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Abstract

Health risks induced by PM2.5 have become one of the major concerns among living populations, 

especially in regions facing serious pollution such as China and India. Furthermore, the 

composition of PM2.5 is complex and it also varies with time and locations. To facilitate our 

understanding of PM2.5-induced toxicity, a predictive modeling framework was developed in the 

present study. The core of this study was 1) to construct a virtual carbon nanoparticle library based 
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on the experimental data to simulate the PM2.5 structures; 2) to quantify the nanoparticle structures 

by novel nanodescriptors; and 3) to perform computational modeling for critical toxicity 

endpoints. The virtual carbon nanoparticle library was developed to represent the nanostructures of 

20 carbon nanoparticles, which were synthesized to simulate PM2.5 structures and tested for 

potential health risks. Based on the calculated nanodescriptors from virtual carbon nanoparticles, 

quantitative nanostructure-activity relationship (QNAR) models were developed to predict 

cytotoxicity and four different inflammatory responses induced by model PM2.5. The high 

predictability (R2 > 0.65 for leave-one-out validations) of the resulted consensus models indicated 

that this approach could be a universal tool to predict and analyze the potential toxicity of model 

PM2.5, ultimately understanding and evaluating the ambient PM2.5-induced toxicity.
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1. Introduction

Ambient fine particulate matter (PM) with aerodynamic diameters less than 2.5 μm (PM2.5) 

poses a great threat to human health, especially in developing countries (Kim et al., 2015; 

Pui et al., 2014). Exposure to PM2.5 air pollution causes critical adverse health outcomes 

including ischemic heart disease, strokes, chronic obstructive pulmonary disease, respiratory 

infections, and even lung cancer (He et al., 2017; S. et al., 2016). According to a study by 

the Global Burden of Disease (GBD) in 2016, the exposure to PM2.5 was the 6th leading 

contributor to early deaths globally, which resulted in approximately 4.1 million global 

deaths in 2016 (Apte et al., 2018). There is an urgent need to identify key toxic components 

in PM2.5 and understand the associated toxicity mechanisms. However, PM2.5 is a complex 

mixture consisting of different components, including hundreds of organic, inorganic and 

biological pollutants (Szigeti et al., 2016). Furthermore, the components of PM2.5 are both 

time-and region-dependent (Dominici et al., 2007), making the experimental mechanism 

study extremely difficult. In a recent study, we reported a reductionism approach by 

synthesizing a model PM2.5 library containing 20 carbon nanoparticles, which absorbed 

representative toxic pollutants including Cr (VI), Pb2+, As (III) and/or Benzo[a]pyrene 
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(BaP) at all possible combinations and at environmental concentrations (Jia et al., 2019; Pan 

et al., 2019). The model PM2.5 library was then tested in different assays to elucidate their 

toxic and inflammatory effects and was shown to be representative of PM2.5-induced 

toxicity. However, considering the complex PM2.5 composition, the exhaustive synthesis and 

experimental testing to fully simulate the biological response, such as toxicity of PM2.5 are 

not possible.

Due to the cost in both resources and time involved in experimental toxicity testing, there 

has been a considerable increase of the interest into alternative computational methods (Cai 

et al., 2018; Fourches et al., 2010). In previous studies, researchers have been devoted to 

building quantitative structure-activity relationship (QSAR) models for small sets of 

nanoparticles (Tantra et al., 2015; Winkler, 2016). However, most of the resulted models are 

not applicable to predict new nanoparticles. Two major issues limited the applicability of the 

resulted models: 1) the lack of enough high quality nano-bioactivity/toxicity data and 2) no 

computational approaches to precisely quantify nanostructure diversity. Theoretical 

descriptors calculated from small organic/inorganic molecules coated on the surface of 

nanoparticles, were proven to be useful in predicting certain bioactivities/properties of 

nanoparticles (Li et al., 2015; Liu et al., 2017; Zhang et al., 2016). However, the effects of 

the nanoparticle structures, such as core materials, particle size, and surface ligand density/

distribution, were not considered. The structure information also contributed to the nano-

bioactivity/toxicity (Jiang et al., 2015) and should be included in the modeling process. On 

the other hand, the use of experimental values as descriptors prevents the predictions of new 

nanoparticles before chemical synthesis (Bigdeli et al., 2016; Walkey et al., 2014). Recently, 

we reported a series of studies to develop computational models for nanoparticles using 

virtual nanoparticle library and novel nanodescriptors based on surface chemistry 

simulations (Wang et al., 2019, 2017; Yan et al., 2019). In this study, this modeling strategy 

was applied to model the PM2.5 library and the resulted models were used to evaluate PM2.5 

toxicity. Using various artificial intelligence approaches, quantitative nanostructure-activity 

relationship (QNAR) models were developed for the model PM2.5-induced toxicity. The 

predicted toxicity showed high correlations to experimental results, indicating the 

applicability of this universal predictive modeling approach to predict and analyze the 

potential toxicity of model PM2.5.

