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Abstract

Background: Several reports have identified different patterns of Parkinson’s disease 

progression in individuals carrying missense variants in GBA or LRRK2 genes. The overall 

contribution of genetic factors to the severity and progression of Parkinson’s disease, however, has 

not been well studied.

Objectives: To test the association between genetic variants and the clinical features of 

Parkinson’s disease on a genomewide scale.

Methods: We accumulated individual data from 12 longitudinal cohorts in a total of 4093 

patients with 22,307 observations for a median of 3.81 years. Genomewide associations were 

evaluated for 25 cross-sectional and longitudinal phenotypes. Specific variants of interest, 
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including 90 recently identified disease-risk variants, were also investigated post hoc for candidate 

associations with these phenotypes.

Results: Two variants were genomewide significant. Rs382940(T>A), within the intron of 

SLC44A1, was associated with reaching Hoehn and Yahr stage 3 or higher faster (hazard ratio 

2.04 [1.58–2.62]; P value = 3.46E-8). Rs61863020(G>A), an intergenic variant and expression 

quantitative trait loci for α−2A adrenergic receptor, was associated with a lower prevalence of 

insomnia at baseline (odds ratio 0.63 [0.52–0.75]; P value = 4.74E-8). In the targeted analysis, we 

found 9 associations between known Parkinson’s risk variants and more severe motor/cognitive 

symptoms. Also, we replicated previous reports of GBA coding variants (rs2230288: p.E365K; 

rs75548401: p.T408M) being associated with greater motor and cognitive decline over time, and 

an APOE E4 tagging variant (rs429358) being associated with greater cognitive deficits in 

patients.

Conclusions: We identified novel genetic factors associated with heterogeneity of Parkinson’s 

disease. The results can be used for validation or hypothesis tests regarding Parkinson’s disease. © 

2019 International Parkinson and Movement Disorder Society
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Parkinson’s disease (PD) is clinically defined by its motor features of rigidity, bradykinesia, 

gait disturbance, and tremor. Although these prominent features are important for diagnosis, 

patients with PD also suffer from many nonmotor features, such as constipation, urinary 

incontinence, orthostatic hypotension, rapid eye movement sleep behavior disorder (RBD), 

apathy, hyposmia, and cognitive impairment.1 Moreover, patients develop motor 

complications, including wearing off and dyskinesia, as side effects of medication. The 

onset, intensity, and progression of these different PD clinical features vary among 

individuals, and the mechanisms underlying this heterogeneity are not well understood.

Recent genomewide studies have identified 90 common variants associated with the risk of 

PD, with an overall heritability estimated to be between 22% to 27%.2,3 Although previous 

studies have indicated the importance of genetic contributions to disease risk, the 

contribution of genetic factors to PD progression and heterogeneity has not been well 

studied. Investigating genetic factors associated with disease progression and heterogeneity 

in disease presentation is an important step in elucidating the underlying molecular 

mechanisms and identifying better patient stratification in clinical trials.4

Longitudinal patient cohorts are powerful resources that can be used to explore the impact of 

genetics on the trajectory of PD-related phenotypes; the inherent precision of repeated 

measurements over time provides more power to detect these associations. However, the 

available number of participants in each study is usually not enough to conduct a 

genomewide association study (GWAS). In this study, we accumulated 22,307 follow-up 

visits from 4093 patients across 12 cohorts (Table 1) and performed meta-analyses of 

longitudinal GWAS on the progression markers of PD. Using the results from this meta-

analysis, we evaluated how known risk variants, including the 90 recently identified variants 
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for PD,3 GBA protein coding mutations, and APOE tagging variants were associated with 

the progression of phenotypes. To maximize the utility of this work to other researchers, we 

have made all results from this study publicly searchable and available for download (https://

pdgenetics.shinyapps.io/pdprogmetagwasbrowser/)

Methods

Cohorts

A total of 12 longitudinal cohorts of PD patients recruited across North America, Europe, 

and Australia were included in our study. The following observational studies were included: 

the Drug Interaction with Genes in Parkinson’s Disease (DIGPD), the Harvard Biomarkers 

Study, the Oslo Parkinson’s Disease study (partly including retrospective data) (OSLO), the 

Norwegian ParkWest study (PARKWEST), the Parkinson’s Disease Biomarker Program, the 

