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Abstract

The dawn of the 21st century has brought with it a surge of research related to computer-guided 

approaches to catalyst design. In the past two decades, chemoinformatics, the application of 

informatics to solve problems in chemistry, has increasingly influenced prediction of activity and 

mechanistic investigations of organic reactions. The advent of advanced statistical and machine 

learning methods, as well as dramatic increases in computational speed and memory, have 

contributed to this emerging field of study. This review summarizes strategies to employ 

quantitative structure activity relationships (QSAR) in asymmetric catalytic reactions. The review 

is structured by initially introducing the basic features of these methods. Subsequent topics are 

covered according to increasing complexity of molecular representations. As the most applied sub-

field of QSAR in enantioselective catalysis, the application of local parameterization approaches 

and linear free energy relationships (LFERs) along with multivariate modeling techniques is 

described first. This section is followed by a description of global parameterization methods, the 

first of which is continuous chirality measures (CCM) because it is a single parameter derived 

from the global structure of a molecule. Chirality codes, global, multivariate descriptors, are then 

introduced followed by molecular interaction fields (MIFs), a global descriptor class that typically 

has the highest dimensionality. To highlight the current reach of QSAR in enantioselective 

transformations, a comprehensive collection of examples are presented. In synergy with traditional 

experimental approaches, chemoinformatics holds great promise to predict new catalyst structures, 

rationalize mechanistic behavior and profoundly change the chemists’ pathway to reaction 

discovery and optimization.
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1. Introduction

1.1. Chemoinformatics in Asymmetric Catalysis

Understanding the correlation of chemical structure to reactivity, a central tenet of organic 

chemistry, provides a means to rationalize and predict chemical transformations. New 

reactivity, either serendipitous or hypothesized, tests, informs, complements and improves 

this understanding; over time, a wide variety of transformations emerge. Within this 

enterprise, the synthesis of enantiomerically pure compounds with substoichiometric 

quantities of a catalyst is amongst the most significant advances in organic synthesis. As 

recognized by the 2001 Nobel Prize in chemistry and continuing with no surcease, advances 

in asymmetric catalysis are at the forefront of research in synthetic organic chemistry. The 

field has since continued to expand, with the number of publications containing the concept 

“asymmetric catalysis” increasing from 1646 from 2001 to over 2500 by 2004, remaining 

constant at that point ever since (Figure 1).

Despite this continuing effort, the general strategy for the development of chiral catalysts has 

arguably evolved at a much slower rate. Catalyst design remains primarily reliant on 

chemical intuition, wherein practitioners qualitatively identify relationships between catalyst 

enantiomeric products may differ in only a few kcal/mol energy barrier (for example a 

97.5:2.5 er corresponds to a difference of ~2 kcal/mol at 298 K). This small energy 

difference presents a monumental challenge in the rational design of a catalyst; any of the 

myriad molecular effects including conformation, solvation, substrate interactions, steric and 
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electronic considerations and even temperature can alter the balance to affect selectivity. 

Whereas the intuition of a skilled experimentalist is still valued, even the most experienced 

practitioner is incapable of analyzing vast quantities of data and identifying the 

multidimensional relationships pertaining to catalyst efficacy. Inherently intuition-guided 

methods are qualitative – attempts to quantify relevant catalyst properties responsible for 

enantioinduction are typically made after the system is already optimized (if quantified at 

all) when the important aspects of catalyst structure have already been intuitively identified.

Quantitatively driven catalyst design is thus exceedingly rare, given the unquantifiable 

nature of intuition-guided methods. As discussed later in this review, quantitative methods 

relating selectivity to structural properties have been developed but have seen limited 

adoption. With the rise of “big-data” techniques, these pioneering efforts have laid the 

groundwork for the future of this field in the development of tools enabling expedited 

catalyst design. Further, more modern tools capable of analyzing large collections of data are 

paramount in discerning the relative importance of catalyst features.

In view of the spectacular improvements in processor speed and memory capacity, 

computationally-guided methods for catalyst optimization have become an attractive 

alternative to empiricism. The last two decades have witnessed significant advances in 

computational methods for catalyst design, as reflected in the numerous reviews in the area.
1–22 The most common method is the application of accurate quantum mechanical 

calculations to provide mechanistic insight to reactions of interest which then guide 

experimentalists’ efforts to modify the catalysts. This strategy, however, is limited in that the 

origin of selectivity must first be established for this method to be viable. A complementary 

strategy is the implementation of chemoinformatics to catalyst design. Although 

chemoinformatics does rely on mechanistic information, it can also be mechanism agnostic 

or be used to probe mechanisms of interest. Chemoinformatics-based protocols are also 

generally less computationally intensive. It is therefore possible to evaluate many catalyst 

candidates computationally before deciding which to synthesize, whereas analogous 

protocols using quantum chemistry and transition state analysis would be infeasible in many 

cases because of the greater computational resources required.

