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Abstract

We report the syntheses of 2-pyridylimido complexes of tantalum and niobium by N=N bond 

cleavage of 2,2′-azopyridine. Reaction of MCl5 (M = Ta and Nb) with 2,2′-azopyridine in the 

presence of 0.5 equiv of 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (abbreviated Si-Me-

CHD) afforded a dark red solution (for Ta) and a dark blue solution (for Nb) with some insoluble 

precipitates. After removing the solids, another 0.5 equiv of Si-Me-CHD was added to each 

solution, giving [M(=Npy)Cl3]n (1a: M = Ta; 1b: M = Nb) through reductive cleavage of the N=N 

bond of 2,2′-azopyridine. The initial products of the above reactions were determined to be 2,2′-

azopyridine-bridged dinuclear complexes, [(MCl4)2(μ-pyNNpy)] (2a: M = Ta; 2b: M = Nb), which 

were isolated by treating MCl5 with 2,2′-azopyridine and Si-Me-CHD in a 2:1:1 molar ratio. In 2a 
and 2b, the N=N bond was reduced to a single bond via two-electron reduction. Further reduction 

of complexes 2a and 2b with 1 equiv of Si-Me-CHD afforded complexes 1a and 1b. An anionic 

doubly μ-imido-bridged ditantalum complex, [nBu4N][Ta2(μ-Npy)2Cl7] (3a), was generated upon 

addition of nBu4NCl to complex 1a, while addition of nBu4NCl to niobium complex 1b gave a 

polymeric terminal imido complex, [nBu4N]n/2[{Nb(=Npy)Cl3}2(μ-Cl)]n/2 (3b). Complexations of 

1a and 1b with 1 equiv of 2,2′-bipyridine resulted in the formation of mononuclear 2-

pyridylimido complexes, M(=Npy)Cl3(bipy) (4a: M = Ta; 4b: M = Nb), whose main structural 

feature is intramolecular hydrogen bonding between the ortho hydrogen atom of 2,2′-bipyridine 

and the nitrogen atom of the pyridyl group on the imido ligand. Isolated 2-pyridylimido complexes 

4a and 4b reacted with [RhCl(cod)]2 to produce the corresponding early–late heterobimetallic 

complexes, (bipy)MCl3(μ-Npy)RhCl(cod) (5a: M = Ta; 5b: M = Nb).
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Graphical Abstract

INTRODUCTION

Imido complexes of early transition metals have been intensively investigated in inorganic 

chemistry because of their versatile reactivity in stoichiometric and catalytic reactions,1 in 

which the imido groups can function either as spectator ligands for stabilizing the high-

valent metal center1d,g,i or as key intermediates in catalytic reactions, such as cycloaddition,
2,3 nitrene transfer,4 hydroamination,5 and metathesis reactions.6 Importantly, substituents 

on the imido nitrogen atom can control not only the electronic properties of the metal 

(through either σ + π donation or σ + 2π donation) but also the steric bulk around the metal 

center, regulating the formation of mononuclear, dinuclear, or cluster complexes by μ2- and 

μ3-bridging nitrogen atoms. Furthermore, the pyridylimido ligand has the unique capability 

of connecting to a second metal center via pyridyl nitrogen coordination to form homo- and 

heterometallic clusters, though only a few titanium, vanadium, and molybdenum complexes 

have been reported so far (Chart 1).7

With regard to the available synthetic methodologies for these pyridylimido complexes, 

there are three standard reactions: (1) salt-metathesis of a metal halide precursor with the 

lithium salt of pyridyl amide; (2) reaction of low-valent metal species with pyridyl azide; 

and (3) deprotonation of primary amine by metal oxo complexes. Each of these methods has 

limitations such as the following: (i) Lithium salt waste often hampers isolation of the 

desired complexes due to the formation of ate complexes. (ii) Special care is required to 

handle and treat potentially explosive organic azides. (iii) Additional promoting reagents are 

necessary to trap the water byproduct. Another promising synthetic route was recently 

developed by reductively cleaving the N=N bond of azo compounds using low-valent 

complexes of early transition metals,8 although reduction of the corresponding high-valent 

metal complexes required alkali metals or their derivatives as reducing reagents. Similar to 

the above salt-metathesis reaction, salt contamination has impeded the development of this 

method. In this context, we applied our methodology for preparing low-valent species of 

early transition metals in a salt-free manner using organosilicon-based reducing agents such 

as 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (abbreviated Si-Me-CHD) to prepare 

2-pyridylimido complexes from 2,2′-azopyridine.9 We herein report the synthesis of 2-

pyridylimido complexes of tantalum and niobium via reductive cleavage of the N=N bond of 

2,2′-azopyridine by in situ generated MCl4 (M = Ta and Nb). In addition, we found that the 

newly prepared 2-pyridylimido complexes of tantalum and niobium served as unique 

metalloligands, coordinating to rhodium to form early late heterobimetallic complexes.
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RESULTS AND DISCUSSION

Treatment of MCl5 (M = Ta and Nb) with Si-Me-CHD (0.5 equiv) in the presence of 2,2′-

azopyridine (0.5 equiv) gave a dark red solution (for Ta) and a dark blue solution (for Nb), 

respectively, together with small amounts of insoluble black precipitates. After removal of 

the solids, a second addition of Si-Me-CHD (0.5 equiv) to each solution induced the 

precipitation of (2-pyridylimido)tantalum complex 1a as a brown solid and (2-

pyridylimido)niobium complex 1b as a pale-blue solid as in eq 1:

(1)

The low solubility of 1a and 1b in noncoordinating solvents such as toluene, benzene, 

chloroform, and dichloromethane hampered their characterization by any spectroscopic 

methods; however, combustion analysis as well as their complexation with nBu4NCl and 

2,2′-bipyridine revealed the formation of polymeric [M(=Npy)Cl3]n (1a: M = Ta; 1b: M = 

Nb) (vide infra).