Parkinsonism Incidence and Cognitive and Non-Motor Heterogeneity in Cambridgeshire, 

the Parkinson’s Progression Markers Initiative (PPMI), and the Profiling Parkinson’s 

Disease Study. The 4 cohorts included were randomized clinical trials: the Deprenyl and 

Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP), the National Institutes of 

Health Exploratory Trials in Parkinson’s Disease Large Simple Study 1, the ParkFit study 

(PARKFIT), and the Parkinson Research Examination of CEP-1347 Trial study with its 

subsequent prospective study (PreCEPT/PostCEPT). More details of these cohorts are 

described in Appendix. Participants’ information and genetic samples were obtained under 

appropriate written consent and with local institutional and ethical approvals.

Phenotyping

Each cohort had a different set of recorded biomarkers and phenotypes associated with PD. 

We selected continuous and binomial biomarkers based on their clinical importance and 

availability. For continuous outcomes, we collected the scores of Hoehn and Yahr staging 

scale (HY),5 total and sub-scores of the Unified Parkinson’s Disease Rating Scale (UPDRS) 

or the Movement Disorder Society–revised version (MDS-UPDRS),6 Mini-Mental State 

Examination, Montreal Cognitive Assessment (MoCA),7 and the modified Schwab and 

England Activities of Daily Living Scale (SEADL). With the exception of the subscores of 

UPDRS/MDS-UPDRS part 4, the total scores and subscores of the UPDRS and MDS-

UPDRS were normalized to the population-baseline mean and standard deviation and 

converted to z values. The subscores of the UPDRS/MDS-UPDRS part 4, measuring 

complication of treatment, were normalized to the mean and standard deviation of all 

observations because the score was 0 at the baseline for the de novo PD cohorts. We also 

determined whether the subjects were recorded as presenting the following binomial 

outcomes during participant visits: constipation, cognitive impairment, depression, daytime 

sleepiness, HY stage of 3 or worse (HY3), hyposmia, insomnia, motor fluctuation, RBD, 

restless legs syndrome, and a SEADL of 70 or less (SEADL70). Because study-specific 

criteria for these binomial outcomes were not consistent among the studies, we tried to use 

the common criteria for these binomial outcomes if we had access to the raw data from the 

studies. The details of the definitions of binomial outcomes are provided in Supplemental 

Table 1.
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Genetics Data

The genotyping was conducted with NeuroX, a targeted chip for neurodegenerative disease,8 

for National Institutes of Health Exploratory Trials in Parkinson’s Disease Large Simple 

Study 1, a part of the DIGPD (DIGPD_neuroX), Harvard Biomarkers Study, Parkinson’s 

Disease Biomarker Program, and PRE-CEPT. The rest of DIGPD (DIGPD_chip) were 

genotyped using Illumina Multi-Ethnic Genotyping Array (Illumina, Inc. San Diego, CA). 

Participants in DATATOP, OSLO, PARKFIT, PARKWEST, the Parkinsonism Incidence and 

Cognitive and Non-Motor Heterogeneity in Cambridgeshire, and the Profiling Parkinson’s 

Disease Study were genotyped using Illumina Infinium OmniExpress array (Illumina, Inc. 

San Diego, CA). Whole-genome sequencing data was used for PPMI, with the detailed 

methods for genome sequencing provided on the PPMI website (https://www.ppmi-

info.org/).

Variant inclusion criteria consisted of call rate >0.95, minor allele frequency (MAF) > 0.01, 

and Hardy-Weinberg equilibrium test statistic >1E-4. Participants were excluded with the 

following criteria: high missingness (>5% for genotyped variants), sex discordance, extreme 

heterozygosity (F statistics >0.15), non-European ancestry confirmed by joint analysis with 

HapMap 3 data using principal component (outside of mean 6 standard deviation in the first 

principle component [PC1] or the second principle component [PC2] for European reference 

samples),9 and excessive relatedness (pairwise kinships >0.125). We used PLINK version 

1.9 for the above filtering.10

For all samples and variants passing quality control, imputation was conducted for 

chromosomes 1 to 22 using Minimac3 using the Haplotype Reference Consortium panel 