2. Materials and methods

2.1. Preparation and characterization of PM2.5 samples and model PM2.5 library

Components of PM2.5 contained silica, carbon, organic and inorganic compounds, and even 

biological pollutants. The whole PM2.5 particle was separated into water-soluble and water-

insoluble components when the particle was partially dissolved in biological medium. 

Previous studies have shown that carbon particles, which were formed from PM2.5 particles, 

represented the insoluble components of PM2.5 (Cheng et al., 2010; Fawole et al., 2016). In 

our previous studies, it was shown that the cytotoxicity and inflammation can be caused by 

insoluble parts of PM2.5 (Jia et al., 2019; Pan et al., 2019). Therefore, a model PM2.5 particle 

library was synthesized to mimic the insoluble PM2.5 particles that absorbed pollutants. The 

model PM2.5 particle can also be used to explore the toxicity mechanism induced by PM2.5 
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particles. The detailed procedure of model PM2.5 library syntheses has been reported in our 

previous studies (Jia et al., 2019; Pan et al., 2019). In brief, carbon nanoparticles (Beijing 

DK Nano technology Co., LTD, China) with toxic pollutants were used to simulate the 

insoluble part of PM2.5 samples. The PM2.5 samples (PM2.5-JN) were collected from the 

city of Jinan, China, which were daily sampled by a high volume ambient particulate 

sampler (Tianhong Instruments, TH-150CIII, Wuhan, China) at a air flow rate of 100 L/min. 

The 20 carbon nanoparticles were synthesized by different combinations of four toxic 

pollutants (i.e., Cr2O7
2−, Pb2+, As2O3 and BaP), which were some of the most toxic 

components of PM2.5 particles. Inductively coupled plasma mass spectrometry (ICP-MS, 

Agolent 7700, Santa Clara CA, USA) was used to analyze the mass of Cr and Pb on PM2.5-

JN and model PM2.5 particles, while atomic fluorescence spectrometer (AFS-933, Beijing, 

China) and liquid chromatography-mass spectrometry (LCMS-2010EV, Kyoto, Japan) were 

respectively used to detect the mass of As and BaP/PAHs (polycyclic aromatic 

hydrocarbons). The loadings of these pollutants on model PM2.5 particles were carefully 

controlled to simulate their actual environmental concentrations of PM2.5-JN, i.e. Cr (VI): 

0.14%, Pb2+: 0.55%, As(III): 0.071% and PAHs: 0.11%. After sonication, the PM2.5-JN was 

resuspended as nano-sized particles, the TEM (transmission electron microscopy; 

JEM-1011, JEOL, Tokyo, Japan) morphology analysis of PM2.5-JN and model PM2.5 

particles indicated similar sizes with diameters of around 40 nm. A laser particle size 

analyzer (Malvern Nano ZS, Malvern, UK) was used to measure the hydrodynamic 

diameters and zeta potentials of PM2.5-JN and model PM2.5 particles (75 μg ml−1) in 

ultrapure water (18.2 MΩ) or minimum essential medium (MEM) (Genom, Hangzhou, 

China) supplemented with 10% fetal bovine serum. The hydrodynamic diameters and zeta 

potentials of 20 model PM2.5 particles were similar with those of PM2.5-JN, detailed 

information can be seen in the supplementary material (Table S1).

