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Abstract

Genome-scale models (GEMs) of bacterial strains’ metabolism have been formulated and used 

over the past 20 years. Recently, with the number of genome sequences exponentially increasing, 

multi-strain GEMs have proved valuable to define the properties of a species. Here, through four 

major stages, we extend the original Protocol used to generate a GEM for a single strain to enable 

multi-strain GEMs: 1) Obtain or generate a high-quality model of a reference strain; 2) Compare 

the genome sequence between a reference strain and target strains to generate a homology matrix; 

3) Generate draft strain-specific models from the homology matrix; 4) Manually curate draft 

models. These multi-strain GEMs can be used to study pan metabolic capabilities and strain-

specific differences across a species, thus providing insights into its range of lifestyles. Unlike the 

original Protocol, this procedure is scalable and can be partly automated with the supplementary 

jupyter notebook tutorial. This Protocol Extension joins the ranks of other comparable methods for 

generating models such as CarveMe and KBase. This extension of the original Protocol takes in 

the order of weeks to multiple months to complete depending on the availability of a suitable 

reference model.

EDITORIAL SUMMARY

In this Protocol Extension, the Authors extend their original Protocol used to generate a genome-

scale metabolic model for a single strain to enable multi-strain models to be made, which can be 

used to study pan metabolic capabilities and strain-specific differences across a species.
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Introduction

In recent years, the exponential increase in the number of genome sequences has enabled us 

to investigate the variability across strains within the same species. As more genome 

sequences become available, significant differences in genomic content and functions across 

strains have been identified1. Therefore, researchers started to explore strain-specific 

variations using approaches such as pan-genome analyses2. These analyses showed that 

some species have a vast diversity of genes among its strains, resulting in remarkably 

different divergent phenotypes across strains3. However, despite the utility of pan-genome 

analysis based on gene lists, it does not provide mechanistic insight into phenotypic 

potential based on genetic and genomic variability within a species.

Over the past decade, genome-scale models (GEMs) of metabolism have proven to be 

valuable in understanding mechanistic links between genotype and phenotype4. GEMs are 

mathematical models of metabolic network reconstructions5. They allow computation of the 

systems-level metabolic functions from genome sequences and extend the power of pan-

genome analyses towards sequence-based evaluation of the phenotypic variation of a 

species. So far, the majority of studies based on metabolic network reconstructions, and 

GEMs derived from them, have been focused on a single strain of a species. This includes a 

large number of studies based on our previously published metabolic network reconstruction 

Protocol6.

A strain-specific GEM can be expanded into models for multiple strains of the same species. 

Rapid mapping of the gene content in a GEM from a reference strain onto multiple strains’ 

genome sequences of interest is now possible. This process allows one to utilize highly 

curated knowledge bases assembled over many decades, upon which a metabolic 

reconstruction is based, to quickly study a freshly sequenced isolate. Using this process, 

recent studies have successfully identified strain-specific metabolic differences and their 

association with lifestyle of the strains for multiple species7–12. These studies lead to an 

understanding of strain diversity, for species with both large and small pangenomes. Using 

GEMs to characterize pan-genomes is thus likely to be a widely used method as thousands 

of strain sequences will become available for species across the microbial phylogenetic tree.

It is worth noting that other methods for the generation of GEMs from existing 

reconstructions are available, namely CarveMe 13 and functions within KBase14 

(Supplementary Table 1). CarveMe relies on the use of a universal model that is then filtered 

to a specific model by solving a mixed integer linear program. KBase executes a proteome 

comparison and utilizes that information to infer reactions to keep within a new model. The 

reliance on the universal model within CarveMe may limit the achievable specificity 

particularly in regard to biomass equations. CarveMe also possesses the unique functionality 
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to produce ensemble models and microbial community models. KBase benefits from ease-

of-use and potential integration with other KBase functions, however the implementation is 

restricted to the KBase interface and limited in customizability.

In this Protocol, we extend our original metabolic reconstruction Protocol6 to instruct users 

on building multi-strain GEMs from an existing reference model. We will provide guidance 

for the reconstruction and application of strain-specific models and show how a reference 

strain is mapped to other strains within the same species. Furthermore, we provide a detailed 

tutorial (Supplementary Tutorial) along with the step-by-step instructions to guide readers 

through the Protocol and its efficient implementation. The application of the workflow is 

rapid, and it can be partly automated.

Applications

A highly curated reference reconstruction represents a highly organized and structured 

assembly of organism information. This accumulated knowledge can be efficiently extended 

to generate strain-specific models by combining comparative genomics and genome-scale 

metabolic modeling (Figure 1). By analyzing multiple strains, it becomes possible to 

investigate the range of evolutionary outcomes for a species. GEMs allow for the prediction 

of growth capabilities and auxotrophies across a bacterial species. These predictions have 

provided insight into the lifestyle and diversity of the members of a species. For example, 

metabolic capabilities predicted using multi-strain GEMs have been used to build 

classification schema capable of organizing strains into nutrient niche7, serovars9, and 

pathogenicity12. Multi-strain GEMs provide a platform with which to begin to combat 

limitations identified with reconstruction efforts13 regarding completeness and the coverage 

of the reactome.