(r1.1) and Eagle version 2.3 for phasing at the Michigan Imputation Server,11 with the 

exception of the whole-genome sequenced PPMI dataset. Single nucleotide polymorphisms 

with an imputation quality of R2 less than 0.3 and MAF <1% were excluded. After quality 

control, the number of variants were approximately 2.6 to 2.9 million in the National 

Institutes of Health Exploratory Trials in Parkinson’s Disease Large Simple Study 1, 

DIGPD_neuroX, Harvard Biomarkers Study, Parkinson’s Disease Biomarker Program, and 

PRECEPT; 7.7 to 7.8 million in the Parkinsonism Incidence and Cognitive and Non-Motor 

Heterogeneity in Cambridgeshire study, the Profiling Parkinson’s Disease Study, 

PARKWEST, DATATOP, PARKFIT, DIGPD, and OSLO; and 8.6 million in PPMI. Note that 

the cohorts genotyped by NeuroX had relatively less genome coverage than the others.

Cohort-Level Analyses

We conducted a separate GWAS for each cohort per phenotype of interest. In addition, 

DIGPD cohorts were analyzed separately according to the genotyping array used 

(DIGPD_neuroX cohort and DIGPD_chip cohort). Each outcome was analyzed by an 

additive model with covariates. For the binomial outcomes at baseline visit, when the 

outcomes were positive for more than 5% of participants and >20 counts, logistic regression 

analyses were conducted. Those without the binomial outcome at baseline were followed-up 

until either censored or the development of the outcome. If more than 20 events were 

observed during follow-ups, the outcome was analyzed using Cox proportional hazard 

models with time-varying covariates. For the analysis of continuous traits, linear mixed 
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models were used to evaluate the variants’ associations for the outcome. Age at diagnosis, 

year from diagnosis to the observation, sex and the first three principle components (PC1–3) 

were adjusted for in all analyses. In addition, the following covariates were associated with 

the outcome of interest in a backward stepwise manner: quadratic age, quadratic years from 

diagnosis, years of education, medication status (levodopa usage, dopamine agonist usage, 

using either dopamine agonist or levodopa), and a HY score of 2 or more at the first 

observation (except for the models regressing for HY score itself or UPDRS motor score). 

These covariates were selected per study using Akaike’ information criteria for logistic 

models and Cox survival models, and conditional Akaike information criteria (cAIC) for 

linear mixed effect models. The cohort level analyses were conducted with R (version 3.5.0; 

https://www.r-project.org/) and rvtests.12 R package “cAIC4” was used to calculate cAIC.13

Meta-Analyses

The results from the cohort-level analyses were combined using an inverse variance 

weighted fixed effect model. If the study-specific genomic inflation factor was more than 

1.2, the study was excluded from the meta-analysis. Of the 204 GWAS, 5 were excluded 

based on these criteria. For the other cohorts, the overall α error was corrected using the 

genomic inflation factor before the meta-analysis. Meta-analyses were carried out with 

METAL.14 From the meta-analysis results, we only evaluated variants with MAF > 0.05 

because of statistical power constraints. We also excluded variants with MAF variability 

greater than 15% across cohorts. Further exclusions at the meta-analysis level include 

variants with Cochran’s Q-test for heterogeneity <0.05 and a total participant N < 1000. The 

null hypothesis was tested with a significance level of 5E-8 on a 2-sided test. For 

genomewide signals, additional visualization and functional analyses were conducted using 

LocusZoom,15 FUMA (version 1.3.3d; http://fuma.ctglab.nl/snp2gene/).16 FUMA is a web-

based annotation tool using Multi-marker Analysis of GenoMic Annotation (MAGMA) to 

conduct gene-based tests, a gene-set analysis, and a tissue expression analysis. We applied a 

default setting. Also, we explored the eQTLGen database (http://www.eqtlgen.org/)17 and 

meta-analyzed expression data in the brain accessible from the study by Qi and colleagues.18 

Associations with the variants of interest, including the recently identified 90 risk variants 

for PD, known LRRK2 and GBA variants, and APOE, were extracted from the meta-

analysis results. We exploratory evaluated the associations of these variants and clinical 

features based on the significance level of 0.05, applying the Bonferroni adjustment of a 

maximum of 25 tests per variant (raw P value <0.002).

The summary of analytical processes is shown in Figure 1.

