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Abstract

Bone resorption is a severe consequence of inflammatory diseases associated with osteolysis, such 

as rheumatoid arthritis (RA), often leading to disability in patients. In physiological conditions, the 

differentiation of bone-resorbing osteoclasts is delicately regulated by the balance between 

osteoclastogenic and anti-osteoclastogenic mechanisms. Inflammation has complex impact on 

osteoclastogenesis and bone destruction, and the underlying mechanisms of which, especially 

feedback inhibition, are underexplored. Here we identify a novel regulatory network mediated by 

RBP-J/NFATc1-miR182 in TNF-induced osteoclastogenesis and inflammatory bone resorption. 

This network includes negative regulator RBP-J and positive regulators, NFATc1 and miR182, of 

osteoclast differentiation. In this network, miR182 is a direct target of both RBP-J and NFATc1. 

RBP-J represses while NFATc1 activates miR182 expression through binding to specific open 

chromatin regions in the miR182 promoter. Inhibition of miR182 by RBP-J servers as a critical 

mechanism that limits TNF-induced osteoclast differentiation and inflammatory bone resorption. 

Inflammation, such as that which occurs in RA, shifts the expression levels of the components in 

this network mediated by RBP-J/NFATc1-miR182-FoxO3/PKR (previously identified miR182 

targets) towards more osteoclastogenic, rather than healthy, conditions. Treatment with TNF 

inhibitors in RA patients reverses the expression changes of the network components and 

osteoclastogenic potential. Thus, this network controls the balance between activating and 

repressive signals that determine the extent of osteoclastogenesis. These findings collectively 

highlight the biological significance and translational implication of this newly identified intrinsic 

regulatory network in inflammatory osteoclastogenesis and osteolysis.
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INTRODUCTION

The inflammatory bone destruction associated with multiple diseases, such as rheumatoid 

arthritis (RA), psoriatic arthritis and periodontitis, is a major cause of morbidity and 

disability in patients. Osteoclasts function as crucial pathogenic cells leading to excessive 

bone resorption in these inflammatory settings (1–5). The extent of osteoclastogenesis is 

delicately modulated and determined by the balance between osteoclastogenic and anti-

osteoclastogenic mechanisms in physiological conditions (6, 7). In response to the master 

osteoclastogenic cytokine RANKL, a broad range of signaling cascades mediated by 

canonical and non-canonical NF-kB pathways, mitogen-activated kinase (MAPK) pathways 

and calcium signaling, induce positive regulators, such as nuclear factor of activated T cells 

c1 (NFATc1), c-Fos and B lymphocyte-induced maturation protein-1 (Blimp1), to drive 

osteoclast differentiation. Meanwhile, intrinsic anti-osteoclastogenic mechanisms mediated 

by negative regulators, such as interferon regulatory factor (IRF8), v-maf 

musculoaponeurotic fibrosarcoma oncogene family protein B (MafB) and differentially 

expressed in FDCP 6 homolog (Def6), provide “a braking system” to prevent excessive 

osteoclastogenesis and bone resorption (6, 8–16). These mechanisms can interact with each 

other and form regulatory networks to coordinately control osteoclastogenesis. Identification 

of these networks will broaden and deepen our understanding of the mechanisms that control 

osteoclastogenesis and bone metabolism, and help establish optimal and potential novel 

therapeutic strategies. A great amount of work has focused on individual factors. However, 

little attention was paid to the osteoclastic regulatory networks, especially in inflammatory 

conditions.

Tumor necrosis factor- α (TNFα) is an inflammatory cytokine important for immunity and 

inflammation. The resounding success of TNF blockade therapy has demonstrated a key role 

for TNFα in the pathogenesis of autoimmune/inflammatory diseases such as RA. TNFα 
plays a major role, mostly in synergy with RANKL, in promoting pathologic 

osteoclastogenesis and bone resorption in inflammatory diseases (1, 2, 13, 17–20). TNFα 
also executes its indirect osteoclastogenic effect through augmentation of RANK expression 

on osteoclast precursors, induction of M-CSF and RANKL expression, and suppression of 

OPG (17, 21–24). Interestingly, although TNFα induces a similar signal transduction 

cascade to that of RANKL, the direct osteoclastogenic capacity of TNFα alone on osteoclast 

precursors is dramatically weaker than that of RANKL, which has been demonstrated by 

both genetic evidence and osteoclastogenesis in human CD14 positive cells (25–27). The 

mechanisms that restrain TNF-induced osteoclastogenesis are much less understood than 

those that promote osteoclastogenesis in response to RANKL (13, 28).

Recombination signal binding protein for immunoglobulin kappa J region (RBP-J), a nuclear 

DNA-binding protein, can function as either a transcriptional repressor or activator 

depending on the partner proteins with which it interacts (29). RBP-J is originally identified 
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and best known as a master transcription factor in the canonical Notch signaling pathway 

(29). Accumulating evidence now shows that RBP-J acts as a central transcription factor that 

receives inputs not only from canonical Notch signaling but also from other pathways 

dependent on cell types, such as the Wnt/β-catenin (30), NF-κB (31, 32), TAK1 (33), TLR 

(34, 35), TNFα (11), and ITAM signaling pathways (10), and is also targeted by viral 

proteins (36) and other cellular proteins (37, 38). RBP-J regulates diverse cellular functions, 

such as differentiation, proliferation, survival and development (29). In myeloid lineage 

cells, RBP-J has been implicated in inflammatory macrophage activation and function (34, 

35, 39), dendritic cell (DC) differentiation, and maintenance of CD8− DC populations (40, 

41). Upon interaction with a variety of partners and signaling pathways in different 

scenarios, the regulatory networks mediated by RBP-J are diverse and context-dependent.

Human genetic evidence revealed the association of RBPJ allelic polymorphisms with RA 

(42–44). Notably, we found that RBP-J expression level was suppressed in the synovial fluid 

macrophages/osteoclast precursors isolated from RA patients (10), supporting a pathological 

relevance of RBP-J to RA. Furthermore, our recent studies have identified RBP-J as a key 

transcriptional repressor for osteoclastogenesis, especially in response to TNF-induced 

osteoclast formation and inflammatory bone resorption (11). However, the molecular 

mechanisms by which RBP-J suppresses inflammatory osteoclastogenesis and bone 

resorption are far from understood.

Our genome-wide profiling of miRNAs shows that RBP-J significantly suppresses miR182, 

which is a TNF-inducible miRNA and a critical osteoclastogenic driver in bone remodeling 

(45, 46). In the present study, we identify a novel and unique regulatory network including 

the positive (NFATc1) and negative (RBP-J) upstream players that orchestrate miR182 

transcription and function to coordinately control TNF-induced osteoclastogenesis. 

Inflammatory conditions, such as that of RA, disrupt the balance between the positive and 

inhibitory mechanisms in this network, leading towards excessive bone erosion. This study 

highlights the importance of a newly identified network in TNF-mediated osteoclastogenesis 

and shed insights into the translational implications of treating the unbalanced network in 

osteolytic diseases.

