Necroses disseminated/confluent/lobular central/lobular periphery/bridging porto-central/bridging centro-central/massive;

—liver cell nuclei anisocaryosis/pycnosis/punch cores/“sand cores“/core inclusions;
–Kupffer cells focally increased (nodular)/diffus increased/enlarged/inclusions (siderin, pigment, erythrocytes, pathogen,

foreign material);
–star cells (stellate cells) increased
–sinusoidal dilated/abnormal content (e.g., blood, fibrin, and tumor cells)
–central vein lumen open/narrowed/ obliterated/inflamed/wall fibrosis.
–fibrosis: portal/perisinusoidal/pericellular/perivenular/septal/porto-portal/porto-central/centro-central/meshed wire fibrosi-

s/incomplete cirrhosis/cirrhosis.
–foreign tissue (tumor tissue to be characterized morphologically, primary/secondary-metastatic/unclear).
For a specific case values of all above features contribute to the diagnosis with different weights and causal relations pre-

sent in the human model on liver pathology, which an expert acquired by training and experience.

4 | FUTURE OUTLOOK

4.1 | Weakly supervised learning

Supervised learning is very expensive in the medical domain because it is cumbersome to get strong supervision information and
fully ground-truth labels. Particularly, labeling a histopathological image is not only time-consuming but also a critical task for
cancer diagnosis, as it is clinically important to segment the cancer tissues and cluster them into various classes (Xu, Zhu, Chang,
Lai, & Tu, 2014). Digital pathological images generally have some issues to be considered, including the very large image size
(and the involved problems for DL), insufficiently labeled images (the small training data available), the time needed from the
pathologist (expensive labeling), insufficient labels (region of interest), different levels of magnification (resulting in different
levels of information), color variation and artifacts (sliced and placed on glass slides) etc. (Komura & Ishikawa, 2018).

Weakly supervised learning (Xu et al., 2014) is an umbrella term for a variety of methods to construct predictive models
by learning with weak supervision; weak because of either incomplete, inexact or inaccurate supervision. In a strong supervi-
sion task we want to learn f : X ! Y from the training data set D = (x1, y1), … (xm, ym), wherein X is the feature space and
(xi, yi) are always assumed to be identically and independently distributed data (which is not the case in real-world problems!).

In the context of weakly supervised learning, we propose classifying whole slide images according to widely used scoring
systems based on association with histomorphological characteristics and an overall predictive score, and to provide in addi-
tion a relevance map generated by observing the human expert during diagnosis making. By the combination of well-known
human features and new multiscale morphological classifiers the human causal model can be on the one hand extended and
on the other hand the CNN model can be explained with known histomorphological features. We propose to extract from both
benign and malign single cell nuclei and to classify chromatin organization (Araujo et al., 2017) within the nuclei to correlate
these to histopathological features and molecular markers.
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4.2 | Structural causal models

A very important direction is research towards structural causal models (Pearl, 2009; Pearl & Mackenzie, 2018; Peters et al.,
2017). Current AI work on either a statistical or model-free mode. This entails severe limits on both effectiveness and perfor-
mance. Such systems cannot reason about interventions and retrospection and, therefore, cannot serve for strong AI (Pearl &
Mackenzie, 2018). To achieve human level intelligence, AI need the guidance of a model of reality, similar to the ones used
in causal inference tasks. Consequently, we propose to: (1) develop new visualization techniques that can be trained by medi-
cal experts, as they can explore the underlying explanatory factors of the data and (2) formalize a structural causal model of
human decision making and mapping features in these to DL approaches. In digital pathology such mechanistic models can be
used to analyze and predict the response of a functional network behavior to features in histology slides, molecular data and
family history.

4.3 | Develop causability as a new scientific field

The human-computer interaction community has established a range of usability methods (Holzinger, 2005). Similar to these
usability methodologies, methods and tests, we need the development of causability methodologies, methods and tests, which
are based on clear scientific principles and theories of causality in order to establish causability as a scientific field which will
become necessary with increased use of AI. The same as usability measures ensures the “quality of use” (Bevan, 1995), causa-
bility measures must ensure the “quality of explanations”.