Data Availability

The summary statistics of the meta-analysis results, including the ones that were not 

evaluated in this article, are publicly available for convenient browsing and downloading 

(https://pdgenetics.shinyapps.io/pdprogmetagwasbrowser/).

Iwaki et al. Page 6

Mov Disord. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.r-project.org/
http://fuma.ctglab.nl/snp2gene/).16
http://www.eqtlgen.org/
https://pdgenetics.shinyapps.io/pdprogmetagwasbrowser/


Results

Novel GWAS Associations With PD Progression Markers

The cohort characteristics are provided in Table 1. Overall, we analyzed 4093 participants 

with 22,307 longitudinal data points for a median of 3.81 years. These cohorts varied in the 

years between enrollment and diagnosis as well as follow-up durations. DATATOP, 

PARKWEST, PPMI, and PreCEPT/PostCEPT enrolled untreated PD patients, whereas 

others enrolled both treated and untreated patients. Considering the difference in design and 

recruitment strategies in the cohorts (Supporting Information Appendix), it is important to 

adjust for baseline characteristics as well as the follow-up lengths per cohort level. All 

cohort-specific models for analysis are listed in Supplemental Table 2.

In total, 204 GWAS were conducted and combined into 33 meta-analyses. A total of 8 meta-

analyses were not evaluated because of the small number of total participants in the analyses 

(N total <1000). Those excluded were baseline analyses for RBD, restless legs syndrome, 

and SEADL70 and longitudinal analyses for constipation, daytime sleepiness, hyposmia, 

RBD, and restless legs syndrome. Therefore, we investigated 9 binomial traits at baseline, 7 

binomial traits for survival, and 9 continuous traits over the follow-ups. The genomic 

inflation factor was the mean value of 0.993, standard deviation of 0.023, and the range was 

0.951–1.031 across meta-analyses. The study-specific genomic inflation factors are provided 

in Supplemental Table 3.

One association with the progression of PD was of genomewide significance (P value 

<5.00E-08). The minor allele of rs382940 (chr9:108058562T>A), an intronic variant of 

SLC44A1, was associated with a higher hazard ratio (HR) of reaching HY stage 3.0 or 

greater (HR 2.04 [1.58–2.62], P value = 3.46E-8; estimates in a random effect model, 1.97 

[1.38–2.81], P value = 1.96E-4). When considering the baseline observations, the minor 

allele of rs61863020 (chr10:112956055G>A), an intergenic variant, was significantly 

associated with the lower baseline odds ratio (OR) of having insomnia (OR 0.63 [0.52–

0.75], P value = 4.74E-8; the same estimates and P value in a random effect model). Locus 

plots and forest plots for these 2 associations are shown in Figure 2. Cochran’ Q statistics, 

I2, and forest plots all showed no evidence of heterogeneity for these associations (Fig. 2).

To evaluate the potential molecular mechanism for the two genomewide signals, we 

explored eQTL datasets in the blood and brain17,18 and functional annotation of the GWAS 

summary statistics using FUMA. Although it is in a regulatory region of SLC44A1, 

rs382940 itself was not reported to be an eQTL in the blood or brain. Gene-based tests using 

the GWAS summary statistics for reaching HY3 showed that SLC44A1 was significant 

gene-wise (P value = 5.8E-07 < Bonferroni correction threshold = 2.7E-6; Supplemental Fig. 

1). Rs61863020 was a significant eQTL for α−2A adrenergic receptor (ADRA2A; P value = 

7.2E-4, the Bonferroni corrected P value = 6.5E-3, up-regulation for A allele) in the brain.

In the meta-analysis results from the other clinical outcomes, rs382940 was associated with 

higher scores in the UPDRS part 2 and part 3 (UPDRS2_scaled: 0.36 [0.15–0.57], P value = 

8.21E-04; UPDRS3_scaled: 0.29 [0.14–0.45], P value = 2.18E-04). These findings are 

consistent with the primary association of rs382940 and reaching HY3, which is a 
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significant motor milestone (bilateral signs on clinical examination and the emergence of 

postural instability). Except for the association with having insomnia at baseline, 

rs61863020 was not significantly associated with other clinical variables in this analysis 

after adjusting for 25 tests. Of note, the variant was not associated with the development of 

insomnia in the survival analysis. This could be the result of low power of the analysis (N = 

1112) or the variant may be important for the development of insomnia in an earlier phase of 

the disease.