Chemoinformatic methods have long been used in the development of pharmaceutically 

relevant molecules.23,24 In this application, certain structural features of molecules are 

correlated with biological activity using statistical methods to guide development. This 

concept, known as Quantitative Structure Activity Relationships (QSAR), is a subfield of 

chemoinformatics that has been used extensively in biological systems in which activity 

refers to biological activity of a compound. This concept has also been employed with other 

applications, in which the reactivity (QSRR), a chemical property (QSPR), or, as in 

enantioselective catalysts, the selectivity (QSSR) of a molecular entity is probed. Although 

these terms are sometimes used interchangeably in the chemoinformatics literature, the 

subfield this review most pertains to is QSSR in enantioselective catalysis. Applications that 

involve the 3D structure of molecular entities benefit from a subfield of QSSR termed 3D-

QSSR. In 3D-QSSR, three-dimensional descriptors are used to correlate structural features 

of catalysts activity and selectivity. It is then possible to predict the outcome of new, 

untested catalysts and to identify their important structural properties. In our opinion, 3D-
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QSSR methods have the greatest potential for capturing the subtle features of catalytic 

entities responsible for highly selective catalysis. Over the past two decades, a new paradigm 

has emerged to quantitatively supplement the ‘chemists’ intuition’. The fundamentals of this 

paradigm are outlined in the lower half of Figure 2. The search for an optimum catalyst 

begins by considering a library of potential candidates (exemplified here by a 

binaphthylphosphoric acid scaffold) with varying substituents (red, blue). It is assumed that 

there is an inherent, quantifiable correlation between catalyst structure and catalyst 

selectivity. The first step to uncover this correlation is the conversion of the catalyst 

‘chemical structure’ to a ‘numerical structure’ by describing the molecule in terms of 

physical descriptors (for example, as Hammett parameters, Taft steric values etc.). Following 

this, mathematical models can be constructed to relate these descriptors to an observable (in 

this case, enantioselectivity). If a consistent correlation is found, a mapping of the descriptor 

space to selectivity is obtained, enabling the prediction of new descriptor values that 

correspond to catalyst structures providing improved performance. In this review, we will 

cover the various strategies by which this workflow can be implemented.

1.2. Scope and Organization

This review will concentrate on soluble, small-molecule catalysts. Experimentally measured 

parameters used as descriptors in QSSR will not be exhaustively discussed because the focus 

of this review is on theoretical molecular descriptors.25 We have allowed some “spill-over” 

into methods that are not rigorously considered QSSR, including most methods that 

correlate a calculable property derived from the 3-dimensional structure of a molecule to 

experimental enantioselectivity. We also offer our own opinions and perspectives on the 

various subfields and the direction of the QSSR-related methods and their pertinence to 

catalyst design. It is also noteworthy that many methods mentioned in this review were first 

developed in biological setting. Only small molecule catalysts are considered, with most 

cases of enzymatic transformations ignored. To learn more about his field, we direct the 

reader to other resources already available on the topic.23,24,26

The organization of this overview aims to introduce topics that incorporate increasingly 

complex methods for describing molecules. First, we begin with a brief introduction to the 

mathematical terms used throughout the review. Then, the review progresses from linear free 

energy relationships (LFER) with ‘local parameterization’ of molecules to molecular 

interaction field (MIF) based methods, which we view as a ‘global parameterization’ 

approach. The order of presentation has been designed not necessarily with preference to 

chronology, but rather with a view to assist a clear understanding of concepts, especially for 

non-specialists. Indeed, we hope the review stimulates a wider adoption of chemoinformatic 

methods by the synthetic organic chemistry community to complement traditional discovery 

approaches in asymmetric catalysis.

1.3. Mathematical Background

Numerous modeling methods have been used in the studies detailed in this review. Although 

different experts might not agree on what constitutes a machine learning method, one could 

consider most methods used in this field as supervised learning methods. The goal of 

supervised learning is to relate independent variables to dependent variables (regressors and 
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regressands in regression models, resp.). In the context of enantioselective catalysis, the 

descriptors are the regressors and enantioselectivity is the regressand. A supervised learning 

model is trained by “mapping” the relationship between descriptors and selectivity in a 

subset of data called a training set. At the highest level of abstraction, the process by which 

the “mapping” occurs differentiates statistical learning techniques.