MATERIALS AND METHODS

Animal study

RbpjΔM/ΔM (Rbpjflox/floxLysMcre(+)) and Mir182ΔM/ΔM (Mir182flox/floxLysMcre(+)) Mice 

have been described previously (11, 46). Mir182ΔM/ΔMRbpjΔM/ΔM double knockout (dKO) 

mice were generated by crossing Mir182flox/+LysMcre(+) with Rbpjflox/+LysMcre(+) mice. 

Gender- and age-matched mice with LysMcre(+) genotype were used as wild type controls 

(referred to as Ctrl) for experiments. Myeloid-specific miR-182 overexpression mice 

(referred to as Mir182mTg) were described previously (46). These mice were generated by 

crossing LSL (LoxP-Stop-LoxP)-Mir182 mice (47), in which the mouse Mir182 cDNA was 

knocked into the ubiquitously expressed Rosa26 locus preceded by a STOP fragment 

flanked by loxP sites, with LysMcre(+) mice (The Jackson Laboratory) on the C57BL/6 

background. Gender- and age-matched Mir182mTg mice and their littermates LysMcre(+) 
mice as wild type controls (referred to as Ctrl) were used. Nfatc1 knockout mice 
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(Nfatc1flox/floxMx1cre mice, referred to as Nfatc1 KO) were described previously (48). The 

bone marrow isolated from gender- and age-matched Nfatc1 KO and wild type 

Nfatc1flox/flox mice used in the experiments were kindly gifted by Dr. Julia Charles 

(Brigham and Women’s Hospital, Boston). All mice used in this study have been 

backcrossed to the C57BL/6 background for at least 10 generations. All animal procedures 

were approved by the Hospital for Special Surgery Institutional Animal Care and Use 

Committee (IACUC), and Weill Cornell Medical College IACUC.

TNF-induced supracalvarial osteolysis model

TNF-induced supracalvarial osteolysis was performed as previously described (10). TNFα 
was administrated daily at the dose of 75 μg/kg to the calvarial periosteum of age and 

gender-matched mice for five consecutive days before the mice were sacrificed. The 

calvarial bones were subjected to μCT analysis, sectioning, TRAP staining, and histological 

analysis.

K/BxN Serum Transfer-Induced Arthritis

K/BxN Serum Transfer-Induced Arthritis was performed as previously described (46). 

K/BxN serum pools were prepared, and arthritis was induced by intraperitoneal injection of 

100 μl of K/BxN serum to the female mice on days 0 and 2. The development of arthritis 

was monitored by measuring the thickness of wrist and ankle joints with digital slide caliper 

(Bel-Art Products). For each animal, joint thickness was calculated as the sum of the 

measurements of both wrists and both ankles. Joint thickness was represented as the average 

for each group. Mice were sacrificed on day 10 and serum and paws were collected. Hind 

paws were subjected to sectioning, TRAP staining and histological analysis.

Micro-computed tomography (μCT) analysis

Calvarial bones were fixed in 10% buffered formalin and scanned by using a Scanco μCT-35 

scanner (SCANCOMedical). 3D images of calvarial bones were reconstructed by using 

Scanco software according to the manufacturer’s instructions. Calvarial bones were 

subjected to sectioning, TRAP staining and histological analysis. The Osteomeasure 

software was used for bone histomorphometry using standard procedures according to the 

program’s instruction.

Reagents

Murine or human M-CSF, murine or human TNFα were purchased from PeproTech. FK506 

was purchased from invitrogen and Cyclosporin A (CsA) was purchased from Millipore.

Cell culture

To obtain bone marrow macrophages (BMMs), mouse bone marrow cells were harvested 

from tibiae and femora of age and gender-matched mutant and control mice and cultured for 

3 days in α-MEM medium (Thermo Fisher Scientific) with 10% FBS (Atlanta Biologicals), 

glutamine (2.4 mM, Thermo Fisher Scientific), Penicillin-Streptomycin (Thermo Fisher 

Scientific) and L929 supernatant (condition medium, CM), which contained the equivalent 

of 20 ng/ml of rM-CSF and was used as a source of M-CSF (10). The attached BMMs were 
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scraped, seeded at a density of 4.5 × 104/cm2, and cultured in α-MEM medium with 10% 

FBS, 1% glutamine and CM for overnight. Except where stated, the cells were then treated 

without or with optimized concentrations of TNFα (40 ng/ml) in the presence of CM for 

times indicated in the figure legends. Culture media were exchanged every three days. 

Human osteoclast cultures were performed as described previously (46). Briefly, peripheral 

blood mononuclear cells (PBMCs) from whole blood of healthy volunteers or RA patients 

were isolated by density gradient centrifugation using Ficoll (Invitrogen Life Technologies, 

Carlsbad, CA). CD14(+) cells were purified from fresh PBMCs using anti-CD14 magnetic 

beads (Miltenyi Biotec, Auburn, CA) as recommended by the manufacturer. Human 

CD14(+) monocytes were cultured in α-MEM medium with 10% FBS in the presence of M-

CSF (20 ng/ml; PeproTech, Rocky Hill, NJ) for 2 days to obtain monocyte-derived 

macrophages, which were further cultured with RANKL for osteoclast differentiation. The 

RA samples in Fig. 7 were described previously (46). Briefly, the RA CD14(+) PBMCs 

were from RA patients (age ≥ 18 and <70 years) who fulfilled American College of 

Rheumatology (ACR) 2010 RA classification criteria with disease duration < 5 years and 

were under TNFi therapy for the first time (Enbrel, 25mg weekly). Experiments with human 

cells were approved by the Hospital for Special Surgery Institutional Review Board. 

Informed consent (PBMC collection) was obtained from all RA patients. TRAP staining was 

performed with an acid phosphatase leukocyte diagnostic kit (Sigma-Aldrich) in accordance 

with the manufacturer’s instructions. TRAP-positive multinucleated cells containing 3 or 

more nuclei were counted as osteoclasts. The cell counts were normalized for size in the 

quantification. Murine macrophage cell line, RAW264.7 cells were purchased from the 

American Type Culture Collection. RAW264.7 cells were cultured in α-MEM medium 

(Thermo Fisher Scientific) with 10% FBS (Atlanta Biologicals), glutamine (2.4 mM, 

Thermo Fisher Scientific) and Penicillin-Streptomycin (Thermo Fisher Scientific). The cell 

line was routinely tested for mycoplasma contamination.