Another inherent strength of multi-strain reconstruction is scalability. The number of strains 

considered may be increased with ease. Scalability, in turn, enables new applications. On the 

order of hundreds of strains, it becomes possible to use multi-strain GEMs to investigate 

allele frequencies of genes within a network context14. The reconstructed networks provide 

insight into potential evolutionary hotspots that become linked to calculated phenotypes 

through the use of GEMs14. Additionally, the higher number of strains considered allows for 

applications with a wider perspective. For example, studying the global epidemiology of 

infection and the tracking of strains by their indicated abilities and classifications become 

possible. It is worth noting that the number of strains considered may also potentially 

influence the complexity and time for downstream analysis. Preliminary results become 

rapidly available through this approach, however if additional strains are candidates for 

extensive curation this increases the time required for future analysis.

Advantages and limitations

Multi-strain GEMs provide us with a comprehensive and high-resolution knowledge base of 

metabolic diversity across strains of a species of interest. The models enable accurate and 

rapid computational prediction of auxotrophies and nutrient utilization capability across 

strains from only genome sequences without the need for experiments. The results then 

allow us to calculate correlations between strain-specific metabolic variations and attributes 
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of the strain’s lifestyle (such as host specificity) or health outcomes such as strain-specific 

implications in inflammatory bowel disease7,8,12,15. The reconstruction of multi-strain 

GEMs is much faster than reconstructing a reference model from scratch, yet still highly 

informative.

However, the user should also keep in mind the limitations before starting the multi-strain 

GEM reconstruction. First, it can be time-consuming to build multi-strain GEMs for species 

lacking a reference model, as approximately six months to a year is needed to build a GEM 

de novo. Second, this Protocol Extension works best with well-annotated species, since a 

lack of information may result in an incomplete model and inaccurate predictions. 

Nevertheless, strain-specific GEMs will also enable the discovery of knowledge gaps for less 

well-studied species. Third, multi-strain GEMs will be most valuable for species with 

significant differences in genomic content across strains. If strains within the species have 

limited genetic variability, the strain-specific GEM will be very similar and provide limited 

new information. Such similarity can be quickly evaluated by examining the openness of the 

pan-genome for the strains of interest. Finally, basic coding skills are required for this 

Protocol Extension. Previous experience with bioinformatics analysis, coding languages 

(especially python), and usage of GEMs will accelerate the process significantly.

Experimental Design

This Protocol Extension consists of four major stages to utilize the output of a high-quality 

genome-scale metabolic reconstruction6 to create multiple strain-specific models derived 

from the reference organism (Figure 2). These stages are described further in the following 

sections. These stages are also summarized within a pseudocode format (Supplementary 

Methods) Following the steps delineated here will result in draft strain-specific models 

based on genetic similarity to the original strain that can be used as a starting point to feed 

directly into Stage 2 of the original Protocol6 for further refinement and evaluation, or for 

immediate comparative investigation. The time-consuming nature of the base reconstruction 

approach of the original Protocol6 results in limited scalability; this approach of generating 

models for multiple strains through homology relationships represents a means of more 

rapidly extrapolating the knowledge contained within the highly-curated reconstruction. One 

caveat to consider when applying this approach is the metabolic diversity inherent to the 

species of interest. If the species is not particularly genetically diverse, then the resulting 

models will likewise be highly similar.

Along with the step-by-step procedures in this Protocol Extension, we also provide a tutorial 

(Supplementary Tutorial) to generate strain-specific models for five E. coli strains from a 

reference model. The Supplementary Tutorial includes 3 jupyter notebooks that are focused 

on stages 2 and 3 (the genome sequence comparison and generation of homology matrix 

stage, and the creation of strain-specific draft models) to guide the steps that could be 

automated in this Protocol Extension.

Overview of the procedure

Stage 1: Steps 1–4 Obtain a high-quality genome-scale starting reference 
reconstruction.—To generate strain-specific reconstructions, a high-quality single-strain 
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base reconstruction generated through the use of the original Protocol6 is a necessary 

starting point. Published reconstruction efforts usually include this output as a 

supplementary data file in either SBML or JSON file formats. Additionally, a number of 

reconstruction repositories exist, such as BiGG, BioModels, and MetaNetX16–18. If a 

reconstruction for a reference strain in the species of interest is not available, then the 

original Protocol can be executed to produce one6. The resulting output can then be used as 

the starting point to generate multi-strain models. It is possible that for certain organisms 

there could be multiple available models that have been independently reconstructed. This 

represents a potential opportunity to broaden the reference knowledgebase. In this case the 

user can either reconcile the base reconstructions for a single strain into a single 

reconstruction of highest confidence through careful manual curation of the content or run 

this Protocol Extension using each base reconstruction in turn and compare the resulting 

draft models of interest. After obtaining (or generating) a reference reconstruction, it is 

necessary to evaluate its quality to determine its suitability for use as a reference 

reconstruction. To evaluate the reference reconstruction, refer to Stage 4 of the original 

Protocol6. Recently, a testing suite called Memote has become available that evaluates a 

number of quality control/quality assurance features of a GEM in a drag and drop fashion19. 

