
Human Skin, Oral, and Gut Microbiomes Predict Chronological
Age

Shi Huang,a,b Niina Haiminen,c Anna-Paola Carrieri,d Rebecca Hu,a Lingjing Jiang,a,e Laxmi Parida,c Baylee Russell,f

Celeste Allaband,m Amir Zarrinpar,f,g Yoshiki Vázquez-Baeza,a,b Pedro Belda-Ferre,a,b Hongwei Zhou,h Ho-Cheol Kim,i

Austin D. Swafford,a Rob Knight,a,b,j,k Zhenjiang Zech Xub,l

aCenter for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, USA
bUCSD Health Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
cIBM T. J. Watson Research Center, Yorktown Heights, New York, USA
dIBM Research UK, The Hartree Centre, Warrington, United Kingdom
eDivision of Biostatistics, University of California, San Diego, La Jolla, California, USA
fUCSD Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
gVA San Diego Health Care, La Jolla, California, USA
hDivision of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
iScalable Knowledge Intelligence, IBM Research-Almaden, San Jose, California, USA
jDepartment of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
kDepartment of Bioengineering, University of California, San Diego, La Jolla, California, USA
lState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
mBiomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA

ABSTRACT Human gut microbiomes are known to change with age, yet the rela-
tive value of human microbiomes across the body as predictors of age, and predic-
tion robustness across populations is unknown. In this study, we tested the ability of
the oral, gut, and skin (hand and forehead) microbiomes to predict age in adults us-
ing random forest regression on data combined from multiple publicly available studies,
evaluating the models in each cohort individually. Intriguingly, the skin microbiome pro-
vides the best prediction of age (mean � standard deviation, 3.8 � 0.45 years, versus
4.5 � 0.14 years for the oral microbiome and 11.5 � 0.12 years for the gut microbiome).
This also agrees with forensic studies showing that the skin microbiome predicts
postmortem interval better than microbiomes from other body sites. Age predic-
tion models constructed from the hand microbiome generalized to the forehead
and vice versa, across cohorts, and results from the gut microbiome generalized
across multiple cohorts (United States, United Kingdom, and China). Interestingly,
taxa enriched in young individuals (18 to 30 years) tend to be more abundant
and more prevalent than taxa enriched in elderly individuals (�60 yrs), suggest-
ing a model in which physiological aging occurs concomitantly with the loss of
key taxa over a lifetime, enabling potential microbiome-targeted therapeutic
strategies to prevent aging.

IMPORTANCE Considerable evidence suggests that the gut microbiome changes
with age or even accelerates aging in adults. Whether the age-related changes in
the gut microbiome are more or less prominent than those for other body sites and
whether predictions can be made about a person’s age from a microbiome sample
remain unknown. We therefore combined several large studies from different coun-
tries to determine which body site’s microbiome could most accurately predict age.
We found that the skin was the best, on average yielding predictions within 4 years
of chronological age. This study sets the stage for future research on the role of the
microbiome in accelerating or decelerating the aging process and in the susceptibil-
ity for age-related diseases.
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Microbiomes across the body are known to change rapidly in the first 3 years of life
and then relatively little in adults (1). Recent work suggests that the gut micro-

biome can be used to classify adults into age groups, with sex-specific differences in
patterns of diversity by age (2). Age has been implicated as a dominant factor in the
adult microbiome in numerous cohort studies (3–5). The microbiome also continues to
change after death and has been used to predict postmortem interval to within a few
days in both mice (6) and humans (7): contrary to expectation, the skin microbiome
predicted postmortem interval much better than did the gut or the surrounding soil
microbiome.

We were inspired by these results to expand our past work on age prediction in the
gut microbiome (2) to other body sites, including the mouth and the skin. We used a
total of 4,434 fecal samples (United States, n � 1,887; United Kingdom, n � 685; China,
n � 1,609; others), 2,550 saliva samples (United States, n � 1,666; United Kingdom,
n � 48; Tanzania, n � 254; others as well) (3, 8–11), and 1,975 skin samples (United
States, n � 1,723; United Kingdom, n � 27; others) (3, 8, 9, 12). In total, this represents
the most comprehensive investigation of microbiome and age, with 8,959 samples
from 10 studies (3, 8–14).

We acquired 100-bp amplicon sequence variants (ASVs) processed with Deblur (15)
from the 16S-V4 rRNA gene amplicon data in Qiita (16) using the redbiom search
engine (17). This study includes only subjects with self-reported ages from 18 to 90
years (see Fig. S1 in the supplemental material), body mass indices (BMI) of 18.5 to
30 kg/m2, no reported inflammatory bowel disease or diabetes, and no antibiotic
consumption 1 month before sampling. We also excluded pregnant, hospitalized,
disabled, or critically ill individuals (Table S1). For gut microbiota, the majority of
acquired samples were derived from two projects: (i) the American Gut Project (AGP) (3)
and (ii) the Guangdong Gut Microbiome Project (GGMP) (13). For oral and skin micro-
biota, we obtained all samples from Qiita matching the inclusion and exclusion criteria
above, representing the most comprehensive meta-analysis for age prediction using
human microbiota. We further analyzed the ASV data with the QIIME 2 pipeline (18).