Reverse transcription and real-time PCR

For quantification of mRNA, reverse transcription and real-time PCR were performed as 

previously described (45). DNA-free RNA was obtained with the RNeasy MiniKit (Qiagen, 

Valencia, CA) with DNase treatment, and 1 ug of total RNA was reverse-transcribed with 

random hexamers and MMLV-Reverse Transcriptase (Thermo Fisher Scientific) according 

to the manufacturer’s instructions. Real-time PCR was done in triplicate with the 

QuantStudio 5 Real-time PCR system and Fast SYBR® Green Master Mix (Thermo Fisher 

Scientific) with 500 nM primers. mRNA amounts were normalized relative to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA. When reverse transcription 

was omitted, threshold cycle number increased by at least ten, signifying lack of genomic 

DNA contamination or nonspecific amplification; the generation of only the correct size 

amplification products was confirmed with agarose gel electrophoresis. The primers for real-

time PCR were as follows: For mouse primers, Nfatc1: 5’-

CCCGTCACATTCTGGTCCAT-3’ and 5’-CAAGTAACCGTGTAGCTCCACAA-3’; 

Prdm1: 5’-TTCTTGTGTGGTATTGTCGGGACTT-3’ and 5’-

TTGGGGACACTCTTTGGGTAGAGTT-3’; Acp5: 5’-ACGGCTACTTGCGGTTTC-3’ and 

5’-TCCTTGGGAGGCTGGTC-3’; Ctsk: 5’-AAGATATTGGTGGCTTTGG-3’ and 5’-

ATCGCTGCGTCCCTCT-3’; Acp5: 5’-ACGGCTACTTGCGGTTTC-3’ and 5’-
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TCCTTGGGAGGCTGGTC-3’; Calcr: 5’-ACATGATCCAGTTCACCAGGCAGA-3’and 5’-

AGGTTCTTGGTGACCTCCCAACTT-3’; Atp6v0d2: 5’- 

GAAGCTGTCAACATTGCAGA-3’and 5’- TCACCGTGATCCTTGCAGAAT-3’and 

Gapdh: 5’-ATCAAGAAGGTGGTGAAGCA-3’and 5’-

AGACAACCTGGTCCTCAGTGT-3’. For human primers, RBPJ: 5’-

TTCAAAAACCCCGTTGTCTC-3’ and 5’-CAAAACCAACCAACCAACC-3’; NFATC1: 

5’-AAAGACGCAGAAACGACG-3’ and 5’-TCTCACTAACGGGACATCAC-3’; FOXO3: 

5’- ACTTCAAGGATAAGGGCGACAG-3’ and 5’- TATGCAGTGACAGGTTGTGC-3’; 

EIF2AK2: 5’-AATGCCGCAGCCAAATTAGC-3’ and 5’-

AGGCCTATGTAATTCCCCATGG-3’; GAPDH: 5’-ATCAAGAAGGTGGTGAAGCA-3’ 

and 5’- GTCGCTGTTGAAGTCAGAGGA-3’.

For quantification of microRNA, total RNA was isolated, and the small RNA fraction was 

enriched with the mirVana miRNA Isolation Kit (Thermo Fisher Scientific) according to the 

manufacturer’s instructions. For quantitative RT-PCR analysis of miRNA, cDNA was 

prepared from small RNAs with the TaqMan microRNA Reverse Transcription Kit (Thermo 

Fisher Scientific). TaqMan MicroRNA assays were used according to the manufacturer’s 

recommendations (Thermo Fisher Scientific) for real-time PCR. The TaqMan U6 snRNA 

assay (Thermo Fisher Scientific) was used for normalization of microRNA expression 

values.

Immunoblot analysis

Total cell extracts were obtained using lysis buffer containing 150 mM Tris-HCl (pH 6.8), 

6% SDS, 30% glycerol, and 0.03% Bromophenol Blue; 10% 2-ME was added immediately 

before harvesting cells. Cell lysates were fractionated on 7.5% SDS-PAGE, transferred to 

Immobilon-P membranes (Millipore), and incubated with specific antibodies. Western 

Lightning plus-ECL (PerkinElmer) was used for detection. NFATc1 antibody (556602, 

1:1000) was from BD Biosciences; Blimp1 (sc-47732, 1:1000), IRF8 (sc-6058, 1:1000) and 

GAPDH (sc-25778, 1:3000) antibodies were from Santa Cruz Biotechnology.

Luciferase reporter assay

A 2448 bp DNA fragment of the promoter of mmu-miR182 was cloned into the pGL3 basic 

Luciferase Reporter Vector (E1751, Promega). The reporter plasmid containing miR182 

promoter were co-transfected into RAW264.7cells with CMV-renilla luciferase reporter (as 

an internal transfection control), together with RBP-J expression vector or a corresponding 

empty vector as a control using TransIT-TKO transfection reagent (Mirus), in accordance 

with the manufacturer’s instructions. Forty-eight hours after transfection and TNFα 
stimulation, the cells were lysed with passive lysis buffer (Promega), and firefly and renilla 

luciferase activities were measured using the Dual-luciferase reporter assay system 

(Promega).

Formaldehyde-assisted isolation of regulatory elements (FAIRE) assay

To identify and quantify chromatin compaction/accessibility, FAIRE assay was performed as 

previously described (49). Cells (10×106 cells per condition) were fixed with 1% 

formaldehyde for 10 min at room temperature. The reaction was quenched by the addition of 
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0.125 M glycine for 5 min. Then the cells were washed with ice-cold PBS twice. Fixed cells 

were lysed in buffer LB1 (50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% 

glycerol, 0.5% NP-40, 0.25% Triton X-100, and protease inhibitors) for 10 min on ice. The 

nuclei were pelleted, resuspended in buffer LB2 (10 mM Tris–HCl, pH 8.0, 200 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, and protease inhibitors) and incubated for 10 min on ice. After 

centrifuge, the nuclei were lysed in buffer LB3 (10 mM Tris–HCl, pH 8.0, 100 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine, and protease 

inhibitors). Then the fixed chromatin was sonicated by using a Bioruptor Pico device 

(Diagenode) for 6 cycles of 30 sec on/30 sec off. Ten percent of sonicated nuclear lysates 

was taken as input. DNA was extracted by adding an equal volume of phenol-chloroform 

solution and purified by MinElute PCR Purification Kit (Qiagen). Chromatin accessibility 

was determined by qPCR and normalized relative to total input. The qPCR primers used in 

the FAIRE assay were as follows: miR-182 promoter locus 1: 5’-

GTGTTGGTATGGCCCAGTTC-3’ and 5’-AGGAGAACCAGAAAGCTATGGC-3’; 

miR-182 promoter locus 2: 5’-TGCCACTCTCTTCCTTGGTTAC-3’ and 5’-

TGCTCTCAAAGGCACTGTACC-3’; miR-182 promoter locus 3: 5’-

AGGGCTTGAGGAGGTTTTACAC-3’ and 5’- AGCCAGACCAGTAAGCCTATG-3’; 

miR-182 promoter (TSS): 5’-TGACATTCCCCAGAGCCTAAAG-3’ and 5’-

TGTGGCTTGACAAGGAAGTG-3’; CtsK promoter (TSS): 5’- 

ACGTTGGAAATGGTGCAGAG-3’ and 5’- ACAGCCCTAGTTGTCTCCATTC-3’;β-

Globin locus: 5’-ACATGTGTGTGGGAGGAGTG-3’ and 5’-

GGACAATCCCTGAAAAAGCA-3’; Nfatc1#1: 5’-TTGGAATCCTGTAGCAGAAGGC-3’ 

and 5’- AACAGATGGAGATGCTTGCG-3’; Nfatc1#2: 5’-

TAGAACTGGGCCATACCAACAC-3’ and 5’- TAACCAAAGCAGTCCTCAGACC-3’; 

Nfatc1 promoter (−800bp of TSS): 5’- CCGGGACGCCCATGCAATCTGTTAGTAATT-3’ 

and 5’- GCGGGTGCCCTGAGAAAGCTACTCTCCCTT-3’.