Once a curated, quality reference reconstruction is either obtained or generated, it can be 

used in the following steps to generate strain-specific GEMs.

Stage 2: Steps 5–13 Genome Sequence Comparison and Generation of 
Homology Matrix—Stage 2 is to identify and acquire the sequenced genomes of different 

strains from the species of interest. Publicly available genome data is available in sources 

such as NCBI or PATRIC20,21. How many and which strains to include depends on the given 

research question posed. Criteria for genome selection could possibly include particular 

isolation location, existence of associated metadata, and phenotype or pathotype 

information. One should keep in mind the phylogenetic distance between reference strain 

and target strains as this will directly impact the utility of mapping the content of the 

original reconstruction. As a means of quality assurance, it is important to keep track of the 

identifiers of the publicly available genomes used. Within Notebook 1 (Supplementary 

Tutorial) we begin by acquiring a small set of E. coli genomes from NCBI. In the described 

workflow and corresponding tutorials, we assume that the user is starting with annotated 

GenBank files for the strains of interest (see Box 1).

After identifying and obtaining the genomes for the target strains of interest, the next step is 

to identify the orthologous genes between each strain and the reference strain. This step is 

detailed within Notebook 1 (Supplementary Tutorial). While a plethora of techniques exist 

to perform this function, we recommend utilizing NCBI protein BLAST to identify 

bidirectional best hits as it is widely adopted by the community, scriptable, and reliable. This 

method is utilized within the provided scripts (Supplementary Tutorial). Following the 

identification of homologous genes in each of the target strains, the results can be unified 

into a single Pandas dataframe of the percentage identity values (PID). This dataframe is 

then filtered down to contain all the genes within the reference reconstruction. The output of 

these steps is the homology matrix consisting of N x M PIDs, where there are N rows of the 

genes within the reference reconstruction and M columns of the target strains (Figure 2). 
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The penultimate step is to apply a threshold to binarize this matrix into a presence/absence 

matrix detailing which genes are absent within the target strain. We suggest utilizing a cutoff 

of 80% percentage sequence identity covering at least 25% of the query gene length or 

above to consider the gene present within the target strain. However, this threshold is an 

adjustable parameter and the effect of genes retained in draft strain-specific models is 

dependent on how genetically similar the target strains are to the reference strain 

(Supplementary Figure 1).

A supplementary final step is to execute a nucleotide BLAST. Many reference genomes have 

undergone extensive manual curation within the annotation, so there may be discrepancies 

with automatically annotated target strains. By executing a BLAST on raw nucleotide 

sequences there is a secondary comparison made to catch potentially unannotated open 

reading frames within a given target strain. In addition, for each open reading frame (ORF) 

identified to pass the nucleotide sequence similarity threshold but missing from the 

annotations, a quality check for premature stop codons within the sequence is performed as 

these ORFs likely result in a nonfunctional protein. This process is also detailed within 

Notebook 1 (Supplementary Tutorial). The nucleotide BLAST provides an added catch to 

avoid excluding genes from strain-specific models due to lack of annotation. The final 

binarized homology matrix can then be used in concert with COBRA methods22–29 to create 

and save strain-specific models of the target strains.

Stage 3: Steps 14–23 Creation of Strain-Specific Draft Models—The genome 

comparison executed in Stage 2 provides information on which genes within the base 

reconstruction are lacking a homologous gene within each target strain genome. By utilizing 

the “remove_genes” function from the “cobra.manipulation.delete” module of COBRApy, 

the appropriate genes can be removed from a model. Notebook 2 (Supplementary Tutorial) 

demonstrates how to properly implement this technique. For every target strain of interest, a 

copy of the base reconstruction is created and appropriate genes, as per the homology 

matrix, are deleted from each model, creating a draft strain-specific model. This process is 

repeated for each strain of interest. Additionally, the genes retained in each strain-specific 

model are updated at this stage to reflect the locus_tags in the target strain’s annotation. This 

process is executed using the “rename_genes” function from the 

“cobra.manipulation.modify” module according to another generated matrix of all the gene 

names, mapping the gene identifiers constructed within Stage 2. Depending on the 

annotation platform it may be worthwhile to add additional locus tag information to stratify 

multiple namespaces. For example, if the genomes used were re-annotated with Prokka it 

could be useful to add NCBI locus tags to the gene objects within the model. Additional 

information can be stored within the “notes” field of a gene object. The updated draft models 

are then ready for further evaluation.

