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1. Introduction
Diabetes mellitus (DM) is a chronic metabolic 
disorder characterized by increased blood glucose 
level, hyperglycemia, and glucosuria, which are usually 
caused by deficiency in insulin secretion and/or insulin 
hormone activity in the pancreatic beta cells [1,2]. 
Chronic hyperglycemia arising from untreated DM can 
cause damage to several organs such as the eyes, kidneys, 
heart, and liver [3]. For example, many studies have 
shown that DM may be a trigger in different liver diseases 
such as nonalcoholic fatty liver (NAFLD), nonalcoholic 
steatohepatitis, fibrosis, cirrhosis, and later hepatocellular 
carcinoma (HCC) [4].

Nitric oxide (NO) is an important signaling molecule 
produced by three different nitric oxide synthase (NOS) 
isoforms: neuronal NOS (nNOS; NOS1), inducible NOS 
(iNOS; NOS2) and endothelial NOS [5]. Nitric oxide 
derivatives are involved in biological processes such as 
immune activation, cellular communication, metabolism, 

and blood pressure regulation and play a paradoxical role 
in the regulation of liver physiology and pathophysiology 
[6,7]. For example, NO expressed by eNOS in the liver 
sinusoidal endothelial cells (LSECs), portal vein, central 
vein, and lymphatic vessels protects the homeostasis 
of the liver and inhibits the formation of pathological 
conditions in the liver [8]. In contrast, NO expressed by 
iNOS in various liver cells, including LSECs, hepatocytes, 
and Kupffer cells (hepatic stellate cells), plays a role in the 
emergence of liver pathologies by triggering the formation 
of reactive nitrogen species (RNS) [9]. In addition, studies 
have shown that hyperglycemia activates iNOS expression, 
which can cause inflammation, apoptosis, and other 
diabetic complications in the liver [10]. On the other 
hand, oxidative stress induced by hyperglycemia causes an 
increase in the expression of vascular endothelial growth 
factor (VEGF), which is considered to be the key regulator 
of both physiological and pathological angiogenesis [11]. 
It has been demonstrated by studies that VEGF has a role 
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in the pathogenesis of diabetic complications by inducing 
NOS expressions, resulting in an increase in NO production 
[12]. It is also known that VEGF has a fibrinogenic effect 
on the liver via the triggering of inflammation and the 
stimulation of endothelial and stellate cells [13].

Nuclear factor κB (NF-κB), an important factor in 
the regulation of processes such as inflammation and 
apoptosis, is another molecule that changes the activation 
pattern in DM. Activation of NF-κB due to hyperglycemia 
caused by DM induces the expression of RNS and reactive 
nitrogen species (ROS) directly or indirectly and paves the 
way for DM-induced hepatic damage. It has been suggested 
that inappropriate activation of NF-κB may lead to 
hepatocellular carcinomas by increasing insulin resistance 
in diabetic mice and may increase the likelihood of hepatic 
steatosis in cirrhosis, thus causing more hepatic damage 
[14,15]. In addition, increased ROS due to hyperglycemia 
activates many different gene expressions, including iNOS, 
via the NF-κB pathway [16]. 

Losartan, an angiotensin II type I receptor antagonist, 
is an antihypertensive drug that has a delaying effect on 
diabetic nephropathy, especially in patients with DM and 
hypertension [17]. On the other hand, in a study conducted 
with chronic hepatitis C patients in 2005, it was found that 
6-week losartan treatment reduced subendothelial fibrosis 
in the liver [18]. 

In this study, we investigated the therapeutic effect 
of different doses of losartan on hepatic damage in a 
streptozotocin (STZ)-induced diabetic rat model. The 
liver tissues of the experimental groups were evaluated 
immunohistochemically for iNOS, eNOS, VEGF, and NF-
κB pathways. 