ChIP assay

Cells (10×106 cells per condition) were crosslinked for 10 min at room temperature with 

0.8% formaldehyde solution followed by 5 min quenching with 125 mM glycine. Cells were 

pelleted at 4°C and washed with ice-cold PBS twice. The crosslinked cells were lysed with 

buffer LB1 with protease inhibitors on ice for 10 min. The nuclei were pelleted, resuspended 

in buffer LB2 and incubated for 10 min on ice. The lysis samples were resuspended and 

sonicated in buffer LB3 using a Bioruptor Pico device (Diagenode) for 6 cycles of 30 sec 

on/30 sec off. After sonication, samples were centrifuged at 12,000 rpm for 10 minutes at 

4°C and 10% of sonicated cell lysates was taken as input. The chromatin lysates were 

incubated with Protein A/G magnetic beads (Themofisher) with 5 μg of the appropriate 

antibody overnight at 4°C. RBP-J antibody (#5313) was from Cell Signaling Technology. 

NFATc1 antibody (#556602) was from BD Biosciences. After overnight incubation, 

antibody-bound magnetic beads were washed twice with Low salt buffer, twice with High 

salt buffer, once with LiCl wash buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 250 mM 

LiCl, 1% NP-40), and once with TE with 50 mM NaCl. Cross-links were reversed by 

overnight incubation at 65°C. Input and ChIP DNA was treated with RNase A and 

Proteinase K to remove RNAs and proteins. DNA was purified with MinElute PCR 

Purification Kit (Qiagen). DNA was analyzed by qPCR and normalized relative to total 
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input. The qPCR primers used in the ChIP assay: miR-182 promoter locus 1: 5’-

GTGTTGGTATGGCCCAGTTC-3’ and 5’-AGGAGAACCAGAAAGCTATGGC-3’; 

miR-182 promoter locus 2: 5’-TGCCACTCTCTTCCTTGGTTAC-3’ and 5’-

TGCTCTCAAAGGCACTGTACC-3’; miR-182 promoter locus 3: 5’-

AGGGCTTGAGGAGGTTTTACAC-3’ and 5’- AGCCAGACCAGTAAGCCTATG-3’; β-

Globin locus: 5’-ACATGTGTGTGGGAGGAGTG-3’ and 5’- 

GGACAATCCCTGAAAAAGCA-3’; Hes1 promoter: 5’-

TCTTCCTCCCATTGGCTGAAAG-3’ and 5’-CCCTGGCGGCCTCTATATATATC-3’; 

Nfatc1#1: 5’-TTGGAATCCTGTAGCAGAAGGC-3’ and 5’- 

AACAGATGGAGATGCTTGCG-3’; Nfatc1#2: 5’-TAGAACTGGGCCATACCAACAC-3’ 

and 5’- TAACCAAAGCAGTCCTCAGACC-3’.

Statistical analysis

Statistical analysis was performed using Graphpad Prism® software. Two-tailed Student’s t 

test was applied when there were only two groups of samples. In the case of more than two 

groups of samples, one-way ANOVA was used with one condition. ANOVA analysis was 

followed by post hoc Turkey’s multiple comparisons. p < 0.05 was taken as statistically 

significant; *p value < 0.05 and **p value < 0.01. The data displayed normal distribution. 

The estimated variance was similar between experimental groups. Data are presented as the 

mean ± SD or ±SEM as indicated in the figure legends.

RESULTS

Identification of miR182 as a direct target of RBP-J

RBP-J is a key repressor of TNF-induced osteoclast differentiation and inflammatory bone 

resorption (10, 11, 28). To identify downstream targets mediated by RBP-J, we applied a 

genome-wide, high throughput sequencing of microRNAs (miRNA-seq) to perform global 

profiling of miRNA expressions in response to TNFα stimulation during osteoclast 

differentiation in wild-type control and RBP-J-deficient bone marrow-derived macrophages 

(45). We spotted miR182 that is significantly induced by TNF stimulation but suppressed by 

RBP-J ((45) and miRNA-seq aligned reads at murine miR182/96/183 locus shown in Fig. 

1A). With consideration of the important role for miR182 in promoting osteoclastogenesis in 

bone remodeling (46), we first asked whether RBP-J directly regulates miR182 expression. 

Following this line, in silico analysis of the Mir182 promoter region revealed three highly 

matched RBP-J binding sites located 1.9kb (TTCCCA, locus 1), 306bp (TTCCCA, locus 2) 

and 76bp (TGGGAA, locus 3) upstream of its transcription start site (TSS) (Fig. 1B). We 

then tested RBP-J binding states at these loci in the bone marrow derived macrophages 

(BMMs) from the control or myeloid specific RBP-J deficient (RbpjΔM/ΔM 

(Rbpjf/f;LysMcre), (11)) mice during TNF induced osteoclastogenesis. Chromatin 

immunoprecipitation (ChIP) assays showed RBP-J binding signals at locus 1 and 3 of 

miR182 promoter region, as well as at the promoter of canonical RBP-J target Hes1 (as a 

positive control), but not at locus 2 of miR182 promoter or the transcriptionally silent β-

globin gene locus (as a negative control) (Fig. 1C). These RBP-J binding signals diminished 

in the RBP-J deficient cells (Fig. 1C). Consistent with the finding that TNFα induces 

miR182 expression, the RBP-J occupancy level at locus 1 and 3 of miR182 promoter region 

Inoue et al. Page 8

FASEB J. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were reduced by TNF stimulation (Fig. 1C), supporting that RBP-J is a transcriptional 

inhibitor of miR182 expression. To determine whether the RBP-J binding regions possess 

open chromatin feature, we performed formaldehyde-assisted isolation of regulatory 

elements (FAIRE) assay, which identifies nucleosome-depleted regions and active regulatory 

sequences that are often associated with regulatory factor binding. Indeed, FAIRE signals 

were induced by TNFα, and were observed at locus 1 and 3, but not 2, of the miR182 

promoter region, which correspond to RBP-J binding sites. RBP-J deficiency further 

enhanced the extent of the open chromatin states at these regions (Fig. 1D), indicating that 

RBP-J binding directs local chromatin towards a closed and inactive structure, which 

supports RBP-J as a transcriptional repressor of miR182 expression. Lack of RBP-J 

increases the expression of miR182 and osteoclastogenic marker genes, such as Cathepsin K 

(CtsK) (11, 45). In parallel to the gene expression, the enhanced open chromatin states 

indicated by FAIRE signals were also observed at the TSS of miR182 or CtsK promoter in 

the absence of RBP-J, but not at the transcriptionally silent β-globin gene locus (Suppl. Fig.