Targeted Assessment for the PD Risk Variants

Of the 90 risk variants from the recently published PD GWAS, rs34637584 (LRRK2 
p.G2019S) and rs76763715 (GBA p.N370S) were not available in the meta-analyses because 

of their MAF < 0.01. The remaining 88 PD GWAS risk SNPs were assessed in our 25 

GWAS summary sets, resulting in evaluations of 2022 candidate associations. A total of 112 

associations between known genetic risk variants and clinical markers had raw P values less 

than 0.05. After Bonferroni correction for all evaluated candidate associations, 9 surpassed 

the threshold of the analyses-wide significance for the maximum of 25 analyses per variant 

(raw P value <0.002). The directions of these associations generally indicated that having the 

higher risk allele was associated with more severe deficits in both the cognitive and motor 

domains of PD, but not for sleeping problems. Having the risk allele (A) of rs1293298 

(intron variant of CTSB) was associated with a lower risk of developing insomnia (HR 0.79 

[0.69-0.91], P value = 1.2E-3), and the risk allele (A) of rs6500328 (intron variant of NOD2) 

and (A) of rs76116224 (intergenic variant close to 3- end of KCNS3) were associated with a 

lower prevalence of daytime sleepiness at baseline (OR 0.76 [0.64-0.90], P value = 1.4E-3; 

OR 0.47 [0.32-0.68], P value = 8.4E-5; respectively). Among the 9 associations with 

analysis-wide significance, 3 were significant after adjusting for 88 variants (raw P value 

<5.68E-4), and 1 among them had testwide significance (raw P value <2.47E-5). Figure 3 

shows the strength of the associations for the selected variants with associations of analyses-

wide significance in at least 1 analysis. This figure suggests that some risk variants were 

associated with specific clinical features. For example, rs35749011 was associated with both 

the HR of cognitive impairment at testwide significance (HR 2.45 [1.64-3.65] for the minor 

allele, P value = 1.1E-5) and lower MoCA score over time at analyses-wide significance 

(−1.16 [−1.89 to −0.43], P value = 0.0018). Although it is an intergenic variant whose 

closest gene is KRTCAP2, the variant is in high linkage disequilibrium (r2 = 0.78) with 

rs2230288 (GBA p.E365K)19,20 and has a similar spectrum of phenotype associations as 

rs2230288. Other notable variants with variant-wide significance were rs76904798, the 

intergenic variant close to the 5’ end of LRRK2, for reaching HY3 (HR 1.32 [1.14-1.54] 

with the minor allele of T, P value = 3.0E-4), and rs76116224 and the baseline OR of having 

daytime sleepiness mentioned previously. The detailed information for all of the test results 

is provided as supplemental material (Supplemental Table 4 and Supplemental Fig. 2).

GBA Protein Coding Variants and APOE Tagging Variants

In the focused analyses for GBA coding variants, rs75548401, GBA p.T408M, was 

associated with the faster development of HY3 (HR 2.35 [1.58–3.49], P value = 2.5E-5). 

rs2230288, GBA p.E365K, was associated with the higher odds of having cognitive 

impairment at baseline (OR 2.05 [1.33–3.18], P value = 1.3E-3), faster development of 
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cognitive impairment (HR 2.58 [1.71–3.89], P value = 5.5E-6), and lower MoCA score at 

the analysis-wide significance (β −1.23 [−1.97 to −0.50], P value = 1.0E-3) (Fig. 4). We 

previously reported these associations,21 and we were able to confirm them in our updated 

analysis with more stringent multiple-testing correction (false discovery rate vs. Bonferroni).

The C allele of rs429358, the tagging variant for the APOE E4 allele, was associated with 

lower MiniMental State Examination (β −0.20 [−0.33 to −0.07], P value = 2.8E-3) and 

lower MoCA (β−0.52 [−0.86 to −0.17], P value = 3.4E-3) as expected (Fig. 4). Moreover, it 

was associated with higher UPDRS part 1 scores (β 0.12 [0.04–0.20] in z score, P value = 

4.5E-3). We did not have enough evidence to conclude that the APOE E4 allele was 

associated with the prevalence of cognitive impairment at baseline (P value = 0.4) or its 

development during follow-ups (P value = 0.034). The T allele of rs7412, tagging APOE E2, 

showed no association with these measurements as predicted.