2.2. Inflammatory response datasets

The inflammatory response datasets were obtained from one of our recent studies (Pan et al., 

2019). This dataset contained 20 carbon nanoparticles tested for four different inflammatory 

responses in 16HBE cells, which were evaluated by transcription (mRNA) levels and protein 

levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) genes. Quantitative real-time 

polymerase chain reaction (qRT-PCR) was carried out to determine the relative mRNA 

levels of IL-6 and IL-8 genes. The IL-6 and IL-8 protein levels in cell culture supernatants 

were quantified by commercially available human uncoated ELISA kits. The output values 

are the relative transcription levels/expression levels (pg ml−1) of IL-6, IL-8 genes/proteins 

in 16HBE cells after incubating cells with various particles (75 μg ml−1) for 48 hours. The 

activities of these 20 carbon nanoparticles ranged from 1.00 to 13.76 (IL-6 genes), 13.36 to 

52.59 pg ml−1 (IL-6 proteins), 0.79 to 9.42 (IL-8 genes) and 33.94 to 383.00 pg ml−1 (IL-8 

proteins) in these four assays. A higher value indicated a higher inflammatory response 

induced by model PM2.5 particles.

2.3. Cytotoxicity assessment

In order to explore the cytotoxicity induced by the model PM2.5 particles, a series of 

gradient concentration of particles, were added to 16HBE cells to yield various dose-

response (cell viability) curves. At first, 16HBE cells were cultured in MEM (Genom, 
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Hangzhou, China) supplemented with 10% fetal bovine serum (Sijiqing, Hangzhou, China), 

1% penicillin-streptomycin antibiotics (Sigma-Aldrich, St. Lous, Mo) at 37 °C with 5% 

CO2. Cells in the logarithmic phase were collected and seeded in 96-well plates with the 

density of 9000 cells per well. After 24 hours incubation, cells were exposed to cell culture 

medium containing model PM2.5 particles at different concentrations, i.e. 12.5, 25, 50, 100, 

200 and 400 μg ml−1 for 48 hours. Cell viability was determined using a CellTiter-Lumi 

Luminescent Cell Viability Assay Kit according to the manufacture’s protocol (Beytotime 

Institute of Biotechnology, Shanghai, China).

2.4. Construction of virtual carbon nanoparticle library

The virtual carbon nanoparticles were generated using an in-house program (coded in 

python 3.5), which was developed to generate virtual gold nanoparticles (GNPs) in our 

previous publications (Wang et al., 2019, 2017; Yan et al., 2019). Briefly, carbon atoms were 

first put together to form a sphere core based on the particle size information for each carbon 

nanoparticle. Then the associated surface pollution components (BaP, Cr2O7
2−, As2O3 and 

Pb2+) with component density information, were randomly placed on the core surface. The 

constructed virtual carbon nanoparticles were saved as Protein Data Bank (PDB) files. The 

PDB files were imported into visual molecular dynamics (VMD) for visualization 

(Humphrey et al., 1996), in which the core was set as lines drawing method and the atoms of 

surface components were set as vdw drawing method (Fig. 1).

2.5. Nanodescriptors generation

Nanodescriptors were calculated based on the virtual carbon nanoparticles, which were 

generated in the above step. First, all atoms of the virtual carbon nanoparticles were 

classified in six categories: Cx (Carbon atoms of the core), C (Carbon atoms of BaP), O 

(Oxygen atoms), Cr (Chromium atoms), As (Arsenic atoms), Pb (Lead atoms). Here, in 

order to explore whether the effects of carbon atoms came from core or BaP, two different 

symbols (e.g., Cx and C) were assigned to carbon atoms. Then, based on Delaunay 

tessellation, every four nearest neighboring atoms (e.g., CxCxCxCx and PbPbCC) that can 

form a tetrahedron were identified from the virtual nanoparticle structure. Based on our 

definition of atom types, there were total of 126 nanodescriptors without taking into account 

of their atom order (e.g., PbPbCC was considered to be same as CCPbPb) that were defined 

for all virtual carbon nanoparticles. The value of each nanodescriptor was calculated as the 

sum of electronegativity values of the four atoms within the tetrahedron. For example, the 

value of the PbPbCC nanodescriptor was the sum of two lead atom electronegativity values 

and two carbon atom electronegativity values. Here, based on the periodic table of 

electronegativity by Pauling scale, various values were assigned to Cx (2.55), C (2.55), O 

(3.44), Cr (1.66), As (2.18) and Pb (2.33), respectively. Accordingly, the value of a 

nanodescriptor for each virtual carbon nanoparticle was calculated as the value of each 

tetrahedron electronegativity multiplied by its occurrences in the virtual carbon 

nanostructure, the results of calculated nanodescriptors for all carbon nanoparticles were 

shown in the supplementary material (Table S2).
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2.6. Development of QNAR models