1). To determine the functional significance of RBP-J binding on miR182 transcription, we 

performed miR182 promoter reporter assay. As shown in Fig. 1E, TNFα-induced miR182 

promoter activity, which was strikingly suppressed by RBP-J expression. These results 

collectively demonstrate that miR182 is a new target of RBP-J, which acts as a 

transcriptional repressor to inhibit miR182 expression.

miR182 is a positive regulator in TNF-induced osteoclastogenesis

As a downstream target of RBP-J, miR182 expression is constantly suppressed (Fig. 1). To 

unveil the biological function of miR182, we took a genetic approach by crossing LysMcre 
mice with LoxP-STOP-LoxP (LSL)–miR-182 mice (47) to generate myeloid lineage 

conditional Mir182 transgenic (Tg) mice (Mir182mTg), in which Cre expression 

conditionally induces miR182 overexpression in myeloid lineage osteoclast precursors. The 

littermate LysMcre mice were used as the controls. We first examined osteoclast 

differentiation using bone marrow derived macrophages (BMMs) as osteoclast precursors. 

As expected from our previous data and literature (10, 11, 13, 19, 28), TNFα only induced a 

low number of small tartrate-resistant acid phosphatase (TRAP)+ multinucleated cells 

(MNCs) in the control cultures (Fig. 2A). Strikingly, a dramatically greater number of giant 

osteoclasts were induced to form by TNFα in Mir182mTg cells (Fig. 2A). The enhanced 

osteoclastogenesis by overexpression of miR182 was further corroborated by the markedly 

increased expression of osteoclast marker genes in the Mir182mTg cell cultures, such as Ctsk 
(encoding cathepsin K), Calcr (encoding calcitonin receptor) and Acp5 (encoding TRAP) 

(Fig. 2B). Moreover, the induction of the positive osteoclastogenic transcription factors, 

NFATc1 and Blimp1, was significantly enhanced in the Mir182mTg cell cultures (Fig. 2B, 

C). These results clearly show that miR182 is a positive regulator of TNF-induced osteoclast 

differentiation. However, in the presence of its upstream repressor RBP-J, both the 

expression and the osteoclastogenic capacity of miR182 are suppressed.

Suppression of miR182 by RBP-J serves as a crucial mechanism restraining TNF-induced 
osteoclastogenesis and bone resorption

The drastically enhanced TNF-induced osteoclastogenesis phenotype in RbpjΔM/ΔM cells is 

very similar to that in Mir182mTg cells, suggesting that RBP-J and miR182 may function in 
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an axis in the regulation of osteoclastogenesis. We then sought to provide genetic evidence 

for the biological importance of the RBP-J-miR-182 axis in vivo in suppressing TNF-

induced osteoclastogenesis and bone resorption. We first tested whether miR182 deletion 

could abolish TNF-enhanced osteoclastogenesis in RBP-J-deficient cells. To this end, we 

crossed RbpjΔM/ΔM and Mir182ΔM/ΔM mice to generate RbpjΔM/ΔMMir182ΔM/ΔM double 

knockout mice (dKO), in which both RBP-J and miR-182 were deleted in the myeloid 

macrophage lineage. As shown in Fig 3A, TNFα induced only a small number of osteoclasts 

in the control cells, and even less in Mir182ΔM/ΔM cells. RBP-J deficiency strikingly 

enhanced TNF-induced osteoclast differentiation (Fig. 3A), which is consistent with our 

previous findings (11). In contrast, there were only a few small TRAP+ osteoclasts formed 

in the RbpjΔM/ΔMMir182ΔM/ΔM dKO cells (Fig. 3A), indicating that miR182 deletion 

completely abrogated the enhanced osteoclastogenesis induced by RBP-J deficiency. The 

expression changes of osteoclast marker genes, such as Calcr and Atp6v0d2 (encoding 

ATPase H+ transporting v0 subunit d2), in the control, Mir182ΔM/ΔM, RbpjΔM/ΔM and dKO 

BMM cells in response to TNF are in parallel to and reflect their osteoclast differentiation 

phenotypes (Fig. 3B). These results demonstrate that miR182 is a key downstream target of 

RBP-J, responsible for the biological function of RBP-J in osteoclastic inhibition. 

Suppression of miR182 by RBP-J is required for RBP-J to inhibit TNF-induced 

osteoclastogenesis.

Next, we used a well-established inflammatory calvarial osteolysis model to test the function 

of RBP-J-miR182 axis in vivo. PBS injection as a negative control did not induce resorptive 

pit formation on the calvarial bone surfaces (data not shown). Administration of TNFα to 

the calvarial periosteum resulted in resorptive pit formation on the calvarial bone surface, 

identifiable by μCT analysis in the control mice, and in the Mir182ΔM/ΔM mice to a lower 

extent (Fig. 4A). In contrast, a lot of more resorptive pits and osteoclast formation were 

detected in the RbpjΔM/ΔM mice by μCT analysis (Fig. 4A), and the TRAP staining of the 

calvarial bone surfaces and histological slices (Fig. 4B, C). Deletion of miR182 in the 

RbpjΔM/ΔMMir182ΔM/ΔM dKO mice, however, completely abolished these enhanced 

osteoclast formation and bone erosion resulting from RBP-J deficiency (Fig. 4A, B, C).

We then used a more pathologically relevant model, K/BxN serum-induced arthritis model 

(46), which mimics inflammatory peri-articular bone erosion as that which occurs in human 

RA disease. This mouse model does not need autoimmunity induction and thus allows 

investigation of inflammatory bone resorption during the inflammatory effector phase of 

arthritis. Similarly as observed in the calvarial model, miR182 absence completely reversed 

RBP-J deficiency-enhanced osteoclast formation and joint erosion (Fig. 5A, B). The 

articular bone in the RbpjΔM/ΔMMir182ΔM/ΔM dKO mice was protected from the 

inflammation-induced arthritis (Fig. 5A, B). As a note, the clinical course of inflammation, 

indicated by the joint swelling between the mice with different genotypes, was similar (Fig. 

5C), indicating that the RBP-J-miR182 axis does not significantly affect inflammation in 

this model, but prominently regulates inflammatory osteoclast formation and bone 

resorption.

Collectively, these in vitro and in vivo findings reveal a newly identified RBP-J-miR182 axis 

that plays a crucial role in the regulation of inflammatory osteoclastogenesis and bone 
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destruction. Suppression of miR-182 by RBP-J is a key intrinsic mechanism that limits TNF-

induced osteoclastogenesis and bone resorption.