Discussion

We conducted GWAS using longitudinal data from multiple PD cohorts to investigate 

markers of PD progression and heterogeneity. Of the 25 meta-analyses that we evaluated, we 

identified 2 variant–phenotype associations with genomewide significance.

We also evaluated the summary statistics to assess clinical value of the variants of interest.

One of our genomewide hits, rs382940, in the intron of SLC44A1, was associated with a 

faster rate of progression to reach HY3. SLC44A1, soluble carrier 44A1, is also referred to 

as choline transporter-like protein 1. The gene is ubiquitously expressed in the brain, colon, 

thyroid, and other organs and is involved in choline transport. No associations with PD and 

this variant or the gene itself have been reported so far although it has been studied in several 

vitro and vivo studies.22–25 Further investigation is warranted. The search of the Brain eQTL 

database suggested that another GWAS signal, rs61863020, was associated with ADRA2A 
expression, a gene reported to be associated with the arousal/sleep state.26 ADRA2A is 

consistently expressed in locus coeruleus as well as nigral dopamine neurons and pyramidal 

neurons of the human brain (http://www.humanbraincode.org/).27

The ADRA2A-encoded alpha2 adrenoreceptor modulates norepinephrine levels. In addition, 

norepinephrine28 and its receptors29,30 have been linked to PD in multiple model systems. 

Interestingly, neither of the variants were reported to be associated with the incidence of PD 

in the recent case-control analysis of PD.3 A case-control study cannot address some 

mechanisms that contribute to the heterogeneity of PD such as genetic effects only relevant 

to cases or interactions with PD treatments. The discrepancy between the case-control 

GWAS and our study may reflect this point.

In the targeted assessments, we confirmed the previous results of the associations between 

GBA risk variants and motor and cognitive aspects of PD.31–35 In contrast with GBA 

variants, association studies of APOE and cognitive function in PD have yielded mixed 

results previously.36–40 Our data supported the association of APOE and cognitive function 

on the following 2 measurements: Mini-Mental State Examination and MoCA.
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The strength of the current study is the hypothesis-free approach of GWAS, which can be 

powerful in identifying new associations and expanding our biological knowledge base. 

Although the associations here should be replicated and further investigated with vivo/vitro 

experiments, these findings suggest the prioritization of the 2 variants and loci for future 

validations. We have reported all of the summary results on our publicly accessible site to 

benefit researchers so that they may conduct/replicate the analysis of variants of interest in 

their own research.

The major limitation of this study is the heterogeneity of the cohorts, which is apparent in 

several ways: baseline characteristics, definitions of binomial outcomes, patterns for clinical 

care during the course of follow-up, the platforms for genotyping/sequencing, and sample 

acquisition/enrollment practices. By meta-analyzing at the dataset-level and exercising 

careful quality control throughout, we tried to extract the most generalizable and reliable 

results across cohorts.

Another limitation is the power of the study. Although we have aggregated the largest 

collection of longitudinal data in PD genetics so far, more data would be needed to identify 

relatively small differences expected within PD patients when compared with the case-

versus-control setting. From the meta-analysis results, we estimated that if we had 30% 

more participants in the same setting, we would have had at least 1 variant of the 

genomewide significance (5E-8) in 21 of 25 phenotypes (Supplemental Table 5). In addition, 

our study results can be a valuable resource for validation and hypothesis testing as we have 

shown in our targeted analysis. The study website aims to provide other researchers with a 

tool to explore variants of their interest easily for all included phenotypes (https://

pdgenetics.shinyapps.io/pdprogmetagwasbrowser/).

In our survival analysis, we did not explicitly check the proportional hazard assumption. If a 

variant effect changed over time, the result would be interpreted as the average HR over 

time. Also, the result would be biased when 1 of the covariates violated the proportional 

hazard assumption in our model and it was also associated with the variant dosage. 

Replication is important in this regard as well.

Finally, the study participants were restricted to individuals with European ancestry. We are 

now striving to collect more data, including from populations that are underrepresented in 

this study, to improve our understanding of this topic in future studies.