According to the three Layer Causal Hierarchy by Pearl (2018):
Level 1: Association P(y| x) with the typical activity of “seeing” and questions including “How would seeing X change

my belief in Y?”, in our use-case above this was the question of “what does a feature in a histology slide the pathologist about
a disease?”

Level 2: Intervention P(y| do(x), z) with the typical activity of “doing” and questions including “What if I do X?”, in our
use-case above this was the question of “what if the medical professional recommends treatment X—will the patient be
cured?”

Level 3: Counterfactuals P(yx| x
0
, y

0
) with the typical activity of “retrospection” and questions including “Was Y the cause

for X?”, in our use-case above this was the question of “was it the treatment that cured the patient?”
For each of these levels we have to develop methods to measure effectiveness (does an explanation describe a statement

with an adequate level of detail), efficiency (is this done with a minimum of time and effort) and user satisfaction (how satis-
factory was the explanation for the decision making process). Again we should mention that there are three types of explana-
tions: (1) a peer-to-peer explanation as it is carried out among physicians during medical reporting; (2) an educational
explanation as it is carried out between teachers and students; (3) A scientific explanation in the strict sense of science theory
(Popper, 1935). We emphasize that in this article we always refer to the first type of explanation.

5 | CONCLUSION

AI is already one of the key technologies in our economy. It will bring changes similar to the introduction of the steam engine
or electricity. However, concerns about potential loss of control in the Human-AI relationship are growing. Issues such as
autonomous driving and the unclear decision making of the vehicle, for example, in extreme cases shortly before an accident
collision, have long been the subject of public debate. The same goes for the question of the extent to which AI can or should
support medical decisions or even make them itself. In many cases it will be necessary to understand how a machine decision
was made and to assess the quality of the explanation.

While rule-based solutions of the early AI in the 1950s represented comprehensible “glass box” approaches, their weak-
ness lay in dealing with uncertainties of the real world. Many problems from our everyday lives cannot be represented by for-
mal, mathematical rules of logic. The failure of such algorithms to solve problems that are relatively simple for humans, such
as natural language, recognizing faces, or understanding a joke, ultimately led to the “AI winter” in the 1980s. Only through
the triumph of probabilistic and statistical learning methods in connection with the success of artificial neural networks (“deep
learning”) did AI applications become increasingly successful.

Today, DL algorithms are very useful in our daily lives: autonomous driving, face recognition, speech understanding, rec-
ommendation systems, etc. already work very well. However, it is very difficult for people to understand how these algorithms
come to a decision. Ultimately, these are so-called “black box” models. The problem is that even if we understand the underly-
ing mathematical principles and theories, such models lack an explicit declarative representation of knowledge. Early AI solu-
tions (at that time called expert systems) had the goal from the beginning of making solutions comprehensible, understandable
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and thus explainable, which was also possible in very narrowly defined problems. Of course, we should mention that many
problems do possibly not need explanations for everything at any time.

Here, the area of explainable AI is not only useful and necessary, but also represents a huge opportunity for AI solutions
in general. The generally accused opacity of AI can thus be reduced and necessary trust built up. Exactly this can promote the
acceptance with future users lastingly.

The main problem of the most successful current ML systems, recently emphasized by Pearl (2018), is that they work on a
statistical, or model-free mode, which entails severe limitations on their performance. Such systems are not able to understand
the context, hence cannot reason about interventions and retrospection. However, such approaches needs the guidance of a
human model similar to the ones used in causality research (Pearl, 2009; Pearl & Mackenzie, 2018) to answer the question
“Why?”. The establishment of causability as a solid scientific field can help here.

“Data can tell you that the people who took a medicine recovered faster than those who did not take it, but they
cant tell you why. Maybe those who took the medicine did so because they could afford it and would have recov-
ered just as fast without it.”

Judea Pearl (2018), The Book of Why: The New Science of Cause and Effect
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