NFATc1 is a key upstream regulator for miR182 induction

It is unclear how miR182 is induced during osteoclast differentiation. In silico analysis of 

miR182 promoter predicted two NFATc1 binding sites, 2985 bp (site 1) and 1920 bp (site 2) 

upstream of the TSS of the miR182 gene locus (Fig. 6A). Since NFATc1 is a master 

osteoclastogenic transcription factor, we asked whether NFATc1 is responsible for miR182 

induction. Inhibition of NFATc1 activation using calcineurin inhibitors, FK506 or CsA, 

strongly suppressed miR182 expression induced by TNFα (Fig. 6B). We further used 

BMMs isolated from the control or myeloid lineage osteoclast precursor conditional Nfatc1 

KO mice (Nfatc1f/f;Mx1cre). As expected, there was no Nfatc1 induction by TNFα in the 

Nfatc1 KO BMMs (Fig. 6C). miR182 was induced by TNFα in the control cells, but not in 

the Nfatc1 KO cells (Fig. 6C), indicating that miR182 induction by TNFα is dependent on 

NFATc1. FAIRE analysis of the miR182 promoter region showed that TNFα relaxed 

chromatin states at the two NFATc1 binding sites, which became more open in the absence 

of RBP-J (Fig. 6D). The open chromatin at the NFATc1 binding sites pointed these loci to be 

active regulatory elements that are often associated with regulator binding. Indeed, ChIP 

assay demonstrated that TNFα recruited NFATc1 binding to these two sites at miR182 

promoter and RBP-J deficiency furthermore drastically enhanced NFATc1 occupancy (Fig. 

6E). Similar binding pattern of NFATc1 was observed at its binding site in NFATc1 

promoter region (Suppl. Fig. 2), which is used as a positive control and consistent with 

literature (50). These data provide evidence for the notion that miR182 is also a direct target 

of NFATc1, which is a key positive regulator for miR182 induction. TNF-induced miR182 

expression requires the presence of NFATc1.

Take together of our results and previous findings, we identified a novel and unique 

regulatory network mediated by the RBP-J/NFATc1-miR182 axis in TNF-induced 

osteoclastogenesis (Fig. 6F). RBP-J, as a key repressor of inflammatory bone resorption, 

inhibits the expression and function of NFATc1 (11) and miR182, both of which are positive 

regulators of osteoclast differentiation. miR182, as a direct target, receives positive signals 

from NFATc1 but negative inputs from RBP-J. miR182 further functions through its 

downstream targets, FoxO3 and PKR (45, 46), to regulate osteoclast differentiation. Overall, 

the key osteoclastogenic and anti-osteoclastogenic regulators in this network coordinately 

control osteoclastogenesis and bone resorption.

The RBP-J/NFATc1-miR182 regulatory network is significantly correlated with RA

We next asked whether the RBP-J/NFATc1-miR182 regulatory network is involved in 

human inflammatory diseases associated with bone destruction, such as RA. We compared 

the expression levels of the network components in the human osteoclast precursor CD14 

(+) PBMCs isolated from healthy donors and RA patients, and found that the expression of 

RBPJ, FOXO3 and EIF2AK2 (encoding PKR) was significantly decreased, while the 

expression of NFATc1 and miR182 was elevated in RA cells relative to the healthy controls 

(Fig. 7A). These results indicate that the anti-osteoclastic regulators (RBP-J, FOXO3 and 

PKR) are repressed, whereas osteoclastic regulators (NFATC1 and miR182) are enhanced in 
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the RA setting, which leads towards an overall enhanced osteoclastogenic condition in RA. 

With TNF blockade therapy of these RA patients with a soluble receptor of human TNF 

(Enbrel) that specifically blocks TNF activity and inflammation in RA, we observed 

strikingly upregulated expression levels of RBPJ, FOXO3 and EIF2AK2, but significantly 

decreased levels of NFATC1 and miR182 in CD14 (+) PBMCs isolated from each patient 

after one or two months of treatment (Fig. 7B). These data indicate that treatment of RA 

reverses the altered and unbalanced osteoclastogenic network towards healthy conditions. 

This was corroborated by the correlation study between the expression changes of the 

network components and the ex vivo osteoclastogenesis levels (Fig. 7C). We isolated CD14 

(+) PBMCs from each patient before and after one or two months of treatment using TNFi 

and performed ex vivo osteoclast differentiation. Along treatment, osteoclastogenesis was 

decreased by TNFi. Furthermore, statistical analysis showed that osteoclast differentiation 

extent (indicated by osteoclast areas) had strong negative correlations with RBPJ, FOXO3 
and EIF2AK2 expressions, but positive with NFATC1 and miR182 levels (Fig. 7C). These 

human RA data provide evidence for the presence of the regulatory network mediated by 

RBP-J/NFATc1-miR182, which is significantly correlated with the osteoclastogenic levels. 

Disease conditions, such as RA, can alter this regulatory network towards more 

osteoclastogenic than healthy conditions. Therefore, these data highlight the clinical 

relevance of the RBP-J/NFATc1-miR182 regulatory network in the therapeutic strategies for 

the treatment of diseases involving bone erosion.

DISCUSSION

Inflammatory bone resorption is a major clinical problem and cause of morbidity in diseases 

such as RA and periodontitis. Inflammatory conditions have complex impacts on 

osteoclastogenesis and bone remodeling (1, 5, 28). The underlying molecular mechanisms 

remain largely unknown. This study identified a novel and unique regulatory network 

mediated by RBP-J/NFATc1-miR182 that plays an important role in TNF-induced 

osteoclastogenesis and inflammatory bone resorption. miR182, for the first time, was 

identified as a direct target of both RBP-J and NFATc1. RBP-J suppresses while NFATc1 

activates miR182 expression. This new, highly integrated network includes both positive and 

feedback inhibitory regulators. Crosstalk and balance between regulators in this network, in 

response to different scenarios, can serve to establish biological switches that control cell 

differentiation extent. For example, TNFα maintains RBP-J expression level and activates 

RBP-J activity (11). As a consequence, TNFα is not able to effectively induce the 

expression of osteoclastogenic regulators NFATc1 and miR182 in the presence of RBP-J. 

Hence, inhibition of miR182 and NFATc1 by RBP-J is a crucial mechanism limiting TNF-

induced osteoclastogenesis and bone resorption. However, in RA disease condition, there are 

multiple cytokines in addition to TNFα that together lead to a complex inflammatory state. 

RBP-J activity at sites of inflammation can potentially be attenuated by cytokines that 

activate Jak-STAT signaling, and are pathogenic in diseases such as RA (10, 51, 52). It is 

presumably the RA inflammation that overrides the TNF effects on RBP-J expression and 

leads to lower RBP-J levels in RA than in healthy condition.