To elucidate any complexes generated in each step in eq1, we examined the first reduction 

by mixing MCl5, Si-Me-CHD, and 2,2′-azopyridine in a 2:1:1 molar ratio, producing 2,2′-

azopyridine-bridged dinuclear complexes of tantalum and niobium, [(MCl4)2(μ-pyNNpy)] 

(2a: M = Ta; 2b: M = Nb) as in eq 2:

(2)

It was assumed that in situ generated TaCl4 or NbCl4 reacted with 0.5 equiv of 2,2′-

azopyridine to give 2a and 2b, respectively, as we already reported that the reaction of MCl5 

with 0.5 equiv of Si-Me-CHD gave the corresponding MCl4.9a,f In fact, 2a and 2b were 

alternatively generated from reaction of the isolated MCl4 with 2,2′-azopyridine. The 1H 

NMR spectrum of complex 2a in C6D6 displayed one set of four resonances due to pyridyl 
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ring protons at δ 5.64, 6.66, 7.64, and 8.42, while that of 2b showed almost the same pattern 

of four pyridyl protons at δ 5.62, 6.62, 7.77, and 8.34, suggesting a symmetric structure of 

2a and 2b in solution. The dinuclear structures of 2a and 2b were determined by X-ray 

diffraction analyses (Figure 1 for 2a). Both complexes have two metal centers of MCl4 

bridged by 2,2′-azopyridine, and each metal center adopts a pseudo-octahedral geometry 

with two nitrogen atoms of 2,2′-azopyridine and four chloride ligands. A notable structural 

feature is that the azo moiety was doubly reduced, resulting in a single N–N bonded azo-

moiety (N1−N2 = 1.426(12) Å for 2a; N1−N2 = 1.4026(16) Å for 2b) and single M−N 

bonds (Ta1−N1 = 2.058(8) and Ta2−N2 = 2.077(8) Å for 2a; Nb1−N1 = 2.0731(12) and 

Nb2−N2 = 2.0829(12) Å for 2b). The doubly reduced 2,2′-azopyridine-bridged dinuclear 

structures of 2a and 2b are ascribed to the strong reducing ability of low-valent early 

transition metal centers and are significantly different from that of some 2,2′-azopyridine-

bridged complexes of Cu, Re, and Ru. These complexes have N=N double bonded azo 

moieties as demonstrated by their bond distances of 1.248–1.372 Å due to the weak 

reducing ability of the late transition metal complexes as well as π-acceptor-coordinated 

metal complexes (Chart 2).10

We next conducted the reduction of 2a and 2b corresponding to the second reduction step in 

eq1: First, 0.5 equiv of Si-Me-CHD was added to each solution of 2a and 2b in 

dichloromethane at room temperature to spontaneously precipitate 1a and 1b, along with the 

elimination of 2 equiv of Me3SiCl as in eq 3:

(3)

Such a two-electron reduction process was consistent with their electrochemical behaviors: 

Cyclic voltammetry of 2a and 2b in dichloromethane containing 0.1 M [nBu4N][BArF
4] 

(ArF = 3,5-(CF3)2C6H3) with a scan rate of 100 mV/s exhibited one irreversible two-electron 

reduction wave ([2a]0/[2a]2−: E = −0.658 V; [2b]0/[2b]2−: E = −0.299 V vs Cp2Fe+/0) 

corresponding to reductive cleavage of the single N−N bond induced by two-electron 

transfer from the two metal center to the bridging N−N bond (see the Supporting 

Information). Because of the general tendency for the stability of the high-oxidation state 

third-row transition metals, the reduction potential of 2a was negative compared with that of 

2b.

The formula of the precipitated compound [Ta(=Npy)Cl3]n (1a) was deduced by its 

complexations with nBu4NCl and 2,2′-bipyridine (Scheme 1). Complex 1a reacted with 0.5 

equiv of nBu4NCl in dichloromethane to afford a clear brown solution, from which an 
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anionic doubly bridged μ-imido dinuclear tantalum complex (3a) was isolated. Complex 3a 
was characterized by NMR spectroscopy and X-ray analysis. The 1H NMR spectrum of 3a 
in CD2Cl2 displayed four resonances due to the pyridine ring protons at δ 7.21, 7.35, 8.05, 

and 8.87. Figure 2 shows the dinuclear molecular structure of 3a. The N−N bond in 3a is 

fully cleaved (N1⋯N2 distance, 2.558 Å), which provides evidence that parent 1a also likely 

has a fully cleaved N–N bond prior to complexation with chloride. The two tantalum atoms 

of 3a are bridged by two 2-pyridylimido ligands in a dissymmetric fashion, where one of 

two tantalum centers possesses two κ2-pyridyl coordination with a seven-coordinate, 

distorted pentagonal bipyramidal geometry, and the other tantalum atom adopts a typical 

octahedral geometry of four chloride atoms and two bridging nitrogen atoms. The Ta1⋯Ta2 

distance (3.1669(9) Å) shows no tantalum–tantalum bond. The Ta2–N1 (1.918(8) Å) and 

Ta2–N2 (1.944(10) Å) bonds are shorter than the Ta1–N1 (2.164(10) Å) and Ta1–N2 

(2.122(9) Å) bond due to the pπ–dπ interaction of the μ-N atoms to the Ta2 center. A 

different coordination number of two metal centers for doubly μ-imido dinuclear metal 

complexes was also reported for [Ti2(μ-Npy)2Cl4(thf)3] and [Zr2(μ-NR)2Cl4(thf)3].7c,11

In contrast to the formation of the anionic dinuclear complex of 3a, anionic polymeric 

compound 3b was formed upon adding 0.5 equiv of nBu4NCl to 1b in dichloromethane 

(Scheme 1). During the reaction, green-colored microcrystals were grown, although the 

solution color did not change. The overall molecular structure of 3b was revealed by X-ray 

diffraction analysis, though the quality of the diffraction data was low because it could not 

be recrystallized, and only the connectivity of the molecular structure was clarified. The 

monomeric unit comprises a dimer of terminal imido species [Nb(=Npy)Cl3]2, where the 

pyridine nitrogen atom of the 2-pyridylimido ligand bound to a NbCl3 moiety coordinates to 

the neighboring niobium atom of the other Nb(=Npy)Cl3 unit, forming an eight-membered 

cyclic ring, and an additional chloride atom links to the dimer unit. Each niobium atom 

adopts a six-coordinate octahedral geometry where the bridging chloride ligand occupies a 

position trans to the 2-pyridylimido ligand.