We used random forests (RF) (19) to regress relative abundances of ASVs in the
healthy human microbiota from different body sites (gut, oral, and skin microbiota)
against the subjects’ chronological ages with the R package ranger (20) using fine-
tuned hyperparameters. To test if confounders (such as sex) affected the modeling, we
first trained the age model within a sub-data set stratified by a confounder and then
applied it on all the other sub-data sets. For both model training and testing, we
evaluated regression performance using mean absolute error (MAE). We fit a smoothing
spline function between microbiota age and chronological age to calculate relative
microbiota age. Relative microbiota age per sample was calculated as the difference
between the microbiota age of a focal adult and the microbiota age of the interpolated
spline fit of healthy adults at the same chronological age. We used the Wilcoxon rank
sum test (21) to compare relative microbiota ages between host groups in each data
set. To determine the effects of country and body sites on microbiota age, we
subdivided the data sets into these groups and repeated the analyses.

The RF regression recaptured the known result that the gut microbiome is associ-
ated with chronological age (Fig. 1A) and that this relationship holds across cohorts, but
the connections to age were even stronger in the oral (Fig. 1B) and skin (Fig. 1C)
microbiomes. Remarkably, the skin microbiome could pinpoint a subject’s age to within
4 years, on average. Analysis of the specific microbial features contributing to these
models demonstrated that relatively few ASVs (e.g., around 64) are needed for highly
accurate models for each body site (Fig. 1D to F).

We next tested whether the models were sex specific. As shown in previous work (2),
we found a sex-specific signal in the gut microbiome; however, we did not find a
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sex-specific signal in the mouth or the skin microbiome. Consequently, although we
observed a small degradation in prediction accuracy for the cross-trained models from
men to women or vice versa for the gut, we saw no such degradation for the other
body sites, suggesting that populations do not need to be stratified by sex to build such
predictive models.

For the skin, we had enough data for the forehead and palm to test whether models
trained on skin from one body site apply for the other. This is important because the
forehead and hand are markedly different in physiology and microbiology (22). Fig-
ure 2A and B demonstrate that models of microbiome age for the forehead can be
cross-trained on the palm, and the converse is also true (Fig. 2C). This means that future
studies seeking to determine factors leading to microbiome aging can combine these
skin sites, which is important given the tremendous microbiome and metabolic diver-
sity observed across the human body (23).

An important consideration is which taxa contribute to the age prediction model. In
the gut, the ASVs belonging to the genera Bifidobacterium and Blautia or the families
Lachnospiraceae, Ruminococcaceae, and Clostridiaceae consistently had high feature
importance scores, although values differed between populations and within popula-
tions (Fig. S2). A larger discrepancy in feature importance rankings was found between
aging models built from different countries. For example, the top-ranking feature in
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FIG 1 The distinct capability for age prediction from gut (A), oral (B), and skin (C) microbiomes. Spline fit to the data is also shown (blue curve). Although the
skewed age distribution in the skin or oral microbiota data set may decrease the accuracy of age prediction for the older adults, it will not affect the conclusions
about the relative abilities of different human microbiomes to predict age. Prediction performances at increasing numbers of microbial species were obtained
by retraining the random forest classifier on the top-ranking features (ASVs), shown in terms of mean absolute error (MAE) from gut (D), oral (E), and skin (F)
microbiota identified with previous random forest models trained in different cohorts. Data are from Qiita studies 11757, 10317, 550, 1841, 1774, 2010, 2024,
2202, 11052, and 10052.
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Chinese cohorts is an ASV belonging to Bifidobacterium, but it was not detectable in the
U.S. cohort. In the oral microbiota, we identified a set of top-ranking microbial markers
decreasing in abundance with host aging in both females and males, such as ASVs
belonging to Lactobacillales, Gemellaceae, Bacteroides, and Fusobacterium (Fig. S3). In
the skin microbiome, we identified age-related markers in four subgroups: female
forehead, male forehead, female palm, and male palm. As we age, changes in skin
physiology (such as decreased sebum production and increased dryness) and host
immune system can alter associated microbiota (24–26). Interestingly, we identified
several genera and families that include anaerobic members (i.e., ASVs belonging to
Mycoplasma, Enterobacteriaceae, and Pasteurellaceae) negatively correlated with age in
all subgroups, reflecting these physiological changes due to aging (Fig. S4).

These results are consistent with city-specific influences on models for predicting
clinical states (13). However, the success of the cross-population generalization sug-
gests that the types of tuned RF models we introduce here may result in robust and
generalizable predictors. Interestingly, gut and oral bacteria that are enriched in young
individuals are both more abundant and more prevalent than bacteria enriched in
elderly individuals. We calculated the average relative abundance and ubiquity for each
ASV in the shared response. We found that bacteria that are enriched in young
individuals in at least two cohorts are both ubiquitous and abundant across people,
whereas those enriched in old age are less abundant and not ubiquitous. Thus, the
presence of these ASVs enriched in elderly individuals is a good indicator of microbial
shifts associated with aging.

Taken together, our results demonstrate that accurate and generalizable indicators of
age can be derived from microbiome studies using machine learning techniques and that
prediction is most accurate from the skin microbiome. Building on these results, future work
will include developing noninvasive microbiome-based tests to determine signs of accel-
erated or delayed aging in the elderly, or in individuals with chronic diseases, and designing
and evaluating microbially based interventions to modify the aging process.

Data availability. The data and code for this study are available at https://github
.com/shihuang047/age-prediction.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.3 MB.
FIG S2, EPS file, 0.04 MB.
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FIG S3, EPS file, 0.04 MB.
FIG S4, EPS file, 0.04 MB.
TABLE S1, XLSX file, 0.01 MB.
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