The next step is functional evaluation of the draft strain-specific models and this begins by 

determining which of them are able to be optimized through linear programming for 

biomass objective flux, i.e., in silico growth. At this point, a combination of automated gap-

filling methods and manual curation are used to determine which nutrients need to be 

supplemented to the in silico media to achieve positive biomass yield. Gap-filling methods 
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have been well documented30–33, and the results generated can be used to enable growth in 

strain-specific models found to have auxotrophies.

This step is executed in an iterative fashion across all target strains and reflects a critical step 

in any reconstruction effort. It is important to keep in mind the differences between the two 

model types to be gap-filled: 1) models of true auxotrophs that require only a 

supplementation of extracellular nutrient to enable biomass production and 2) models in 

which metabolic reaction gap-filling is necessary and thus offers a potential for discovery of 

alternative pathways. Ideally, gap-filling should always be supported by literature 

information and/or validated experimentally. In this context, we refer to the gap-filling 

required to obtain a functional network that can produce biomass. It is also worth noting that 

in some cases where there are known biomass composition variants, instead of gap-filling 

the model to enable growth, the biomass reactions should be modified. Alternate biomass 

formulations may substantially affect model predictions and have been shown to be variable 

across species and conditions34. The base biomass reaction may also be highly variable 

across strains in certain species. For example, O antigen structures are highly variable across 

Gram-negative strains and the corresponding biosynthetic pathways vary extensively, 

requiring a separate pan-species reconstruction effort.9 Therefore, instead of directly taking 

the biomass reaction from the base strain, we recommend that the users customize biomass 

reaction for strains of interest by generating or collecting strain-specific experimental data, 

when available. A recently developed workflow can also help users generate the biomass 

reactions in a data-driven and unbiased fashion34.

Stage 4: Steps 24–28 Curation of Strain-Specific Models—At this juncture, a 

group of functional models for the identified target strains has been produced, and may be 

used in their current form to generate preliminary predictions and direct future studies. Any 

known strain capabilities present an opportunity to perform a validation step to inspect 

whether the strain-specific models can still accurately predict known phenotypes. 

Additionally, all, or select models depending on interest and/or time constraints, can now be 

extensively manually curated as per the original Protocol6 to produce a high-quality 

reconstruction. In this case, the models produced would be used as input to the original 

Protocol6 at Stage 2: Reconstruction Refinement. This would refine these models from 

derivative draft strain-specific models to curated reconstructions of specific strains. This 

effort will involve adding strain-specific metabolism not present in the original 

reconstruction. One useful technique here would be to annotate the pangenome to potentially 

catch genes with divergent nucleotide sequence but similar functional machinery which may 

have appeared due to horizontal gene transfer events. While additional manual curation of 

the generated strain-specific models would yield more accurate predictions, it is worth 

noting that the group of draft models represents a valuable resource.

Various analyses can be conducted such as determining differing growth capabilities across 

nutrient environments. An example of this for carbon source utilization is demonstrated in 

Notebook 3 (Supplementary Tutorial). In this analysis, growth in different nutrient 

conditions can quickly be predicted. Starting from a minimal media condition, the current 

growth-supporting nutrients for carbon, nitrogen, phosphorous, or sulfur can be removed, 

and an appropriate list of nutrients looped through to determine whether alternative sources 
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of carbon, nitrogen, phosphorus, and sulfur support growth. This process is repeated for each 

strain in the group of strain-specific models. Experimental validation of the multi-strain 

predictions is ideal. The resulting in silico predicted growth capabilities can then be used to 

examine which strains are similar in terms of metabolic phenotype. This approach has 

proven fruitful in providing an additional level of discrimination in numerous past studies 

and represents one of the immediate benefits of extending a reconstruction to construct 

strain-specific models.

Stage 5: Applications of Multi-Strain GEMs—Once a collection of functional models 

of the identified target strains has been generated, they can be used in a variety of ways (see 

Applications). This fifth stage includes a range of techniques to select from, determined by 

the research to be conducted. Given the breadth of the potential applications, they are not 

addressed in this Protocol Extension.

Materials

Annotated genome sequences of interest

Annotated sequences of interest can either be downloaded from public databases or 

generated by the user through sequencing. In this Protocol Extension, we start with 

annotated GenBank files that contain the annotation and sequence sections that can be 

directly downloaded from NCBI. Several other guides document how to assemble and 

annotate genomes of interest34,35.

Reference GEM

Reference GEMs have already been reconstructed for many well studied organisms (see 

Supplementary Table 1). The available GEMs can mostly be found and downloaded from 

publications or public databases such as BiGG Models16. Reference models can be in 

various formats such as SBML, MAT and JSON. If the Reference model has not been built 

for the species of interest, please refer to the original Protocol6 for details of building a 

detailed, reference reconstruction.