The addition of 2,2′-bipyridine to a suspension of 1a in dichloromethane gave a clear 

solution, from which mononuclear imido complex 4a was isolated in 89% yield (Scheme 1). 

Complex 4a was fully characterized by NMR spectroscopy as well as X-ray diffraction 

analysis. The 1H NMR spectrum of complex 4a in CD2Cl2 showed one set of four 

resonances at δ 6.93, 7.09, 7.81, and 8.48 assignable to the pyridyl ring protons bound to the 

imido nitrogen atom, along with the other set of signals attributed to 2,2′-bipyridine at δ 
7.81, 8.26, 8.34, 9.63, and 10.45, the latter two of which were assigned to H6 (δ 10.45 with 
3J = 5.5 Hz) and H6′ (δ 9.63 with 3J = 5.4 Hz). The significantly lower field-shifted 

resonance for H6 indicated an intramolecular hydrogen bond between the H atom bound to 

C6 of 2,2′-bipyridine and the nitrogen atom of the pyridyl group of the 2-pyridylimido 

ligand. Further evidence was provided by its 13C NMR spectrum, where two resonances due 

to C6 and C6′ of 2,2′-bipyridine were observed as magnetically nonequivalent resonances 

at δ156.9 (1JC–H = 191 Hz) and 150.6 (1JC–H = 186 Hz). A similar downfield shift and large 
1JC–H value were reported for 2-(1-vinyl-1H-pyrrol-2-yl)-pyridine, which has an 

intramolecular hydrogen bond between the hydrogen atom bound to the vinyl group and the 

nitrogen atom of the pyridine moiety.12 Figure 3 shows the mononuclear structure of 4a, in 
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which the tantalum atom possesses a six-coordinate pseudo-octahedral geometry with the 2-

pyridylimido ligand and one of two nitrogen atoms of the 2,2′-bipyridine ligand at the axial 

positions. Additionally, the nitrogen atom, N2, of the pyridyl ring points toward H6 bound to 

C6 with the N2⋯C6 distance (3.289 Å), which lies in the range of weak hydrogen bond 

distances.12 Although the bond distance of Ta–N1 (1.782(9) Å) and the angle of Ta–N1–C1 

(173.9(7)°) are normal for typical 6e-donating imido ligands,1a the 2-pyridylimido ligand is 

slightly bent toward the C6 of 2,2′-bipyridine. Similarly, niobium complex 4b was prepared 

in 79% yield by treating 1b with 2,2′-bipyridine and characterized by spectral and X-ray 

diffraction methods. The 1H NMR spectrum of niobium complex 4b in CD2Cl2 displayed 

almost the same pattern with the characteristic two doublet signals at δ 9.58 (3J = 5.0 Hz) 

and 10.13 (3J = 5.2 Hz) for H6′ and H6 of the 2,2′-bipyridine bound to the niobium center 

due to an intramolecular hydrogen bond between the H atom bound to C6 of 2,2′-bipyridine 

and the nitrogen atom of the 2-pyridyl group. The crystal structure of 4b is isostructural to 

that of 4a, and its drawing is provided in the Supporting Information.

We investigated the coordination of the 2-pyridylimido ligand of 1a and 1b to some 

transition metal chlorides, since it was reported that the pyridyl moiety of the (4-

pyridylimido)-vanadium complex shown in Chart 1 coordinates to [RhCl-(CO)2]2 and 

[W(=NEt)Cl4]2 to form the corresponding heterometallic complexes.7e We thus conducted 

reactions of 1a and 1b with several early and late transition metal complexes; however, no 

reaction proceeded, probably due to the strong coordination of the 2-pyridylimido moiety of 

1a and 1b to the Lewis acidic tantalum and niobium centers. In contrast, the free 2-pyridyl 

moiety in complexes 4a and 4b was capable of coordinating to other transition metals 

because the 2-pyridyl nitrogen atom has only a weak intramolecular hydrogen bond (vide 
supra). Treatment of 4a and 4b with 0.5 equiv of [RhCl(cod)]2 in dichloromethane led to the 

formation of the corresponding early late heterometallic complexes 5a and 5b as 

microcrystalline solids as in eq 4:

(4)

In the 1H NMR spectrum, a doublet signal (δ 10.24) for H6 of the 2,2′-bipyridine ligand of 

5a in CD2Cl2 shifted to a field magnetically higher than that of 4a (δ 10.45), probably due to 

the loss of the intramolecular hydrogen bonding. We observed an equilibrium between 5a 
and a mixture of 4a and [RhCl(cod)]2 in a 65:35 ratio by the 1H NMR measurement at 303 

K. Similar equilibrium was observed for niobium complex 5b with a 55:45 ratio for 5b and a 

mixture of 4b and [RhCl(cod)]2 at 303 K. The thermodynamic parameters (ΔH = −5.3(2) 

Kawakita et al. Page 6

Inorg Chem. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kcal mol−1, ΔS = −9.5(8) e.u., ΔG303K = −2.4(5) kcal mol−1 for 5a; ΔH = −7.2(4) kcal mol
−1, ΔS = −17(2) e.u. ΔG303K = −2.1(9) kcal mol−1 for 5b) for the equilibria were evaluated 

by van’t Hoff plots (see the Supporting Information Such negative ΔS values are consistent 

with the dominance of 5a and 5b as the temperature decreased.