2. Materials and methods
2.1. Animals
Thirty-five adult male Wistar albino rats (weighing 
between 200 and 250 g) were used in this study. Rats 
caged in controlled rooms with 22 ± 3 °C temperature and 
12-h light/dark cycles were fed with standard rat feed and 
water ad libitum. Experimental procedures used in this 
study were approved by the Ege University Local Ethics 
Committee for Animal Experiments. All procedures 
were carried out in strict compliance with the animal 
experiment guidelines prepared for the care and use of 
laboratory animals.
2.2. Experimental design
DM was induced in 28 rats by intraperitoneal injection of 
STZ (Sigma-Aldrich, St. Louis, MO, USA) (50 mg/kg in 
0.1 M citrate buffer, pH 4.5). No drug was administered 
to the other 7 rats that all had blood glucose levels of <120 
mg/dL (control group, n = 7). DM was verified after 24 
h by evaluating the blood glucose levels. Rats with blood 
glucose levels of >250 mg/dL were included in the study 

as the diabetic rat group (n = 28) [19]. The 28 diabetic 
rats were then randomly separated into 4 groups. For a 
period of 4 weeks, the DM group (n = 7) was given no 
medication. The DM + low-dose losartan group (n = 7) 
was administered 5 mg/kg/day oral losartan (Cozaar, 50 
mg; Merck Sharp & Dohme, Kenilworth, NJ, USA) for a 
4-week period. The DM + mid-dose losartan group (n = 7) 
was administered 20 mg/kg/day oral losartan for a 4-week 
period. The DM + high-dose losartan group (n = 7) was 
administered 80 mg/kg/day oral losartan for a 4-week 
period. 

At the end of the study, blood samples of 1 mL were 
taken into heparinized tubes for biochemical analysis 
from the rats, which were sedated under anesthesia. After 
bloodletting, liver tissues of euthanized rats were rapidly 
dissected for histopathological and immunohistochemical 
examinations.
2.3. Analysis of lipid peroxidation 
Blood samples collected by cardiac puncture under 
sterile conditions were centrifuged at 4 °C and 1000 × g 
for 15 min so that blood plasmas were obtained. Plasma 
samples frozen rapidly on dry ice were stored at –80 °C 
until they were used. Lipid peroxidation was determined 
by measuring malondialdehyde (MDA) levels in plasma 
samples. In this respect, MDA levels were determined 
in accordance with the instructions of a commercially 
available lipid peroxidation (MDA) colorimetric/
fluorometric assay kit (BioVision, Milpitas, CA, USA). 
The absorbance of each sample was measured at 532 nm 
with an ELISA plate reader (PolarSTAR Omega, BMG 
LABTECH, Germany) and results were obtained.
2.4. Analysis of serum superoxide dismutase (SOD) ac-
tivity
Blood samples collected by cardiac puncture under sterile 
conditions were centrifuged at 4 °C and 1000 × g for 15 
min so that blood plasmas were obtained. Plasma samples 
frozen rapidly on dry ice were stored at –80 °C until they 
were used. The SOD levels of the groups were determined 
according to a commercially available SOD activity assay kit 
(BioVision). The absorbance of each sample was measured 
at 450 nm with an ELISA plate reader (PolarSTAR Omega, 
BMG LABTECH) and results were obtained. 
2.5. Histological analysis of liver tissues
The rats were euthanized under combined ketamine (60 
mg/kg, Ege Vet, Alfamine, Alfasan International B.V., 
Woerden, the Netherlands) and xylazine (10 mg/kg, Ege 
Vet, Alfazyne, Alfasan International B.V.) anesthesia. 
Liver tissues were fixed for 48 h in 4% paraformaldehyde. 
Afterwards, 5-µm sections were taken from the tissues 
embedded in paraffin blocks using routine protocols. 
Sections were stained with hematoxylin and eosin (H&E) 
after deparaffinization and dehydration. The tissues were 
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photographed with a digital camera (C-5050, Olympus, 
Tokyo, Japan) mounted on a microscope (BX5, Olympus) 
after staining.
2.6. Immunoexpressions of iNOS, eNOS, VEGF, and NF-
κB
Sections were incubated with 10% H2O2 (Sigma-Aldrich) 
for 10 min for endogenous peroxidase blockade. To 
prevent nonspecific antibody–antigen binding, sections 
were incubated with Super Block (ScyTec Inc., Greenwood 
Village, CO, USA) for 1 h at room temperature and washed 
with PBS. After this step, sections were incubated with 
1:200 diluted primary antibodies (iNOS, eNOS, VEGF, 
and NF-κB, Santa Cruz Biotechnology, Santa Cruz, CA, 
USA) for 24 h at 4 °C. At the end of this time, the sections 
were respectively incubated with biotinylated secondary 
antibody (ScyTec Inc.) and horseradish peroxidase 
conjugated streptavidin (ScyTec Inc.). Finally, the contrast 
staining of the sections incubated with diaminobenzidine 
(DAB) was performed with Mayer’s hematoxylin (Merck, 
Germany). Sections were cleaned with xylol and then 
closed with Entellan (Merck) [20].
2.7. Analysis of terminal-deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) 