Inflammation also induces oxidative stress, and bone resorption leads to calcium release, 

which in turn regulates inflammation (53, 54). These complex inflammatory states and 

Inoue et al. Page 12

FASEB J. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated pathological changes could also affect the components of the identified regulatory 

network, and thereby contributing to the mechanisms underlying pathological 

osteoclastogenesis and bone resorption. In response to environmental cues, such as 

inflammation in RA, which decrease RBP-J expression level/activity (10, 51, 52), the 

regulatory network can shift towards osteoclastogenic. RANKL stimulation downregulates 

RBP-J expression, which in turn allows RANKL to effectively induce NFATc1 and miR182 

(11, 46) that drive osteoclastogenesis. Thus, the distinct regulation of the network by TNFα 
and RANKL contributes to their different osteoclastogenic capacity. Our previous work and 

this study introduce a concept that cytokines such as TNFα are subject to ‘brakes’ or 

feedback inhibitory mechanisms that restrain their osteoclastogenic potential. Augmentation 

of these intrinsic inhibitory mechanisms could help develop novel therapeutic strategies to 

treat osteolysis.

In addition to the biochemical evidence that miR182 is a direct target of RBP-J, we 

investigated and established the biological function of the RBP-J-miR182 axis in regulation 

of inflammatory bone resorption in this study. Both in vitro osteoclast differentiation and in 
vivo experiments, using two inflammatory bone resorption models, demonstrate that the 

RBP-J-miR182 axis is a key pathway whereby TNFα restrains its osteoclastogenic potential. 

The expression and targets of miRNAs are context-dependent and highly specific to cell and 

tissue types (55). The targets of miR182 are variable in different cells according to a variety 

of settings and stimulations. Our prior studies identified FoxO3 and PKR as key miR182 

targets that act as osteoclastogenic inhibitors (46). PKR represses osteoclastogenesis through 

activating autocrine IFNβ-mediated feedback inhibition (46). FoxO1 and FoxO3 are well-

defined miR182 targets in several biological settings (56, 57). FoxO family members, 

FoxO1, 3, and 4 proteins, are involved in osteoclast differentiation (45, 58, 59), but reported 

with different functions and mechanisms. Some studies show that FoxO1, 3 and 4 proteins 

are inhibitors of osteoclastogenesis (58), whereas others found FoxO1 as a positive regulator 

(59). These data indicate that the FoxO family plays an important but complex role in 

osteoclastogenesis. We found that FoxO3 is an important miR182 target in TNF-mediated 

osteoclast differentiation (45). Previous study shows that FoxO3 targets catalase and Cyclin 

D1 to arrest the cell cycle and promote apoptosis in RANKL-induced osteoclastogenesis 

(58). We did not observe these changes in response to TNFα, suggesting distinct 

mechanisms by which FoxO3 suppresses TNF-induced osteoclastogenesis. Future work will 

be needed to elucidate the mechanisms and to test the miR182-FoxO3 axis in vivo.

Current treatments of excessive bone resorption, such as in osteoporosis, using RANK 

receptor blockers or neutralizing RANKL antibodies are able to effectively inhibit osteoclast 

formation. However, blocking RANKL signaling could result in potential long-term side 

effects, such as bone remodeling defects, due to strong inhibition of osteoclast formation. 

TNF inhibitors treat inflammation and associated joint erosion such as that occurring in RA, 

but long-term usage has immunorepressive side effects, such as opportunistic infections. 

Alternative or complementary approaches to control abnormal osteoclastogenesis in disease 

conditions are therefore needed in order to ameliorate side effects and benefit patients. Our 

findings in this study revealed the presence of the RBP-J/NFATc1-miR182-PKR/FoxO3 

network in human RA and its significant correlation with ex vivo osteoclastogenesis. The 

RA data clearly show that inflammation shifts the network towards osteoclastogenic, 
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reflected by decreased RBP-J, PKR and FoxO3 expression, but enhanced NFATc1 and 

miR182 levels. Treatment of inflammation reverses the expression levels of the components 

in this network close to healthy condition. These findings indicate that this network is 

responsive and sensitive to environmental cues, and shed insights into the implications of 

treating the unbalanced network in osteolytic conditions. In addition, genetic evidence show 

that RBPJ and FOXO3 are closely associated with human inflammatory diseases (42–44, 60, 

61), such as RA. The genetic linkage with RA of the two components of the RBP-J/

NFATc1-miR182-PKR/FoxO3 network we discovered further supports a role for this 

network in the pathogenesis of inflammatory diseases. Taken together, our findings 

discovered a novel regulatory network mediated by RBP-J/NFATc1-miR182 in TNF-induced 

osteoclastogenesis, demonstrated the biological function of this regulatory network in 

inflammatory bone resorption, and unveiled the correlation between the network and RA. 

The results suggest the translational implications of RBP-J/NFATc1-miR182 network in 

treating inflammatory osteoclastogenesis and bone destruction.
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Nonstandard Abbreviations:

Blimp1 B lymphocyte–induced maturation protein-1

BMM bone marrow–derived macrophage

ChIP chromatin immunoprecipitation

FAIRE Formaldehyde-Assisted Isolation of Regulatory Elements

FOXO3 Forkhead box class O 3

μCT microcomputed tomography

MNC multinucleated cell

M-CSF macrophage colony-stimulating factor

NFATc1 nuclear factor of activated T cells c1

PBMCs peripheral blood monocytes

PKR protein kinase double-stranded RNA-dependent

RA rheumatoid arthritis
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RANKL receptor activator for NF-kB ligand

RBP-J Recombination signal binding protein for immunoglobulin kappa J 

region

TNFα Tumor necrosis factor- α

TNFi TNF inhibitor

TRAP tartrate-resistant acid phosphatase

WT wild-type
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Figure 1. RBP-J directly targets miR182 and represses its expression.
A. miRNA-seq aligned reads at murine miR182/96/183 locus displayed by Integrative 

Genomics Viewer (IGV). The Ctrl or RbpjΔM/ΔM BMMs were stimulated or not with TNFα 
(40 ng/ml) for 48 h, and miRNAs were extracted and subjected to miRNA-seq. A 

representative of read signals at the miR182/96/183 locus from two independent miRNA-seq 

datasets (GSE72966) is shown. B. A diagram depicting three putative RBP-J-binding motifs 

in the mouse miR-182 promoter region. C. ChIP analysis of RBP-J occupancy at the 

indicated loci in the Ctrl or RbpjΔM/ΔM BMMs stimulated or not with TNFα (40 ng/ml) for 

48 h. D. FAIRE analysis of chromatin accessibility at the miR-182 promoter in the Ctrl or 
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RbpjΔM/ΔM BMMs stimulated or not with TNFα (40 ng/ml) for 48 h. E. miR-182 promoter 

activities measured from the RAW264.7 cells transfected with the miR182 promoter reporter 

plasmid and/or RBP-J expression plasmid in the absence or presence of TNFα (40 ng/ml) 

for 48 h (n=3). Data are mean ± SEM. *p < 0.05; **p < 0.01; n.s., not statistically 

significant.
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Figure 2. Overexpression of miR182 promotes TNF-induced osteoclastogenesis.
A. Osteoclast differentiation using BMMs derived from Ctrl and Mir182mTg mice stimulated 

with or without TNFα (40 ng/mL) for three days. TRAP staining (left panel) was performed 

and the area of TRAP-positive MNCs (≥ 3 nuclei/cell) per well relative to the control was 

calculated (right panel). TRAP-positive cells appear red in the photographs. Scale bar: 200 

μm. B. Quantitative real-time PCR (qPCR) analysis of mRNA expression of Nfatc1 
(encoding NFATc1), Prdm1 (encoding Blimp1), Ctsk (encoding cathepsin K), Calcr 
(encoding calcitonin receptor) and Acp5 (encoding TRAP) during osteoclastogenesis using 

BMMs from the Ctrl and Mir182mTg mice treated with or without TNFα for two days. C. 