The early late heterobimetallic structures of complexes 5a and 5b were determined by X-ray 

diffraction, and the ORTEP drawing of 5a is shown in Figure 4. The molecular structure of 

Nb–Rh complex 5b is included in Supporting Information. The 2-pyridyl moiety on the 

imido ligand is bound to the rhodium center to form tantalum–rhodium heterobimetallic 

structure. The Ta–N1 bond distance (1.787(3) Å) is similar to that of 4a, while the Ta–N1–

C1 bond angle (166.7(22)°) is slightly smaller than that of 4a. This lower linearity of the 

imido ligand in 5a probably arises from the steric repulsion between coordinated rhodium 

complex and chloride ligands on the tantalum center.

CONCLUSION

We found that the N=N bond of 2,2′-azopyridine was reductively cleaved upon treating 

2,2′-azopyridine with low-valent metal chlorides derived from MCl5 (M = Ta; Nb) in the 

presence of a salt-free reducing agent, Si-Me-CHD, giving 2-pyridylimido complexes 

[M(=Npy)Cl3]n (1a: M = Ta, 1b: M = Nb). The reaction was stepwise; prior to the N=N 

cleavage process, two-electron-reduced 2,2′-azopyridine-bridged dinuclear complexes 2a 
and 2b were formed as a consequence of the reaction of 2,2′-azopyridine with in situ 
generated MCl4. The addition of chloride to 1a induced the formation of the doubly μ-imido 

dinuclear tantalum complex, [nBu4N][Ta2(μ-Npy)2Cl7] (3a), while the reaction of 1b with 

chloride afforded an anionic polymeric terminal imido niobium complex, 

[nBu4N]n/2[{Nb(=Npy)Cl3}2(μ-Cl)]n/2 (3b). In contrast, mononuclear 2-pyridylimido 

complexes, M(=Npy)-Cl3(bipy) (4a, M = Ta; 4b, M = Nb), were obtained by complexation 

of 2,2′-bipyridine with 1a and 1b. We demonstrated that complexes 4a and 4b acted as 

metalloligands whose pyridyl nitrogen atom coordinated to the rhodium center of 

[RhCl(cod)]2, resulting in the formation of early late heterobimetallic complexes 5a and 5b. 

Further studies of the reaction of the M=Npy moiety with the additional metal on the 2-

pyridyl nitrogen atom are ongoing in our laboratories.

EXPERIMENTAL SECTION

General Remarks.

All manipulations involving air- and moisture-sensitive organometallic compounds were 

carried out under argon atmosphere using standard Schlenk techniques or in an argon-filled 

glovebox. 2,2′-Azopyridine13 and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (Si-
Me-CHD)14 were prepared according to the literature. C6D6 and CD2Cl2 were purchased 

and purified by distillation over CaH2. All other reagents were purchased from commercial 

resources and used as received. Anhydrous dichloromethane, hexane, and toluene were 

purchased from Kanto Chemical and further purified by passage through activated alumina 

under positive argon pressure as described by Grubbs et al.15 1H NMR (400 MHz), 13C{1H} 

NMR (100 MHz), 2D 1H–1H COSY, 2D 1H–13C HMQC, and 1H–13C HMBC spectra were 

measured on a BRUKER AVANCE III 400 MHz spectrometer. Chemical shifts were 
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reported in parts per million (ppm) and referenced to the residual proton signal of the solvent 

(1H: δ = 7.15 and 5.32 ppm for C6D6 and CD2Cl2, respectively) or the solvent itself 

(13C{1H}: δ = 128.06 and 53.84 ppm for C6D6 and CD2Cl2, respectively). The elemental 

analysis was recorded by using PerkinElmer 2400 at the Faculty of Engineering Science, 

Osaka University. Melting point was measured in sealed tubes under an argon atmosphere 

(BUCHI Melting Point M-565).

Synthesis of [Ta(=Npy)Cl3]n (1a).

Synthesis from TaCl5.—To a suspension of TaCl5 (897 mg, 2.50 mmol) in 

dichloromethane (30 mL) at room temperature was added a solution of Si-Me-CHD (299 

mg, 1.25 mmol) in dichloromethane (12 mL). The color of the reaction mixture changed to 

gray. After the mixture was stirred for 10 min, a solution of 2,2-azopyridine (231 mg, 1.26 

mmol) in dichloromethane (12 mL) was added. The reaction mixture was stirred for 2 h, and 

the precipitate was removed by filtration. To the dark red filtrate was added at room 

temperature a solution of Si-Me-CHD (301 mg, 1.26 mmol) in dichloromethane (12 mL). 

After the mixture was stirred for 18 h, the supernatant was decanted. The resulting solids 

were washed with dichloromethane (10 mL) and then dried under vacuum to give 1a as 

brown powder in 63% yield (597 mg, 1.57 mmol), 355 °C (dec). Anal. Calcd. for 

C4H4Cl3N2Ta: C, 15.83; H, 1.06; N, 7.38. Found: C, 16.10; H, 1.02; N, 7.48. Hydrolysis of 

the solid of 1a afforded 2-aminopyridine, revealing that 1a possesses the 2-pyridylimido 

ligand.

Synthesis from 2a.—To a solution of 2a (963 mg, 1.16 mmol) in dichloromethane (20 

mL) at room temperature was added a solution of Si-Me-CHD (278 mg, 1.17 mmol) in 

dichloromethane (10 mL). A brown powder slowly precipitated. After the reaction mixture 

was stirred for 24 h at room temperature, the liquid was decanted and the brown precipitates 

were washed with dichloromethane (15 mL × 3), and then dried under vacuum to give 1a as 

a brown powder in 85% yield (744 mg, 1.96 mmol).

Synthesis of [Nb(=Npy)Cl3]n (1b).

Synthesis from NbCl5.—To a suspension of NbCl5 (392 mg, 1.45 mmol) in 

dichloromethane (15 mL) at room temperature was added a solution of Si-Me-CHD (166 

mg, 0.696 mmol) in dichloromethane (7 mL). The color of the reaction mixture changed to 

brown. After the mixture was stirred for 10 min, a solution of 2,2′-azopyridine (137 mg, 

0.741 mmol) in dichloromethane (7 mL) was added. The reaction mixture was stirred for 2 

h, and the precipitate was removed by filtration. To the dark blue filtrate was added at room 

temperature a solution of Si-Me-CHD (175 mg, 0.734 mmol) in dichloromethane (7 mL). 