• Equipment Standard personal computer with the following software/packages 

properly installed:

– BLAST (v 2.9.0 tested)

– Python (v 3.5.2 tested)

Software

• Python Packages: pandas (v0.23.0 tested), seaborn (v0.8.1 tested), biopython 

(1.71 tested), jupyter notebook (v5.2.3 tested)

– All python packages can be installed directly with pip command. If the 

users are more comfortable with anaconda, all packages are available in 

anaconda installation as well.
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– CobraPy: the installation steps and tutorial can be found on https://

cobrapy.readthedocs.io/en/latest/. To ensure the performance of the 

scripts in the Supplementary Tutorial, use version 0.13.0

Procedure

Stage 1: Reconstruction of base model

Timing: 6 months - 1 year

1. Obtain reference model. Download a reference model from BiGG Models (http://

bigg.ucsd.edu/), publications or other databases (see Supplementary Table 1). 

The resulting draft strain-specific models will reflect the namespace of the base 

reconstruction. CRITICAL STEP: Models in the BiGG database16 have been 

pre-checked for quality, so it is a recommended resource if your organism of 

interest is available. While BiGG is recommended, any consistent reconstruction 

where the gene product rules are linked to a genome annotation, producing a 

model that can be loaded to COBRApy will work within this Protocol Extension.

2. Build reference model if not available. If the reference model is not available, 

reconstruct a model from scratch following the original reconstruction Protocol6 

or start from draft models reconstructed in previous studies36,37 (see 

Supplementary Table 2) and follow the original Protocol6.

3. Quality control. Regardless of the source, perform quality control analysis on the 

base model by uploading the model to Memote (https://memote.io/)19 for quality 

checking. Once the report is available, check the following two important 

measures: 1. All metrics in the consistency section 2. Uniform Metabolite 

Identifier Namespace. These metrics ensure that the model is properly 

standardized. In addition, check if the model is functional by performing growth 

simulations to ensure firstly that there is no growth when exchange reactions are 

closed. Refer to the computational method developed by Fritzmeier et al. 38 to 

identify and remove erroneous energy-generating cycles. And secondly that the 

growth prediction is consistent with experimental observations including nutrient 

utilization and metabolite secretion (if data available).

CRITICAL STEP: The quality of the multi-strain models generated from this 

Protocol Extension will be highly dependent on the reference model. So, it is 

especially important to start with a high-quality reconstruction and 

experimentally validated model.

4. Obtain base strain genome annotation. Download the reference strain genome 

annotation. Retrieve the GenBank file that contains the genome sequence and 

annotation, which were originally used to reconstruct the reference GEM and 

extract the modeled coding DNA sequences and corresponding unique locus 

tags. CRITICAL STEP: This is important because the creation of draft multi-

strain model is depended on the sequence annotation of the base strain.
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Stage 2: Sequence comparison & generation of homology matrix

Timing: days - weeks

5. Download annotated genomes for different strains of interest in GenBank format. 
Genomes of interest can be downloaded from various public databases such as 

National Center for Biotechnology Information (NCBI) and Pathosystems 

Resource Integration Center (PATRIC)20. Instructions to download annotated 

genome sequences from NCBI can be found here: https://www.ncbi.nlm.nih.gov/

guide/howto/dwn-genome/, and instructions to download genome sequences 

from PATRIC can be found here: https://docs.patricbrc.org/user_guides/data/

index.html#download-data. Or users can follow the Supplementary Tutorial to 

download the GenBank files using jupyter notebooks.

!CAUTION: We recommend downloading GenBank files that contain both 

sequence and annotation information. If annotation is not available for the target 

strains, see Box 1 for our recommendations and tips on genome annotation. To 

ensure consistency, the annotation pipeline used for target strains should be the 

same as the pipeline used for reference strain.

6. Quality control of the genome sequences. Calculate and check the coverage (if 

available), N50 score and number of contigs of the genome sequences. To 

determine the threshold for the above quality metrics, consider performing 

similar analysis shown in Supplementary Figure 1. Discard genome sequences 

that do not pass the quality test.

CRITICAL STEP: More reliable results can be obtained from genome sequences 

with coverage > 70x. Adjust the threshold for quality metrics such as N50 score 

and number of contigs based on your organism of interest, as they are highly 

dependent on the organism. If time permits, use sensitivity analysis 38 to find the 

most appropriate threshold.

7. Generate Fasta files from GenBank files. Use the Genbank files to generate fasta 

files for both protein and nucleotide sequences (see Notebook 1 in 

Supplementary Tutorial). Protein fasta files are then used as input for the 

following BLAST operation in Step 9 to identify homologous proteins across 

strains.

8. Identify candidate metabolic functions. The previous genome annotation (Step 4) 

should provide E.C. numbers for genes involved in metabolic function. Extract 

genes with E.C. numbers from annotations and the following steps are focused 

on these metabolic genes only.