The QNAR models were developed using two different machine learning algorithms: k-

nearest neighbor (kNN) and random forest (RF). The kNN method uses weighted average of 

nearest neighbors as its prediction and employs variable selection procedure to define 

neighbors (Zheng and Tropsha, 2000). It was developed using in-house program 

implementation, also available at chembench.mml.unc.edu (Walker et al., 2010). RF 

predictor consists of many decision trees and produces a prediction that combine the outputs 

from individual trees (Breiman, 2001). The RF algorithm provided as a standard statistics 

package in R version 3.1.1, was used in this study (Dalgaard, 2008). An extra consensus 

QNAR model was then generated by averaging predictions of the two individual models, 

which have been reported in our previous studies (Kim et al., 2016; Wang et al., 2015).

Since the dataset used in this study was small, all models were validated using a leave-one-

out (LOO) validation procedure. Briefly, a single nanoparticle was selected from the original 

dataset for prediction and the remaining 19 nanoparticles as the training set. The QNAR 

models were developed using the training set and the resulted models were used to predict 

the excluded nanoparticle. The whole procedure was repeated 20 times till every 

nanoparticle in the dataset was used for prediction purpose one time.

3. Results and discussion

3.1. Cytotoxicity responses of the model PM2.5 particle library

The EC50 value referred to the concentration of a model PM2.5 particle that induced half cell 

death. These EC50 values of the model PM2.5 particles and PM2.5-JN to 16HBE cells, were 

calculated from dose-response curves. These curves plotted the relationships between 

various concentrations of model PM2.5 particles added and its cytotoxicity. It can be seen 

that almost all the EC50 values were at the same order of magnitude, i.e. ~100 μg ml−1 to 

200 μg ml−1 (Fig. 2). Meanwhile, the cytotoxicity of model PM2.5 particles was affected by 

the amount of pollutants loaded, while NP 20 containing all four toxic pollutants showed 

highest cytotoxicity with a lowest EC50 value of 89 μg ml−1. Similar to cytotoxicity, the 

inflammatory responses induced by NP 20 were also the highest, i.e. 13.76, 52.59 pg ml−1, 

9.42 and 383 pg ml−1 in the four inflammatory response sets. The PM2.5 sample was also 

tested using the same protocol and obtained comparable toxicity results, indicating the 

suitability of model PM2.5 particles to simulate the actual PM2.5 in toxicity testing and 

evaluations (Pan et al., 2019). In several previous studies, the insoluble components of the 

PM2.5 particles were also proven to be the cause of the cytotoxicity and inflammatory 

responses. For example, the municipal solid waste incineration consisting of higher contents 

of heavy metals induced cell injuries, as indicated by the viability, ROS generation and DNA 

damage (Shang et al., 2019). The levels of IL-12 p70 and TNF-α, which indicated the 

inflammatory responses, after exposure to insoluble PM2.5 were significant higher than that 

in water-soluble PM2.5 and fat-soluble PM2.5 (Zhu et al., 2019).

3.2. Nanostructure diversity analysis

On the basis of the calculated nanodescriptors of the virtual carbon nanoparticles, the 

structural diversity of the 20 model nanoparticles can be analyzed, which was caused by the 
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different coating of pollution components on the nanoparticle surface. The chemical spaces 

of the 20 NPs were identified by performing a principal component analysis (PCA) using the 

126 calculated nanodescriptors, as described above. The top three principal components can 

be used to represent the distribution of these NPs, which accounted for 64% of the variance 

of all descriptors. (Fig. 3). It can be seen that the 20 model PM2.5 nanoparticles were 

structurally different due to various surface components and components density. 

Furthermore, there was one clear structural outlier (NP 20). NP 20 was considered as an 

outlier due to its high content of Pb2+, which resulted in high values of all Pb-related 

descriptors, such as PbPbCxCx and PbPbCxO. Therefore, the high values of these 

descriptors, which were different compared to the other 19 nanoparticles, made NP 20 a 

structure outlier in the current dataset.