After the mixture was stirred for 23 h, the supernatant was decanted. The resulting solids 

were washed with dichloromethane (20 mL × 2) and then dried under vacuum to give 1b as 

pale blue powder in 84% yield (357 mg, 0.817 mmol), 260–261 °C (dec). Anal. Calcd for 

C5H4Cl3N2Nb: C, 20.61; H, 1.38; N, 9.61. Found: C, 20.39; H, 1.49; N, 9.31. Hydrolysis of 

the solid of 1b afforded 2-aminopyridine, revealing that 1b possesses the 2-pyridylimido 

ligand.
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Synthesis from 2b.—To solution of 2b (838 mg, 1.28 mmol) in dichloromethane (15 mL) 

at room temperature was added a solution of Si-Me-CHD (322 mg, 1.35 mmol) in 

dichloromethane (10 mL). A pale-blue powder slowly precipitated. After the reaction 

mixture was stirred for 17 h at room temperature, the liquid was decanted, and the pale blue 

precipitates were washed with dichloromethane (5 mL × 2), and then dried under vacuum to 

give 1b as a pale blue powder in 97% yield (727 mg, 2.50 mmol).

Synthesis of (TaCl4)2(μ-pyNNpy) (2a).

To a suspension of TaCl5 (500 mg, 1.40 mmol) in dichloromethane (15 mL) at room 

temperature was added a solution of Si-Me-CHD (166 mg, 0.696 mmol) in dichloromethane 

(7 mL). The color of the reaction mixture changed to gray. After the mixture was stirred for 

10 min, a solution of 2,2′-azopyridine (131 mg, 0.711 mmol) in dichloromethane (7 mL) 

was added. The reaction mixture was stirred for 3 h, and then the precipitate was removed 

by filtration. All volatiles were removed under vacuum. The resulting solid was washed with 

hexane (10 mL) and then dried under vacuum to give 2a as a black powder in 97% yield 

(561 mg, 0.676 mmol), mp 209–210 °C (dec). Single crystals suitable for the X-ray 

diffraction were obtained from the saturated benzene solution. 1H NMR (400 MHz, C6D6, 

303 K): δ 5.64 (ddd, 3J = 6.6 Hz, 3J = 6.7 Hz, 4J =1.0 Hz, 2H, H5), 6.66 (ddd, 3J = 8.1 Hz, 3J 
= 8.0 Hz, 4J =1.6 Hz, 2H, H4), 7.64 (dd, 3J = 8.8 Hz, 2H, H3), 8.42 (ddd, 3J = 6.1 Hz, 4J = 

1.6 Hz, 2H, H6). 13C{1H} NMR (100 MHz, C6D6, 303 K): δ 118.3 (C5), 120.4 (C3), 141.3 

(C4), 146.9 (C6) 162.3 (C2). Anal. Calcd. for C10H8Cl8N4Ta2: C, 14.48; H, 0.97; N, 6.75. 

Found: C, 14.89; H, 0.66; N, 6.34.

Synthesis of (NbCl4)2(μ-pyNNpy) (2b).

To a suspension of NbCl5 (399 mg, 1.48 mmol) in dichloromethane (15 mL) at room 

temperature was added a solution of Si-Me-CHD (177 mg, 0.740 mmol) in dichloromethane 

(7 mL). The color of the reaction mixture changed to brown. After the mixture was stirred 

for 10 min, a solution of 2,2′-azopyridine (139 mg, 0.754 mmol) in dichloromethane (7 mL) 

was added. The reaction mixture was stirred for 2 h, and then the precipitate was removed 

by filtration. All volatiles were removed under vacuum. The resulting solid was washed with 

hexane (20 mL) and then dried under vacuum to give 2b as a blackish-blue powder in 95% 

yield (458 mg, 0.701 mmol), mp 190–191 °C (dec). Single crystals suitable for X-ray 

diffraction were obtained from the saturated benzene solution. 1H NMR (400 MHz, C6D6, 

303 K): δ 5.62 (ddd, 3J = 7.2 Hz, 3J = 6.0 Hz, 4J =1.1 Hz, 2H, H5), 6.62 (ddd, 3J = 8.8 Hz, 3J 
= 7.2 Hz, 4J =1.7 Hz, 2H, H4), 7.77 (ddd, 3J = 8.7 Hz, 2H, H3), 8.34 (ddd, 3J = 6.0 Hz, 4J = 

1.7 Hz, 5J = 0.7 Hz, 2H, H6). 13C NMR (100 MHz, C6D6, 303 K): δ 119.2 (C5), 122.4 (C3), 

141.4 (C4), 148.2 (C6), 161.7 (C3). Anal. Calcd. for C10H8Cl8N4Nb2(C6H6)0.1: C, 19.25; H, 

1.31; N, 8.47. Found: C, 19.46; H, 1.28; N, 8.21. Inclusion of benzene is due to the 

remaining of a small amount of benzene in the recrystallized sample even after evacuation.

Synthesis of [nBu4N][Ta2(μ-Npy)2Cl7] (3a).

To a suspension of la (200 mg, 0.527 mmol) in dichloromethane (7 mL) at room temperature 

was added a solution of nBu4NCl (74.5 mg, 0.268 mmol) in dichloromethane (5 mL). The 

color of the mixture changed to brown. After the reaction mixture was stirred for 12 h, the 
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volatiles were removed under vacuum. The residue was washed with hexane (5 mL) and 

then dried to afford 3a as a brown powder in 89% yield (243 mg, 0.234 mmol), mp 85–

87 °C. Single crystals suitable for the X-ray diffraction were obtained from the saturated 

dichloromethane solution. 1H NMR (400 MHz, CD2Cl2 303 K): δ 1.01 (t, 12H, 3J = 7.4 Hz, 