9. BLAST the genomes of interest against the reference strain. Perform 

bidirectional protein BLAST39 to identify the sequence similarity of metabolic 

proteins in strains of interest compared to the reference strain. Use BLASTp 

(output format 6) to record both query/subject ID and percentage identity 

matches (PID).
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CRITICAL STEP: Bidirectional BLAST uses both the reference strain or the 

other strain as reference BLAST database and selects the best bidirectional hits 

(BBH) based on BLAST result in both directions to identify orthologs. Note that 

we recommend filtering mapping results based on coverage of alignment length. 

(see Notebook1 in Supplementary Tutorial)

10. Filter the BLAST result for only proteins in the base model. Identify the list of 

proteins included in the base model and keep only the BLAST results for these 

protein genes for the following analysis.

11. Create a homology matrix summarizing the results for all strains of interest. 
Identify the BBHs of all proteins between reference strain and strains of interest. 

Compile the PID of all BBHs in the base model for all strains into a homology 

matrix, where the columns represent the strains, and the rows represent the 

protein.

12. Create binarized homology matrix for genes in the model. Select a threshold for 

PID to determine the presence/absence of proteins in all strains. The matrix is 

binary with 1 representing presence, and 0 representing absence. Similar to the 

homology matrix, it should have M strains * N proteins.

CRITICAL STEP: Adjust the threshold for PID accordingly depending on your 

data and purpose (see Supplementary Figure 1 for how PID threshold affects the 

number of genes retained in strain-specific models). The threshold of 80% used 

in the Supplementary Tutorial is quite stringent as some tools use the sequence 

identity cutoff of 50% to identify gene orthologs40.

13. Nucleotide BLAST to check unannotated open reading frames. To ensure that we 

do not miss any genes in the target strains due to lack of annotation during 

BLASTp, we perform nucleotide BLAST between the reference strain and 

nucleotide sequences of the target strains (fna files containing contigs). In 

addition, we also look for premature stop codons in genes of interest to exclude 

non-functional proteins. Record any inconsistencies observed in gene absence/

present results generated by BLASTp and BLASTn, as they are potential 

candidates for manual curation.

Stage 3: Creation of draft multi-strain models

Timing: days - weeks

14. Identify missing reactions. Based on the presence/absence matrix from Step 12 

and the gene-protein-reaction (GPR) established in the reference strain 

reconstruction, identify the genes missing in each strain and reactions encoded 

by the missing genes.

15. Remove missing genes/reactions. For each strain of interest, start with the 

reference strain. Remove the identified missing gene/reaction for each strain 

from the starting base strain using COBRApy function remove_genes. Save the 

modified model as the draft strain-specific model.
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!CAUTION: Multiple functions in COBRApy allow the user to delete reactions, 

but make sure to use function remove_genes with the the parameter 

“remove_reactions=True” to remove both the missing genes and reactions.

16. Update the GPR in the draft models. Using the query/subject ID obtained in step 

9, match the genes in the base model with genes in the strains of interest to 

update the gene names in the strain-specific model. Optionally, to ensure that all 

possible encoding genes of a metabolic reaction are included in strain-specific 

models, one can refer to the full BLAST result from Step 9 and identify cases of 

additional pertinent homologs (potential paralogs) that are not BBH but also pass 

the PID threshold, and update the GPR accordingly (e.g., “Gene A” -> “Gene A 

or Gene B”).

17. Check biomass reaction. Make sure that the metabolites are general to all strains 

of interest. Remove the metabolites which are specific to the reference strain or 

its unique microenvironment. If strain-specific experimental omics data-sets are 

available, coefficients of metabolites in the biomass reaction could also be 

adjusted accordingly using the BOFdat workflow41.

18. Simulate growth. For each strain-specific model, simulate for growth under the 

same medium condition as the base model using COBRApy function 

model.optimize(). A minimal medium condition is preferred if the recipe is 

available to identify potential auxotrophies. To modify the medium composition, 

change the constraint on the exchange reactions (see original Protocol Step 37 

for more details6). If the simulated growth rate is less than 0.001 and the 

objective status is “optimal”, skip Steps 19 to 23 and proceed to stage 4 directly. 

Otherwise continue with Sstep 19. ?Troubleshooting

!CAUTION: Adjust the lower bound of the exchange reactions to allow uptake of 

extracellular nutrients. Ensure the exchange reactions of the metabolites missing 

from the medium are closed (lower bound set to 0).

19. Identify strain-specific auxotrophies. Simulate biomass yield in a rich medium 

(set all nutrient exchanges to −5 mmol/gDW/hr). If the yield obtained is less than 

0.001 go to Step 22. Otherwise, find the minimal number of nutrient 

supplementations needed to support in silico growth using the 

find_nutrient_supplementation function. Review the literature for reports of an 

experimentally validated auxotrophic phenotype for your strain. If possible, 

acquire the strain and validate the auxotrophic phenotype experimentally.