3.3. Predictive QNAR models for inflammatory responses and cytotoxicity

Two individual models were developed using kNN and RF for each modeling set and an 

extra consensus model was made by averaging the predictions from these two models. The 

performance of the models was represented by the LOO validation results (Table 1). For all 

four inflammatory response datasets and one cytotoxicity dataset, both kNN and RF models 

had correlation coefficients (R2) over 0.5. The mean absolute error (MAE) values of kNN 

(RF) models were 1.24 (1.50), 3.35 (4.39), 1.03 (0.93), 40.53 (41.51) and 13.79 (12.68) in 

five datasets, respectively (Table 1). The kNN model had a superior result for the IL-6 

(protein) set while the RF model showed better predictability for the IL-8 (mRNA) set. As 

for the IL-6 (mRNA), IL-8 (protein) and EC50 sets, the kNN and RF models had equivalent 

predictive performance. Furthermore, the consensus models were normally superior to 

individual models not only because the consensus predictions were close to the top 

performance of individual models but also without making arbitrary model selections.

Compared to individual models, the consensus model was more stable and reliable when 

predicting new compounds or nanomaterials based on our previous study (Solimeo et al., 

2012). The correlations between experimental and predicted values of consensus models for 

the whole model PM2.5 set can be viewed (Fig. 4). Although most carbon nanoparticles were 

correctly predicted, few predictive outliers can be noticed. For example, NP 18 was 

predicted as an outlier in the four datasets, which induced high inflammatory responses with 

the values of 11.09, 42.37 pg ml−1, 7.95 and 332 pg ml−1 (Table S1). Its structure nearest 

neighbor NP 17 induced relatively lower inflammatory responses with the values of 4.21, 

27.59 pg ml−1, 2.07 and 131.06 pg ml−1 (Table S1). The structural difference between NP 17 

and NP 18 was mainly due to the small different amounts of Pb2+, i.e. 0.44% for NP 18 and 

0.28% for NP17 (Table S1). Although NP 17 and NP 18 can be distinguished by the 

calculated nanodescriptors (Fig. 3), the two model PM2.5 particles were still predicted as 

nearest neighbors due to their structural similarity. This issue was mainly due to the lack of 

enough model PM2.5 particles that consisted of gradually changed Pb2+ on the surface. Our 

modeling results indicated that Pb2+ was the most important structural feature to affect the 

model PM2.5 inflammatory responses (see the next section for details) and more model 

PM2.5 particles with Pb2+ variety should be tested in the future.

Liu et al. Page 7

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4. Mechanism analysis of model PM2.5-induced inflammatory responses and 
cytotoxicity

The entire model PM2.5 library and PM2.5 had similar physicochemical properties, such as 

hydrodynamic sizes and electrodynamic/electrostatic properties (zeta potential) in water and 

cell culture medium (Pan et al., 2019). Furthermore, the toxicity of carbon nanoparticles was 

proportional to the number of pollutants loaded. For example, the inflammatory response 

values of NP 20 were close to the data obtained from actual PM2.5 sample (Table S1). 

Therefore, the model PM2.5 particle library and the resulted computational models can be 

used to explore the key pollution components of PM2.5 and reveal the underlying 

mechanisms of PM2.5-induced toxicity. The analysis of the resulted QNAR models allowed 

us to identify structural features responsible for model PM2.5-induced inflammatory 

responses and cytotoxicity, which can be used to illustrate potential mechanisms of PM2.5-

induced toxicity. The top five ranking nanodescriptors were obtained from the results of all 

accepted kNN models (Fig. 5). The high frequency of a descriptor in the resulted model 

indicated its critical contribution to the associated toxicity. It can be seen that the calculated 

nanodescriptor PbCxCxCx was ranked the highest for all the four inflammatory response 

modeling sets, indicating the Pb2+ contributed significantly to model PM2.5-induced 

inflammatory responses, which was consistent to our hypothesis in previous experiments 

(Pan et al., 2019). As for the EC50 modeling set, the calculated nanodescriptor CrOOO was 

ranked the highest, which indicated that Cr(VI) contributed significantly to model PM2.5-

induced cytotoxicity to 16HBE cells. In one of our previous studies, we identified that co-

existence of Cr(VI) and Pb2+ components contributed to the model PM2.5-induced 

cytotoxicity in A549 cells (Jia et al., 2019). It indicated that different toxic components of 

PM2.5 could induce different potential toxicity. For example, the researchers found that the 

genotoxic effect was related to the PAHs content while the extent of the oxidative damage 

may be related to the concentration of the metals, such as pro-oxidant transition metals, Ni 

and Zn.