NCH2CH2CH2CH3), 1.45 (m, 8H, NCH2CH2CH2CH3), 1.65 (m, 8H, NCH2CH2CH2CH3), 

3.20 (m, 8H, NCH2CH2CH2CH3), 7.21 (ddd, 2H, 3J = 7.5 Hz, 3J = 5.5 Hz, 4J = 1.0 Hz, H5), 

7.35 (br d, 2H, H3), 8.05 (ddd, 2H, 3J = 8.3 Hz, 3J = 7.6 Hz, 4J =1.8 Hz, H4), 8.87 (ddd, 2H, 
3J = 4.9 Hz, 3J =1.8 Hz, 4J = 0.9 Hz, H6). 13c{1H} NMR (100 MHz, CD2Cl2, 303 K): δ 13.9 

(NCH2CH2CH2 CH3), 20.2 (NCH2CH2CH2CH3), 24.5 (NCH2CH2CH2CH3), 59.5 

(NCH2CH2CH2CH3), 118.2 (C3), 119.5 (C5), 140.9 (C6), 144.9 (C4), 172.3 (C2). Anal. 

Calcd. for C26H44Cl7N5Ta2: C, 30.12; H, 4.28; N, 6.76. Found: C, 29.94; H, 3.99; N, 6.49.

Synthesis of [nBu4N]n/2[{Nb(=Npy)Cl3}2(μ-Cl)]n/2 (3b).

To a suspension of 1b (104 mg, 0.356 mmol) in dichloromethane (1 mL) at room 

temperature was added a solution of nBu4NCl (49.5 mg, 0.178 mmol) in dichloromethane (2 

mL). The color of the mixture changed to green. After the reaction mixture was stirred for 

19 h, the volatiles were removed under vacuum. The resulting solids were washed with 

dichloromethane (1 mL × 4) and then dried to give 3b as a green powder in 95% yield (145 

mg, 0.168 mmol), mp 207–209 °C (dec). Single crystals suitable for the X-ray diffraction 

were obtained from the saturated dichloromethane solution. Anal. Calcd for 

C26H44Cl7N5Nb2: C, 36.29; H, 5.15; N, 8.14. Found: C, 35.66; H, 5.00; N, 8.11. Deviation 

of the carbon value in elemental analysis is probably due to a small amount of contamination 

of insoluble 1b.

Synthesis of Ta(=Npy)Cl3(bipy) (4a).

A solution of 2,2′-bipyridine (47.4 mg, 0.303 mmol) in dichloromethane (5 mL) was added 

to a suspension of 1a (111 mg, 0.293 mmol) in dichloromethane (5 mL) at room 

temperature. After stirring for 37 h, all volatiles were removed under reduced pressure. The 

resulting solids were washed with hexane (5 mL × 6) and then dried to give 4a as a pale 

yellow powder in 89% yield (140 mg, 0.261 mmol), mp 163 °C (dec). Single crystals 

suitable for the X-ray diffraction were obtained from the saturated dichloromethane solution. 
1H NMR (400 MHz, CD2Cl2, 303 K): δ 6.93 (ddd, 3J = 7.4 Hz, 3J = 5.0 Hz, 4J =1.0 Hz, 1H, 

H4 of py), 7.09 (d, 3J = 8.0 Hz, 1H, H3 of py), 7.80–7.83 (m, 3H, H5 and H5′ of bipy and 

H5 of py), 8.26 (tdd, 3J = 8.0 Hz, 3J = 4.9 Hz, 4J = 1.6 Hz, 2H, H4 and H4′ of bipy), 8.34 

(d, 3J = 8.1 Hz, 2H, H3 and H3′ of bipy), 8.48 (ddd, 3J = 5.0 Hz, 4J = 1.9 Hz, 5J = 0.8 Hz, 

1H, H4 of py), 9.63 (d, 3J = 5.4 Hz, 1H, H6′ of bipy), 10.45 (d, 3J = 5.5 Hz, 1H, H6 of 

bipy). 13C{1H} NMR (100 MHz, CD2Cl2 303 K): δ 120.7 (C4 of py), 121.5 (C6 of py), 

123.4 (C3 of bipy), 123.6 (C3′ of bipy), 127.8 (C5 of bipy), 128.2 (C5′ of bipy), 137.8 (C5 

of py), 141.2 (C4′ of bipy), 142, 3 (C4 of bipy), 148.0 (C3 of py), 150.6 (C6′ of bipy), 

152.0 (C2’ of bipy), 152.4 (C2 of bipy), 156.9 (C6 of bipy), 163.9 (C2 of py). Anal. Calcd. 

for C15H12Cl3N4Ta: C, 33.64; H, 2.26; N, 10.46. Found: C, 33.08; H, 2.05; N, 10.02. The 

small deviation of the carbon value in elemental analysis is probably due to a small amount 

of contamination of insoluble 1a.
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Synthesis of Nb(=Npy)Cl3(bipy) (4b).

A solution of 2,2′-bipyridine (218 mg, 1.40 mmol) in dichloromethane (20 mL) was added 

to a suspension of 1b (406 mg, 1.39 mmol) in dichloromethane (20 mL) at room 

temperature. After stirring for 21 h, all volatiles were removed under reduced pressure. The 

resulting solids were washed with toluene (10 mL × 4) and hexane (5 mL × 2) and then 

dried to give 4b as a blue-gray powder in 79% yield (486 mg, 1.08 mmol), mp 236 °C (dec). 