Conclusion

With 4093 participants and 22,307 longitudinal data points over a median of 3.81 years, we 

performed 25 GWAS meta-analyses. We found 2 genomewide significant signals: the rate to 

reach HY3 during the disease course and rs382940, and the prevalence of insomnia at 

baseline and rs61863020. We also conducted targeted assessments of previously published 

variants of interest using the GWAS results. These results provide valuable insights into how 

genetic factors contribute to the heterogeneity of PD and disease progression.
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FIG. 1. 
Graphical overview of the analysis strategy. *Drug Interaction with Genes in Parkinson’s 

Disease cohort was analyzed separately depending on the genotyping system. AAD, age at 

diagnosis; HR, hazard ratio; HWE, Hardy-Weinberg equilibrium test; HY, Hoehn and Yahr 

scale; HY3, Hoehn and Yahr score; MAF, minor allele frequency; MMSE, Mini-Mental 

State Examination; MoCA, Montreal Cognitive Assessment; OR, odds ratio; PC, principal 

components; PD, Parkinson’s disease; REM, rapid eye movement; Rsq, R square; SEADL, 

Schwab and England Activities of Daily Living Scale; UPDRS, Unified Parkinson’s Disease 

Rating Scale; YfD, years from diagnosis to observation. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIG. 2. 
LocusZoom plots and forest plots of the 2 genome-wide significant hits. (A) The locus plot 

for rs382940, which is associated with HY3. (B) The locus plot for rs61863020, which is 

associated with insomnia. (C) The forest plot for rs382940. (D) The forest plot for 

rs61863020. ADRA2A, α−2A adrenergic receptor; C.I., confidence interval; DATATOP, 

Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; FE, Fixed effect mode; 

HBS, Harvard Biomarkers Study; HR, hazard ratio; HY3, Hoehn and Yahr score; OR, odds 

ratio; PARKWEST, Norwegian ParkWest Study; PDBP, Parkinson’s Disease Biomarker 

Program; PICNICS, Parkinsonism Incidence and Cognitive and Non-motor heterogeneity In 

Cambridgeshire; PPMI, Parkinson’s Progression Markers Initiative; PreCEPT, Parkinson 

Research Examination of CEP-1347 Trial study; PROPARK, Profiling Parkinson’s Disease 

Study; Rsq, R square RE, Random effect model.
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FIG. 3. 
Heatmap of the Parkinson’s disease genome-wide association study (GWAS) loci associated 

with progression markers. Cream, P value >0.05; light green, P value <0.05; green, P value 

<0.002; blue, P value <5.68E-4; dark blue, P value <2.47E-5. Suffix of “base” indicates the 

logistic regression model at baseline, “surv” for the survival analysis during the course, and 

“cont” for the linear mixed effect model for continuous outcome analyzed by linear mixed 

model. CONST, constipation; COGi, cognitive impairment; DEPR, depression; HY3, Hoehn 

and Yahr score; INS, insomnia; MMSE, Mini-Mental State Examination; MOCA, Montreal 

Cognitive Assessment; SEADL, the modified Schwab and England Activities of Daily 

Living Scale; SEADL70, the modified Schwab and England Activities of Daily Living 

Scale; SLEEP, daytime sleepiness; UPDRS, Unified Parkinson’s Disease Rating Scale or the 

Movement Disorder Society–revised UPDRS, scaled at the baseline (UPDRS1–3) or during 

the course.
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FIG. 4. 
Heatmap of the GBA and APOE variants associated with progression markers. Cream, P 
value >0.05; light green, P value <0.05; green, Bonferroni-corrected P value <0.05. Suffix of 

“base” indicates the logistic regression model at baseline, “surv” for the survival analysis 

during the course, and “cont” for the linear mixed effect model for continuous outcome 

analyzed by linear mixed model. CONST, constipation; COGi, cognitive impairment; 

DEPR, depression; HY3, Hoehn and Yahr score; INS, insomnia; MMSE, Mini-Mental State 

Examination; MOCA, Montreal Cognitive Assessment; SEADL, the modified Schwab and 

England Activities of Daily Living Scale; SEADL70, the modified Schwab and England 

Activities of Daily Living Scale; SLEEP, daytime sleepiness; UPDRS, Unified Parkinson’s 

Disease Rating Scale or the Movement Disorder Society–revised UPDRS, scaled at the 

baseline (UPDRS1–3) or during the course.
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