20. Check and report the genetic basis for the auxotrophy: Retrieve the missing 

genes identified by “find_nutrient_supplementation” as the genetic basis for the 

nutrient requirement and run BLASTn as a final quality check to ensure that no 

matches are found. If no matches are found, supplement the in silico medium for 

that strain-specific model with one of the sets of nutrients returned by 

“find_nutrient_supplementation”. If the genes are found, add the reactions back 

into the strain-specific model, and adjust of the PID threshold used in Step 12 if 

needed. If positive yield is achieved skip Steps 21–23 and proceed to stage 4.
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21. Check biomass metabolite synthesis. For strain-specific models which cannot 

simulate nonzero positive yield, simulate the production of each metabolite in the 

biomass reaction. To do so, create demand reactions which consume metabolites 

included in the biomass reaction. A demand reaction is a pseudo-reaction with a 

lower bound of 0 and upper bound of 1000 which allows for a metabolite to 

leave the cell. Instead of the biomass reaction, iteratively set one demand 

reaction as the objective to optimize for the production of each biomass 

precursor. If the flux through the demand reaction is less than 0.0001, model 

simulations suggest that this biomass precursor cannot be produced. ?

Troubleshooting

22. Identify missing essential reaction using gap filling. Use the gapfill function in 

COBRApy to identify the minimum number of reactions that need to be added to 

the strain-specific model to enable the production of those biomass precursors 

which cannot be synthesized. Use the original reference model as the reaction 

repository to draw reactions from in the gap-filling step. Once the genetic basis 

for the simulated phenotype is identified, the curator should decide whether to 

exclude the precursor from the biomass reaction or add the gap filling reactions 

back. ?Troubleshooting

23. Identify genetic evidence for missing essential reactions. For the reactions 

identified in the previous step, look for evidence in the genome and identify why 

they were deleted in the previous steps. Adjust sequence similarity threshold if 

needed and repeat the analysis from Step 12. If no genetic evidence is found, 

proceed with stage 4 to identify potential strain-specific alternative pathways.

Stage 4: Curation of strain-specific models

Timing: days - weeks

24. Identify strain-specific genes absent from reference model. Inspect the genes 

with E.C. number from strains of interest that are not present in the reference 

strain. Cross referencing models of related organisms may be helpful in this step.

25. Identify novel metabolic reactions. Identify metabolic reactions corresponding to 

the strain-specific genes identified in Step 23 using public databases including 

Uniprot (https://www.uniprot.org/), ModelSEED (http://modelseed.org/), KEGG 

(https://www.genome.jp/kegg/) and BIOCYC (https://biocyc.org/). Add the 

metabolic reaction to the model using COBRApy (see details in original 

Protocol6 Steps 6–11). If the reaction is already present in the model, update the 

GPR of the reaction to include the strain-specific gene.

!CAUTION: Make sure that the metabolite naming scheme for the novel 

reactions is consistent with the model standard to enable flux simulation through 

the newly-added reaction.

26. Repeat growth simulation. Ensure that draft models which were originally are 

able to simulate growth can still do so. Check if the models which failed to grow 

before can now simulate growth with newly-added reactions. If not, add back the 
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missing essential reaction to enable follow-up analysis as it may be due to 

unknown alternative pathways. Ensure that the model does not have futile cycles 

after adding new reactions.

CRITICAL STEP: Growth simulation results could have been altered after 

adding novel strain-specific reactions. So even if the model was predicted to 

grow in stage 3, double-check here to ensure growth.

27. Quality check the models. Following the instructions in the original Protocol6, 

perform quality check on the models generated including their mass/charge 

balance, dead-end metabolites/reactions and blocked reactions, etc.?

Troubleshooting

28. Validate strain-specific models. Perform experiments or collect experimental data 

from the literature on the metabolic capabilities of the strains of interest. Data 

useful for validation include known secretion products, growth on different 

nutrient sources, auxotrophy and knock-out phenotypes (see original Protocol 

Steps 81 and 82 for details of model validation against experimental 

observations6). As with all GEMs, better experimental characterization of the 

strains of interest will improve the in silico results. Thus, increasing the accuracy 

of the biochemical composition of the biomass function for strains of interest is 

of value.

!CAUTION: In order to maximize the accuracy of model prediction, ensure the 

simulation condition (constraint, strain, media) is consistent with the 

experimental condition.

Troubleshooting

Troubleshooting advice can be found in Table 1.

Timing

The timing of the entire process is estimated under the assumption that the user has basic 

coding experience and is working with prokaryotes. The timing also depends on multiple 

factors: 1) Availability of the base model: the timing will be significantly reduced if the user 

starts with an available and high-quality base model. 2) Number of strains. While a good 

portion of the workflow can be automated (see Supplementary Tutorial), manual curation is 

still necessary for each strain-specific model, resulting in longer time needed with increased 

number of strains. 3) Experience with coding/GEMs. If the user has worked with GEMs and 

is comfortable with coding (especially python), the timing will be greatly reduced with the 

help of the Supplementary Tutorial. 4) Computational resources. This factor will only come 

into play in the BLAST step if the user is working with large genomes and many strains. 