Single crystals suitable for the X-ray diffraction were obtained from the saturated 

dichloromethane solution. 1H NMR (400 MHz, CD2Cl2, 303 K): δ 7.11 (ddd, 3J = 7.4 Hz, 3J 
= 4.9 Hz, 4J = 0.9 Hz, 1H, H4 of py), 7.36 (d, 3J = 8.0 Hz, 1H, H3 of py), 7.72 (ddd, 3J = 7.3 

Hz, 3J = 5.8 Hz, 4J = 1.1 Hz, 1H, H5 of py), 7.76–7.81 (m, 3H, H5 and H5′ of bipy and H5 

of py), 8.18–8.24 (m, 3H, H5 and H5′ of bipy and H6 of py), 8.30 (d, 3J = 4.2 Hz, 1H, H3 

of bipy), 8.32 (d, 3J = 4.4 Hz, 1H, H3′ of bipy), 8.48 (dd, 3J = 4.8 Hz, 4J = 0.9 Hz, 1H, H4 

of py), 9.59 (d, 3J = 4.8 Hz, 1H, H6′ of bipy), 10.12 (d, 3J = 5.4 Hz, 1H, H6 of bipy). 
13C{1H} NMR (100 MHz, CD2Cl2, 303 K): δ 120.1 (C4 of py), 122.1 (C6 of py), 123.1 (C3 

of bipy), 123.3 (C3′ of bipy), 127.4 (C5 of bipy), 127.6 (C5′ of bipy), 138.2 (C5 of py), 

141.0 (C4′ of bipy), 141.9 (C4 of bipy), 149.0 (C3 of py), 150.4 (C6′ of bipy), 151.6 (C2′ 
of bipy), 152.0 (C2 of bipy), 155.8 (C6 of bipy), 163.3 (C2 of py). Anal. Calcd for 

C15H12Cl3N4Nb: C, 40.26; H, 2.70; N, 12.52. Found: C, 39.84; H, 2.46; N, 12.23.

Synthesis of (bipy)TaCl3(μ-Npy)RhCl(cod) (5a).

A solution of [RhCl(cod)]2 (108 mg, 0.219 mmol) in dichloromethane (3 mL) was added to 

a solution of 4a (234 mg, 0.437 mmol) in dichloromethane (3 mL). The color of the reaction 

mixture changed to brown, and an orange powder precipitated. After the reaction mixture 

was stirred for 2 h, the mixture was concentrated to 3 mL, and then the supernatant was 

removed. The powder was washed with cold dichloromethane (1 mL × 4) and dried under 

vacuum to give 5a as an orange powder in 74% yield (254 mg, 0.325 mmol), mp 200–

201 °C (dec). Single crystals suitable for the X-ray diffraction were obtained from the 

saturated dichloromethane solution. 1H NMR (400 MHz, CD2Cl2, 303 K): δ 2.63 (br s, 

COD), 3.69 (br s, COD), 4.39 (br s, COD), 4.58 (br s, COD), 6.94 (t, 3J = 6.4 Hz, 1H, H4 of 

py), 7.49 (d, 3J = 8.2 Hz, 1H, H3 of py), 7.72 (t, 3J = 7.8 Hz, 1H, H5 of py), 7.78–7.87 (m, 

2H, H5 and H5′ of bipy), 8.25 (t, 3J = 7.8 Hz, 1H, H4 or H4′ of bipy), 8.30 (t, 3J = 8.1 Hz, 

1H, H4 or H4′ of bipy), 8.38 (d, 3J = 8.1 Hz, 2H, H3 and H3′ of bipy), 8.82 (d, 3J = 5.3 Hz, 

1H, H4 of py), 9.69 (d, 3J = 5.1 Hz, 1H, H6′ of bipy), 10.23 (d, 3J = 5.4 Hz, 1H, H6 of 

bipy). 13C{1H} NMR (100 MHz, CD2Cl2, 303 K): δ 30.6 (cod), 30.9 (cod), 31.9 (cod), 84.3 

(cod), 85.8 (cod), 86.0 (cod), 120.9 (C4 of py), 123.5 (C6 of py), 123.6 (C3 of bipy), 126.3 

(C3′ of bipy), 127.8 (C5 of bipy), 128.6 (C5′ of bipy), 137.8 (C5 of py), 141.3 (C4′ of 

bipy), 142.6 (C4 of bipy), 148.6 (C3 of py), 150.7 (C6′ of bipy), 151.7 (C2′ of bipy), 152.4 

(C2 of bipy), 157.2 (C6 of bipy), 163.9 (C2 of py). Anal. Calcd for 

C23H24Cl4N4TaRh(CH2Cl2)0.5: C, 34.23; H, 3.06; N, 6.79. Found: C, 34.15; H, 3.15; N, 

6.89. Inclusion of dichloromethane is due to the remaining of CH2Cl2 in the lattice for the 

recrystallized sample even after evacuation.

Kawakita et al. Page 11

Inorg Chem. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Synthesis of (bipy)NbCl3(μ-Npy)RhCl(cod) (5b).

A solution of [RhCl(cod)]2 (110 mg, 0.223 mmol) in dichloromethane (3 mL) was added to 

a solution of 4b (200 mg, 0.488 mmol) in dichloromethane (3 mL). The color of the reaction 

mixture changed to dark green, and an orange microcrystalline powder precipitated. After 

the reaction mixture was stirred for 2 h, the mixture was concentrated to 3 mL, and then the 

supernatant was removed. The powder was washed with cold dichloromethane (1 mL × 6) 

and dried under vacuum to give 5b as an orange powder in 75% yield (235 g, 0.338 mmol), 

mp 211–212 °C (dec). Single crystals suitable for the X-ray diffraction were obtained from 

the saturated dichloromethane solution. 1H NMR (400 MHz, CD2Cl2, 303 K): δ 2.66 (br s, 

COD), 3.69 (br s, COD), 4.24 (br s, COD), 4.65 (br s, COD), 7.12 (t, 3J = 6.2 Hz, 1H, H4 of 

py), 7.69 (t, 3J = 8.2 Hz, 1H, H5 of py), 7.72–7.83 (m, 2H, H5 and H5′ of bipy), 7.91 (d, 3J 
= 8.1 Hz, 1H, H3 of py), 8.18 (t, 3J = 8.2 Hz, 1H, H4 or H4′ of bipy), 8.20–8.36 (m, 3H, H4 

or H4′ of bipy, H3 and H3′ of bipy), 8.80 (d, 3J = 4.8 Hz, 1H, H4 of py), 9.66 (d, 3J = 4.9 

Hz, 1H, H6′ of bipy), 9.98 (d, 3J = 5.0 Hz, 1H, H6 of bipy). 13C{1h} NMR (100 MHz, 