The simplest example of such a method is univariate linear regression (y = mx + b). In this 

equation, the independent variable is “mapped” to the dependent variable through a 

coefficient (m, the slope) and an intercept (b). An example of such a univariate relationship 

would be the relationship between Hammett parameters and enantioselectivity. If a Hammett 

plot is established, one might use this equation to predict the enantioselectivity of a new 

molecular entity that has not yet been explored with a corresponding Hammett parameter. 

Thus, there is one descriptor and it is being used to make predictions for enantioselectivity.

As the stereochemical outcome of a chemical reaction is dependent on numerous factors, 

many dependent variables of interest also are not dependent on only one factor. A number of 

statistical tools exist for dealing which such situations, many of which has been applied to 

chemical systems.27–32 Because detailed descriptions of these statistical learning methods 

are already given in these references, the discussion herein will be brief and the interested 

reader is directed to these resources if they are interested in a more in-depth treatment of this 

subject matter.

Multiple linear regression is the simplest approach to modeling problems with multiple 

independent variables. It has the same form as the univariate linear regression model, but 

each new descriptor is added into the model with its own coefficient (y = ax + bz + c). In 

multiple regression, the coefficients on each variable are optimized in a model training 

process by adjusting these coefficients to minimize a loss function. For example, in ordinary 

least squares regression the loss function is the sum of squares of residuals. This model type 

assumes a linear relationship between the independent and dependent variables. Because this 

model type suffers from complications such as multicollinearity (independent variables that 

are correlated), other methods such as Ridge, Lasso, and ElasticNet have been developed. 

These models are similar in that they add a penalty function to the loss function of the 

ordinary least square regression. Lasso allows coefficients to shrink to zero, resulting in the 

elimination of correlated descriptors, whereas Ridge minimizes the variation in the 

predictions given by a model for a particular data point. ElasticNet is a hybrid of these two 

methods. These models still assume a linear relationship between regressand and regressors. 

A method by which nonlinearity is dealt with in practice is by the inclusion of interaction 

terms (the product of different descriptor values) or with polynomial terms (a descriptor 

value raised to the power of n).

Another modeling method capable of dealing with nonlinearity is the use of decision trees. 

Decision trees are conceptually easy to understand; they can be thought of as a flow chart of 

different “if / then” statements. These models can be used for both classification and 

regression applications, but are prone to overfitting and have higher error rates owing to both 

bias and variance. Random forest models alleviate this problem by considering the aggregate 

of many decision trees, reducing overfitting and bias error.
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Support vector machines (SVM) are also be used to construct regression models. Support 

vector regressors essentially seek to optimize a hyperplane that minimizes the error between 

the hyperplane and the training data (the hyperplane is conceptually similar to a best fit line 

on a 2D-plot). The model is optimized by generating a hyperplane that includes a maximal 

number of points within a certain error limit of the hyperplane. If non-linear modeling is 

necessary, a kernel can be used which projects the data set in a higher dimensional space in 

which a hyperplane may be optimized.

Finally, neural networks are a modeling method designed to simulate the way the human 

brain learns and recognizes patterns. Neural networks are assembled of individual units 

called neurons. These neurons are assembled in layers, in which the first layer in termed the 

input layer and the last layer of the network is called an output layer. Any layers in between 

are called hidden layers, and more than one hidden layer qualifies the neural network as a 

deep neural network. Many network architectures have been developed for different 

applications and will not be covered in this review. A simple, feed-forward neural network 

consists of an input layer, hidden layer(s), and an output layer. The input data is received by 

the input layer. Each neuron in the input layers is connected to each neuron in the next layer 

(i.e. the first hidden layer). An alternative way of phrasing this is that there is a unique 

connection between every pairwise combination of neurons from the input layer and the 

hidden layer. Each connection is associated with an activation function. The input value is 

passed through this activation function, and if it reaches a certain threshold value the neuron 

fires, passing the new value to the next neuron. If the value is below the threshold value, the 

neuron does not fire. This process propagates through each layer until it reaches the output 

layer, which in turn gives the output of the regression analysis.

Often, many descriptors are available in which case it is advisable to reduce the 

dimensionality of the descriptor space to avoid overfitting. In this situation, two general 

approaches are used to achieve this goal – descriptor selection or dimensionality reduction. 