Otherwise a personal computer should be sufficient.

• Stage 1 (Steps 1–4) (base model reconstruction if model not available): 6 months 

- 1 year depending on the size of the genome, annotation quality and availability 

of the metabolic knowledge
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• Stage 2 (Steps 5–13): days to weeks depending on the number of strains and 

availability of computational resources

• Stage 3 (Steps 14–23): days to weeks depending on the number of strains

• Stage 4 (Steps 24–28): days to weeks depending on the number of strains

Anticipated results

This Protocol will result in multi-strain genome-scale metabolic models that not only can 

serve as a comprehensive knowledge base for the species of interest but will also allow 

computation of metabolic capabilities for different strains from just their genome sequences. 

Compared to single-strain-based GEMs, multi-strain GEMs can also be queried for strain-

specific metabolic genes/reactions. Multi-strain GEMs will also allow various simulations 

including growth on different nutrient sources and gene knockouts to allow us to obtain a 

high-resolution understanding of the metabolic phenotypes displayed by different strains.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

A commentary on genome annotation and assembly:

Genome annotation and assembly are both well documented and established techniques 

within the bioinformatics field42 If the research effort is using publicly available 

genomes, most will likely be annotated. However, when utilizing newly sequenced 

genomes or those lacking annotation, it is necessary to perform annotation. While a 

plethora of tools exist for executing genome annotation43,44, it is important to use a 

consistent tool to prevent potential errors/bias. One potentially useful annotation software 

package is Prokka45. If one is interested in following this Protocol Extension to generate 

models of newly sequenced strains it will also be necessary to perform genome assembly. 

This raises the question of the sequence quality required to generate multi-strain models. 

One means of assessing quality is through coverage. While the specific requirement may 

vary from species to species, we analyzed how varying coverage impacts the resulting 

assembly metrics of N50 and number of contigs (Supplementary Figure 2). For the 

purposes of using an assembled genome, it is important to have sufficient coverage that 

demonstrates saturation in these metrics. In the case of the E. coli strain discussed in the 

supplementary figure 2 we see this to be at around 70X coverage.
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Figure 1: Applications of multi-strain GEMs:
The workflow of genome comparison to generate a homology matrix of percentage identity 

values (PIDs), which is in turn used to generate strain-specific models of the target strains. 

The number of strains considered in this fashion enables various types of analyses including: 

1) comparison of strain nutrient utilization and identification of strain-specific auxotrophies; 

2) interrogation of genome architecture and classification of strains by niche or by 

pathotype; 3) investigation of allele frequencies among strains and mapping to protein 

structural information; and, 4) linking to epidemiology and tracking of strains/infections.
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Figure 2: 
Overall workflow for multi-strain GEMs generation.
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Figure 3: Workflow to generate base model from reference genome sequence.
This workflow presents the four major steps involved in reconstructing a reference model as 

outlined originally by Thiele et al.6.
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Table 1.

A troubleshooting table that describes the step, problem, possible reason and solution.

Step Problem Possible reason Solution

18 Strains of interest 
cannot simulate 
growth

1 Auxotrophy (details discussed in the 
procedure)

2 Some metabolites in the biomass 
reactions are specific to the reference 
strain, and are not present in the other 
strains

3 The threshold of PID for gene 
presence is too high, resulting in the 
deletion of essential genes

4 Genome sequences have low quality

1 Supplement the medium with the 
metabolite to enable growth

2 Only keep metabolites that are common to 
all strains in the biomass reaction

3 Use sensitivity analysis to adjust the 
threshold for PID

4 Adjust the threshold for genome sequence 
quality control

22 Gap-filling 
failure

Gap-filling algorithm of choice does not produce 
reasonable or reliable results.

Utilize the gap-filling algorithm provided in 
Supplementary Tutorial Notebook 3 to identify which 
missing reactions will enable growth. This approach is 
designed to work in concert with this Protocol Extension 
and provides a starting point for manual curation.

22 No genetic 
evidence was 
found for gap-
filled reactions

1 Gap-filled reactions are not present in 
the strain. Other alternative pathways 
missing in the base model perform the 
same function

2 Gap-filled reactions are in the strain 
of interest, but other encoding genes 
have not been identified.

1 Look for strain-specific genes/reactions 
that encode for the same function but are 
absent from base model

2 Add in the reaction and update the GPR 
when the information is available in the 
future

27 Experimental 
results do not 
match model 
predictions

1 Simulation condition is not consistent 
with experimental condition

2 Unknown reactions/pathways are not 
included in the model

3 Experimental observation is also 
determined by non-metabolic effects 
that are not modeled by GEM

1 Modify the simulation media by adjusting 
the lower bound of the exchange reactions

2 Identify the knowledge gap and design 
targeted experiments. Update the model 
once the information is available.

3 Consider using other approaches, such as 
models of metabolism and expression (ME 
models) to include model functions 
beyond metabolism.
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