CD2Cl2, 303 K): δ 30.9 (cod), 31.9 (cod), 85.0 (cod), 85.1 (cod), 122.3 (C6 of py), 123.0 

(C3 of bipy), 123.4 (C3′ of bipy), 125.6 (C4 of py), 128.1 (C5 of bipy), 138.2 (C5 of py), 

141. One (C4′ of bipy), 142.2 (C4 of bipy), 149.2 (C3 of py), 150.6 (C6′ of bipy), 151.3 

(C2′ of bipy), 152.1 (C2 of bipy), 156.3 (C6 of bipy), a signal of C2 of py was not observed 

due to the low sensitivity of NMR analysis. Anal. Calcd for C23H24Cl4N4NbRh(CH2Cl2)0.5: 

C, 38.32; H, 3.42; N, 7.61. Found: C, 37.86; H, 3.35; N, 7.51. Inclusion of dichloromethane 

is due to the remnant of CH2Cl2 in the lattice for the recrystallized sample even after 

evacuation.

X-ray Crystallographic Analysis.

The crystals were mounted on a CryoLoop (Hampton Research Corp) with a layer of light 

mineral oil and placed in a nitrogen stream at 113(1) K. All measurements were made on a 

Rigaku Xtalab P200 diffractometer using multilayer mirror monochromated Mo Kα 
(0.71076 Å) radiation. The structures were solved by SHELXS-201316 and refined on F2 by 

full-matrix least-squares method, using SHELXL-2013.17 Non-hydrogen atoms were 

anisotropically refined. H-atoms were included in the refinement on calculated positions 

riding on their carrier atoms. The function minimized was [Σw(Fo
2 − Fc

2)2] (w = 1/[σ2(Fo)2 

+ (aP)2 + bP]), where P = (Max(Fo
2, 0) + 2Fc

2)/3 with σ2(Fo
2) from counting statistics. The 

functions R1 and wR2 were (Σ||Fo| − |Fc||)/Σ|Fo| and [Σw(Fo
2 − Fc

2)2/Σ(wFo
4)]1/2, 

respectively. The ORTEP-3 program18 was used to draw the molecule.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Molecular structure of 2a and with 50% thermal ellipsoids. All hydrogen atoms and solvent 

molecules are omitted for clarity. Selected bond distances (Å) and angle (deg) for 2a: Ta1–

N1, 2.058(8); Ta1–N3, 2.213(9); Ta2–N2, 2.077(8); Ta2–N4, 2.198(8); N1–N2, 1.426(12); 

N2–C1, 1.387(14); N1–C6, 1.380(13); C1–N2–N1–C6, 33.10(3). The structure of 2b is 

given in the Supporting Information because 2b is isostructural to 2a. Selected bond 

distances (Å) and angle (deg) for 2b: Nb1–N1, 2.0731(12); Nb1–N3, 2.2255(13); Nb2–N2, 

2.0829(12); Nb2–N4, 2.2164(12); N1–N2, 1.4026(16); N2–C1, 1.3910(19); N1–C6, 

1.3935(18); C1–N2–N1–C6, 33.02(9).
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Figure 2. 
Molecular structure of anionic part of 3a with 30% thermal ellipsoids. All hydrogen atoms 

and countercation are omitted for clarity. Selected bond distances (Å) and angles (deg): 

N1⋯N2, 2.558; Ta1⋯Ta2, 3.1669; Ta1–N1, 2.164(10); Ta1–N2, 2.122(9); Ta1–N3, 

2.222(9); Ta1–N4, 2.225(10); Ta2–N1, 1.918(8); Ta2–N2, 1.944(10); Ta1–N1–Ta2, 

101.6(4); Ta1–N1–C1, 96.0(7); Ta2–N1–C1, 160.7(8); Ta1–N2–Ta2, 102.2(4); Ta1–N2–C6, 

98.4(7); Ta2–N2–C6, 158.0(8).
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Figure 3. 
Molecular structure of 4a with 50% thermal ellipsoids. All hydrogen atoms are omitted for 

clarity. Selected bond distances (Å) and angle (deg) for 4a: Ta–N1, 1.782(9); Ta–N3, 

2.232(8); Ta–N4, 2.368(3); N2⋯C6, 3.289; Ta–N1–C1, 173.9(7). The structure of 4b is 

given in the Supporting Information. Selected bond distances (Å) and angle (deg) for 4b: 

Nb–N1, 1.774(2); Nb–N3, 2.259(2); Nb–N4, 2.370(2); N2⋯C6, 3.296; Nb–N1–C1, 

174.2(2).
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Figure 4. 
Molecular structure of 5a with 50% thermal ellipsoids. All hydrogen atoms and solvent 

molecules are omitted for clarity. Selected bond distances (Å) and angles (deg) for 5a: Ta–

N1, 1.787(3); N1–C1, 1.376(4); Ta–N3, 2.240(2); Ta–N4, 2.348(3); Ta–Cl1, 2.3818(8); Ta–

Cl2, 2.3640(8); Ta–Cl3, 2.3927(9); Rh–N2, 2.100(3); Rh–Cl4, 2.3956(9); N1–Ta–N4, 

163.67(10); Ta–N1–C1, 166.7(22). The structure of 5b is given in the Supporting 

information. Selected bond distances (Å) and angle (deg) for 5b: Nb–N1, 1.7804(14); N1–

C1, 1.383(2); Nb–N3, 2.2531(14); Nb–N4, 2.3545(14); Nb–Cl1, 2.3876(5); Nb–Cl2, 

2.3710(5); Nb–Cl3, 2.4054(5); Rh–N2, 2.0999(15); Rh–Cl4, 2.3909(5); N1–Nb–N4, 

163.29(5); Nb–N1–C1, 165.92(12).
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Scheme 1. 
Complexation of 1a and 1b with nBu4NCl and 2,2′-Bipyridine
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Chart 1. 
Examples of Pyridylimido Complexes of Early Transition Metals
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Chart 2. 
Examples of 2,2′-Azopyridine-Bridged Dinuclear Complexes
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