TUNEL analysis was performed to determine apoptosis 
in liver tissues belonging to groups. After TUNEL staining 
was performed according to the procedure of the ApopTag 
Peroxidase In Situ Apoptosis Detection Kit (Merck), 
the sections were photographed and the percentages of 
TUNEL-positive cells between all experimental groups 
were compared.
2.8. Statistical analysis

Data analysis was performed with SPSS 15.0 for 
Windows (SPSS Inc., Chicago, IL, USA). Comparisons 
were then made between the control and treatment groups 
using one-way analysis of variance followed by a Tukey 
post hoc test. Values were presented with mean standard 
errors and P < 0.05 was considered statistically significant.

3. Results
3.1. SOD and MDA findings
In the SOD analysis it was found that SOD activation 
was higher in the losartan-treated groups than in the DM 
group (P < 0.05). On the other hand, MDA levels were 
significantly lower in losartan-treated groups than in the 
diabetic group (P < 0.05) (Figure 1). 
3.2. Histological findings
There were regular hepatocytes extending radially around 
the central vein in the sections of the control group. 
Sinusoids and Kupffer cells were normal and there were no 
signs of hemorrhage and infiltration in this group.

The number of hepatocytes in the DM group decreased 
and there were losses in the radial configuration of 
hepatocytes. Hepatocyte deformation and vacuolization 
were noted. Hemorrhage and infiltration were present. 

The findings for the mid-dose losartan group were 
found to be closer to those of the control group compared 
to other groups. In the high-dose group, there was 
no difference in the number of hepatocytes and their 
regulation and sinusoids compared to the medium dose, 
whereas an increase in the number of Kupffer cells and 
infiltration were noted (Figure 2).
3.3. Immunohistochemical findings
In histochemical analyses, it was found that iNOS protein 
expression increased and eNOS protein expression 
decreased in the DM group compared to the control and 
losartan-treated groups (P < 0.05). However, a level of 
iNOS protein expression close to that of the control group 
was determined in the mid-dose losartan group, and in 
the group with high-dose losartan, an increase in iNOS 
expression was observed. 

We observed increased VEGF protein expression in 
the livers of diabetic rats (P < 0.05). It is noteworthy that 
in groups treated with losartan, there was a decrease in 
VEGF protein expression, just as in iNOS expressions. 
We also observed that VEGF expression was more similar 

Figure 1. MDA levels (nmol/mL) and SOD activities (% inhibition rate) of rat blood plasmas. a: Statistically significant compared to 
control group (P < 0.05), b: statistically significant compared to diabetes group (P < 0.05), c: statistically significant compared to high-
dose losartan group (P < 0.05).
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to the control group in the mid-dose losartan treatment 
group compared to the other groups. 

NF-κB immunoexpression levels were observed to be 
higher in the DM group than in the control group. When 
losartan-treated groups were evaluated among themselves, 
it was found that NF-κB expression was significantly lower 
in the mid-dose losartan group compared to the other 
groups (P < 0.05) (Figure 3). The immunoexpression levels 

and the P-values of the groups are shown in the Table.
3.4. TUNEL staining findings
In TUNEL staining analysis, there was an increase in the 
number of apoptotic cells in the diabetic group compared 
to the control group. In addition, when the diabetic 
groups were evaluated among themselves, the number of 
TUNEL-positive cells decreased in the mid-dose losartan 
group compared to the other groups (P < 0.05) (Figure 4). 

Figure 2. H&E staining of sections from all experimental groups. Control group livers showed normal radially extending hepatocytes. 
DM group showed decreased radial configuration of hepatocytes and vacuolation. Low-dose losartan group showed little improvement 
in contrast with diabetes group. Mid-dose losartan group showed similar configuration to control group. High-dose losartan showed 
increased number of Kupffer cells and infiltration compared to other losartan-treated groups (20× magnification).