Immunoblot analysis of the expression of NFATc1, Blimp1 and IRF8 induced by TNFα at 

the indicated times. GAPDH was used as a loading control. Data are mean ± SEM. **p < 

0.01.
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Figure 3. miR182 deficiency abolishes RBP-J inhibited osteoclastogenesis.
A. Osteoclast differentiation using BMMs derived from Ctrl, Mir182ΔM/ΔM, RbpjΔM/ΔM, and 

Mir182ΔM/ΔMRbpjΔM/ΔM dKO mice stimulated with TNFα (40 ng/mL) for three days. 

TRAP staining (left panel) was performed and the area of TRAP-positive MNCs (≥ 3 nuclei/ 

cell) per well was quantified (right panel). TRAP-positive cells appear red in the 

photographs. Scale bar: 200 μm. B. qPCR analysis of mRNA expression of Calcr and 

Atp6v0d2 (encoding V-type proton ATPase subunit d 2) during osteoclastogenesis using 

BMMs from Ctrl, Mir182ΔM/ΔM, RbpjΔM/ΔM, and Mir182ΔM/ΔMRbpjΔM/ΔM dKO mice 

stimulated with TNFα (40 ng/mL) for three days. Data are mean ± SEM. **p < 0.01; n.s., 

not statistically significant.
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Figure 4. miR182 deficiency rescues the TNF-induced bone resorption in RbpjΔM/ΔM mice.
A. μCT images (left panel) and the quantification of pit area (right panel) of the surface of 

whole calvaria, B. TRAP staining of calvarial histological sections and C. 

histomorphometric analysis of calvarial slices obtained from Ctrl, Mir182ΔM/ΔM, 

RbpjΔM/ΔM, and Mir182ΔM/ΔMRbpjΔM/ΔM dKO mice after the application of TNFα daily for 

five days to the calvarial periosteum. n=5 per group. Oc.S/BS, osteoclast surface per bone 

surface; N.Oc/B.Pm, number of osteoclasts per bone perimeter. Data are mean ± SEM. **p 
< 0.01; n.s., not statistically significant. Scale bars: A, 1.0 mm ; B, 200 μm.
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Figure 5. miR182 deficiency protects Mir182ΔM/ΔMRbpjΔM/ΔM dKO mice from bone erosion in 
inflammatory arthritis.
A. TRAP staining of histological sections of tarsal joints (Scale bar: 200 μm) and B. 

histomorphometric analysis of the tarsal joint sections obtained from the indicated mice that 

developed K/BxN serum-induced arthritis. ES/BS, erosion surface per bone surface. 

Oc.S/BS, osteoclast surface per bone surface; N.Oc/B.Pm, number of osteoclasts per bone 

perimeter. n = 5 per group. Data are mean ± SEM. **p < 0.01; n.s., not statistically 

significant. C. Time course of joint swelling of inflammatory arthritis developed in Ctrl, 

Mir182ΔM/ΔM, RbpjΔM/ΔM, and Mir182ΔM/ΔMRbpjΔM/ΔM dKO mice. For each mouse, joint 

swelling was calculated as the sum of measurements of joint thickness of two wrists and two 

ankles. n = 5 per group. Joint swelling is represented as the mean ± SD for each group. n.s., 

not statistically significant.
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Figure 6. NFATc1 directly targets miR182 and activates its expression.
A. A diagram depicting two putative NFATc1 binding sites and three RBPJ binding motifs in 

the mouse miR-182 promoter region. B. qPCR analysis of mature mouse miR-182 (mmu-

mir-182) expression using BMMs from the WT mice treated with FK506 (10 ug/ml), CsA 

(10 ug/ml) or the control DMSO vehicle for two days in the presence or absence of TNFα. 

C. qPCR analysis of mature mouse miR182 (mmu-mir-182) expression using BMMs from 

the control and Nfatc1 KO mice treated with or without TNFα for two days. D. ChIP 

analysis of NFATc1 occupancy at the indicated loci in the miR182 promoter in the Ctrl or 

RbpjΔM/ΔM BMMs stimulated or not with TNFα (40 ng/ml) for 48 h. E. FAIRE analysis of 

chromatin accessibility at the NFATc1 binding sites in the miR-182 promoter in the Ctrl or 

RbpjΔM/ΔM BMMs stimulated or not with TNFα (40 ng/ml) for 48 h. F. A model showing a 
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regulatory network, in which RBPJ suppresses the expression of NFATc1 and miR182, 

miR182 as a direct target receives negative regulatory signals from RBP-J but positive 

signals from NFATc1, and miR182 further regulates osteoclastogenesis via its targets, PKR 

and FoxO3. Data are mean ± SEM. **p < 0.01.
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Figure 7. The RBP-J/NFATc1-miR182-PKR/FoxO3 network is significantly correlated with RA.
A. Heat map showing gene expression of RBPJ, FOXO3, EIF2AK2, NFATC1, Hsa-miR-182 

in human CD14(+) PBMCs from healthy donors and RA patients. n = 10/group. B. Heat 

maps showing gene expressions of RBPJ, FOXO3, EIF2AK2, NFATC1, Hsa-miR-182 in 

human CD14(+) PBMCs from RA patients before (basal) and after TNFi (Enbrel) for 1 and 

2 months. n = 10/group. C. Scatter plots showing that the relative TRAP-positive osteoclast 

area obtained from RA CD14(+) PBMC cell cultures has a significant negative correlation 

with RBP-J (upper left), FOXO3 (upper middle) or EIF2AK2 (upper right) expression, and a 

significant positive correlation with NFATC1 (lower left) or Hsa-mir-182 (lower right) 
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expression. Each triangle represents an RA patient in the indicated conditions. Pearson’s R = 

−0.771 (RBPJ), −0.663 (FOXO3), - 0.611 (EIF2AK2), 0.7764 (NFATC1) and 0.748 (Hsa-

miR-182). p value = 0.0000108 (RBPJ), 0.0000658 (FOXO3), 0.000332 (EIF2AK2), 

0.000000456 (NFATC1) or 0.00000388 (Hsa-miR-182). D. A model showing the expression 

changes of the key components of the RBP-J/NFATc1-miR182 network under RA 

inflammatory conditions, in which the negative regulators RBP-J, FOXO3 and PKR are 

downregulated while positive osteoclastogenic factors NFATC1 and miR-182 are 

upregulated, leading to an overall enhanced osteoclastogenesis in RA.
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