3.5. Pitfalls and perspectives

The applicability of QNAR strategy was previously limited to the nanomaterial modeling 

studies. The virtual nanoparticle library was presented in our recent studies for GNPs and 

new nanodescriptors were developed as universal tool to quantitatively represent 

nanostructures (Wang et al., 2017; Yan et al., 2019). In this study, these new modeling 

approaches were first used to model PM2.5 toxicity and showed promising results. However, 

compared to the modeling studies of various toxicity endpoints of small molecules (Kim et 

al., 2016; Russo et al., 2019; Solimeo et al., 2012; Zhang et al., 2014), the resulted QNAR 

models in this study still suffered from limited training data. Some predictive errors (e.g., 

NP 18) still existed due to the lacking of similar nanoparticles in the current dataset. In the 

future, more model PM2.5 particles should be synthesized and tested against the same assays 

to broaden the applicability of the current model. For example, model PM2.5 particles that 

consist of 1) various numbers of Pb2+ on the surface; 2) more toxic pollutants (e.g., Al3+ and 

Cd2+) on the surface; and 3) silica nano cores to mimic PM2.5 in the dust should be 

synthesized and tested.
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4. Conclusion

Our studies have shown that the reductionism hypothesis and model PM2.5 library approach 

help identify the key toxic components of PM2.5 and pave an avenue toward further 

evaluation of the potential mechanisms of PM2.5-induced toxicity. To overcome the 

limitation of resources for exhaustive experimentation, the combination of virtual carbon 

nanoparticles library and various machine learning approaches can develop a unique 

framework to predict model PM2.5-induced toxicity based on high quality data from model 

PM2.5 library. The novel method developed in this study serves as a useful tool for 

elucidating the PM2.5-induced toxicity mechanisms by identifying the relationships between 

surface pollution components of model PM2.5 and the resulting inflammatory responses/

cytotoxicity. Predictive ability of all models was assessed by R2 and MAE using LOO 

validation, the relatively higher R2 values and lower MAE values indicated high 

predictability of the resulted models. Based on the success of this research, we foresee an 

increasing trend of computational modeling driven by machine learning approaches and 

virtual structure simulations to complement traditional trial-and-error experimental studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Virtual carbon nanoparticles were constructed based on experimental data.

• Novel nanodescriptors were generated for computational modeling.

• Pb- and Cr- related nano surface structures were mainly responsible for 

toxicity.
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Fig. 1. 
The virtual carbon nanoparticle library. The core of the nanoparticle is represented in black 

and Cr, O, Pb, As and C atoms are represented in blue, red, orange, yellow and cyan.
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Fig. 2. 
Dose-dependent effects of model PM2.5 particles and PM2.5-JN (PM2.5 particles collected 

from the city of Jinan, China) induced cytotoxicity. 16HBE cells were exposed to model 

PM2.5 particles for 48 hours at various concentrations. EC50 values were calculated using 

SigmaPlot software (Systat Software Inc., San Jose, USA). Data were shown as mean ± s.d. 

(n = 3).
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Fig. 3. 
Principal component analysis (PCA) of 20 virtual carbon nanoparticles.
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Fig. 4. 
Experimental (Exp.) vs Predicted (Pred.) diagram for developed consensus models using 

leave-one-out (LOO) validation in (a) IL-6 (mRNA) (b) IL-6 (protein) (c) IL-8 (mRNA) (d) 

IL-8 (protein) (e) EC50 sets. Correlation coefficients (R2) from consensus modeling results 

are also shown.
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Fig. 5. 
Contributions of top five important nanodescriptors from kNN modeling results in (a) IL-6 

(mRNA) (b) IL-6 (protein) (c) IL-8 (mRNA) (d) IL-8 (protein) (e) EC50 sets.
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Table 1.

Correlation coefficients (R2) and mean absolute error (MAE) of kNN, RF and consensus modeling results in 

the five sets.

Inflammatory response kNN RF Consensus

IL-6 (mRNA) 0.71 (1.24)
a 0.69 (1.50) 0.73 (1.24)

IL-6 (protein) 0.70 (3.35) 0.58 (4.39) 0.69 (3.52)

IL-8 (mRNA) 0.67 (1.03) 0.76 (0.93) 0.76 (0.91)

IL-8 (protein) 0.63 (40.53) 0.62 (41.51) 0.65 (38.59)

EC50 0.73 (13.79) 0.77 (12.68) 0.76 (13.01)

a
Values in brackets are MAE of the modeling results.
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