Figure 3. iNOS, eNOS, VEGF, and NF-κB immunostaining of sections from all groups (40× magnification).
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TUNEL scores and the P-values of the groups are shown 
in the Table.

4. Discussion
DM is a common metabolic disorder characterized by 
hyperglycemia, which occurs due to impaired insulin 
secretion in the pancreas [21]. This disease, which causes 
disruptions in the metabolism of carbohydrate, lipids, 
and proteins in the body, prepares the ground for serious 
functional and structural pathologies in many organs 
such as the heart, kidneys, eyes, and liver in the long term 
[22]. For example, previous studies suggested that DM is 
associated with liver diseases such as cirrhosis, NAFLD, 
fibrosis, and HCC [23]. The main mechanisms involved 
in the development of DM-induced liver diseases are ROS 
production and oxidative stress induced by hyperglycemia 
[16]. ROS production and oxidative stress induced by 
hyperglycemia enhance NO formation in diabetic liver 
damage. Interacting with ROS, NO induces many cellular 

signaling pathways, causing lipid peroxidation and 
protein nitration and thereby leading to DM-induced 
tissue damage [24,25]. NO, which has a significant role 
in diabetic liver damage, is produced by three different 
NOS isoforms: neuronal NOS (nNOS; NOS1), inducible 
NOS (iNOS; NOS2), and endothelial NOS (eNOS; NOS3) 
[6]. The role of NO in liver physiology is paradoxical 
[26]. For example, NO expressed by eNOS in the LSECs, 
portal vein, central vein, and lymphatic vessels protect 
hepatocytes and endothelial cells against ischemic 
reperfusion injury [27]. On the other hand, it has been 
found that NOS produced by iNOS might exacerbate liver 
damage after the inflammatory response [28]. In addition, 
Ingaramo et al. showed that iNOS expression and NO 
level increased in diabetic liver injury and this increase 
could cause significant impairment of liver function [29]. 
Jeddi et al. found a decrease in eNOS expression and an 
increase in iNOS expression in the hearts of diabetic rats. 
They argued that this might play an important role in 

Table. Immunoexpression levels and TUNEL scores of control and other experimental groups.

Control DM Low-dose Mid-dose High-dose P value

Immunoexpression levels
iNOS 1 ± 0.258 3 ± 0.378 2 ± 0.32 1,5 ± 0.32 2 ± 0.258 0.000
eNOS 3 ± 0.378 1 ± 0.258 1.5 ± 0.353 2 ± 0.378 1.5 ± 0.176 0.000
VEGF 1 ± 0.231 3 ± 0.231 1.5 ± 0.258 2.5 ± 0.258 3 ± 0.378 0.000
NF-ᴋB 1 ± 0.231 2.75 ± 0.267 2.5 ± 0.258 1.5 ± 0.231 2 ± 0.231 0.000

TUNEL scores (%)
TUNEL-positive cells 2 ± 0.175% 4 ± 0.375% 3 ± 0.312% 2 ± 0.212% 3 ± 0.262% 0.000

Groups SOD activation
(% inhibition rate)

MDA levels
(nmol/mL)

Control 120.15 ± 7.39 56.98 ± 8.22
DM 75.37 ± 5.28a 122.09 ± 8.22a

Low-dose 138.81 ± 6.33a,b 81.4 ± 3.29a,b

Mid-dose 97.01 ± 8.44a,b,c 81.4 ± 6.58a,b

High-dose 86.57 ± 2.11a,b 82.56 ± 1.64a,b

Figure 4. TUNEL staining of sections from control and other groups (40× magnification).
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the pathophysiology of DM-associated cardiac problems 
[30]. In our study, increased iNOS protein expression 
and decreased eNOS protein expression were determined 
in the livers of diabetic rats. However, the level of iNOS 
protein expression closest to the control group was 
determined in the mid-dose losartan group. Studies on 
renal fibrogenesis [31] and left ventricular remodeling [32] 
by different groups have shown that mid-dose losartan 
suppresses iNOS mRNA and protein expression. In 
addition, Matsuhisa et al. reported that losartan triggered 
iNOS-to-eNOS dependence [32]. When the findings of 
this study are evaluated together with the literature, the 
present study clearly suggests that mid-dose losartan may 
be a candidate for modulation of NOS derivatives that play 
different roles in liver injury. 

Hyperglycemia-induced oxidative stress causes an 
increase in the expression of some enzymes and growth 
factors [33]. For example, VEGF, which is considered 
to be the key regulator of both physiological and 
pathological angiogenesis, is one of the growth factors 
that have increased expression in hyperglycemia-induced 
oxidative stress [11]. Also, studies have shown that VEGF, 
which is known to cause an increase in NO production 
by inducing eNOS and iNOS mRNA expressions, plays 
a role in the pathogenesis of diabetic complications and 
especially in retinopathy [12]. In their study of diabetic 
retinopathy, Djordjevic et al. observed an increase in 
the concentration of VEGF, which is thought to be very 
important for the destruction of the blood–retinal barrier 
and for neovascularization, with an increase in oxidative 
damage markers and iNOS concentration [33]. In another 
study Liu et al. showed increased expression of iNOS and 
VEGF in the cochlea of diabetic rats [34]. In our study, 
we observed increased expressions of iNOS and VEGF 
protein in the livers of diabetic rats. However, in groups 
treated with losartan, there was a decrease in VEGF protein 
expression, just like the iNOS expressions. In addition, 
we found that VEGF expression was more similar to the 
control group in the mid-dose losartan treatment group. 
Similar to our findings in this study, there is evidence that 
losartan suppresses VEGF mRNA and protein expression 
in different studies [35,36]. Also, Kamper et al. suggested 
that losartan administration in diabetic rats suppresses the 
production of VEGF and excess NO in the pancreas; thus, 
losartan can exert an antioxidant effect by suppressing 
oxidative and nitrosative stress [37].

NF-κB is a transcription factor that is required for 
the expression of most proinflammatory molecules, 
including enzymes, cytokines, and chemokines [38]. In 
vitro and in vivo experiments show that NF-κB activation 
plays a key role in the pathobiology of DM [39]. In this 
context, studies have shown that increased ROS levels 

associated with DM cause NF-κB activation, while this 
activation induces transcription of inflammatory genes 
such as cyclooxygenase-2 (COX-2), tumor necrosis 
factor-alpha (TNF-α), interleukin 1 (IL-1), and iNOS 
[40]. In addition to these studies, Pan et al. showed 
that the activation of NF-κB in diabetic cardiomyocyte 
cells leads to apoptosis, and inhibition of this pathway 
corrects cardiac dysfunction in diabetic mice [41]. These 
studies showed that NF-κB has an important role in DM-
induced apoptosis. In our study, we determined that 
NF-κB immunoexpression intensity was higher in the 
diabetic groups than in the control group. When losartan-
treated groups were evaluated among themselves, it was 
found that NF-κB expression was lower in the mid-dose 
group than the other groups. Also, our TUNEL staining 
analysis showed that there was an increase in the number 
of apoptotic cells (TUNEL-positive cells) in the diabetic 
group compared to the control group. In addition, when 
the diabetic groups were evaluated among themselves, 
the number of TUNEL-positive cells was decreased in the 
mid-dose group compared to the other groups. A number 
of past and present studies suggest that lipid peroxidation 
is one of the major causes of apoptotic injury associated 
with DM [42]. For example, Oyenihi et al. found increases 
in lipid peroxidation products such as MDA in the livers 
of diabetic rats but a decrease in the activity of antioxidant 
enzymes such as SOD [43]. The same group also revealed 
that TUNEL-positive cells were increased in diabetic rats, 
correlated with lipid peroxidation [43]. However, there are 
reports that losartan protects podocytes from apoptosis 
[44], cleans lipid peroxidation products in retinal [45] and 
pancreatic cells [37], and inhibits NF-κB activation [46]. 
The results of the present study support these reports.

In conclusion, these results suggested that mid-dose 
losartan administration may have a therapeutic effect by 
inhibiting apoptosis and regulating iNOS, eNOS, VEGF, 
and NF-κB protein expressions, which have been shown 
to play a role in the pathogenesis of DM-induced hepatic 
damage. Investigating the effects of the drugs such as 
losartan used in clinics for many years on the comorbidities 
observed in diabetic individuals may be effective in 
improving the quality of life of diabetic individuals and 
the emergence of new approaches in the treatment of this 
disease.
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