In the former, an algorithm is applied to select a subset of descriptors that give an acceptable 

model. In the latter, the descriptor space is transformed into a space with fewer dimensions 

while preserving the variance in the data. Some examples of descriptor selection mentioned 

in this review are forward selection, backward selection, stepwise selection, selection using 

Lasso or a linear support vector regressor (termed l1 selection), ranking feature importance 

in random forest models, and genetic algorithms. For interested readers, a more complete 

summary of these concepts is available elsewhere.32–34

Forward selection begins with a model that contains only an intercept, which is the average 

of the regressands. Independent variables are added sequentially, in each iteration adding the 

descriptor which improves the model the most. This process continues until a termination 

condition is met. Backward selection is the opposite, in which the model first contains all 

descriptors and removes the least informative descriptor iteratively. Stepwise selection is 

similar to forward selection, except that it also allows for variables to be removed. At each 

step the significance of each variable is assessed. If a variable is identified as insignificant, it 

is removed from the model. A limitation of these methods is that they are dependent on 

sample size – too many descriptors with too few observations will likely identify a “good” 

model that is fit on the randomness is the data.
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A more modern method for descriptor selection uses l1-regularization to eliminate 

descriptors. An example of l1-regularization is Lasso, in which the loss function has an 

added term that allows the coefficients of a given descriptor to shrink to zero, thus removing 

that descriptor from the model. Random forest models are capable of ranking descriptors in 

terms of importance which can also be used to select important descriptors.

Finally, genetic algorithms solve optimization problems in a method meant to mirror natural 

selection. Genetic algorithms can be used to solve a variety of optimization problems; in the 

case of selecting the best model given many descriptors, it identifies the optimal descriptor 

set to make the best model. The algorithm has a set of individuals (models in this case) that 

make up a population. Each individual is evaluated by some ranking metric (R2, q2, etc.), 

wherein the best individuals are assigned a high fitness value. Individuals with high fitness 

values (better models) have a higher likelihood of being selected as parents for the next 

generation. In this step, two parents (models) are crossed to make two individuals, which 

potentially results in the creation of a superior individual. In this way, individuals with good 

traits (the best descriptors) are kept and individuals with bad traits (inferior descriptors) are 

eliminated, eventually converging on an acceptable solution.

Dimensionality reduction is an alternative to descriptor selection methods. A prominent 

example of this type of transformation is Principal Component Analysis (PCA). In PCA, the 

descriptor space is transformed to a new set of uncorrelated variables in a manner which 

maximizes the variance per principal component. This operation mandates that the first 

principal component contains the most variance in the data, followed by the second, until the 

number of principal components is equal to the input dimensionality. The first n principal 

components can then be selected and used for various application such as modeling or data 

visualization. It is noteworthy that PCA considers only the descriptors (it is unsupervised). 

Projection to latent structure (PLS) can be thought of as the supervised analog of PCA. PLS 

constructs latent variables that are linear combinations of the original descriptors but are also 

related to the regressand. A more in-depth discussion of these methods is available.35

To generalize or interpret models, it is imperative that they are validated. Two general types 

of validation are used – internal and external. An example of internal validation is k-fold 

cross validation. In k-fold cross validation, the input data is divided into k equally sized 

folds (i.e. if there are 100 input data points, 10-fold cross validation will divide the data 

randomly into 10 groups of 10). Then, k-1 of the folds are used as the training set and the 

remaining fold is used as the test set. This process is repeated until each fold is used as the 

validation set one time. The average of the model during cross validation is summarized by 

q2, which is the cross-validated R2 (i.e. the R2 of the predicted values). Leave-one-out cross 

validation (LOO) is a specific kind of cross validation in which k is equal to the number of 

samples and each sample is held out once. This method is typically considered inferior to k-

fold cross validation because the training sets in each iteration are very similar (only one 

point at a time is held out). Thus, the models made are strongly correlated and noise is not 

averaged away as it would be in, for example, 10-fold cross validation. Thus, LOO can give 

over-optimistic q2 values. Typically, internal validation is not sufficient to fully validate a 

model. This assertion is especially true if cross validation is used to tune model parameters. 

In these situations, it is necessary to use external validation in addition to internal validation. 
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External validation is the use of an external test set, in which a partition of data points was 

withheld from the model training and cross-validation process. Once the final model is 

obtained after cross-validation, the test set is used only one time to evaluate the model. Note 

that changing model parameters after evaluating a test set to improve accuracy should be 

avoided. Iterative changes to a model to increase accuracy on an external set can cause 

overfitting and is not truly an example of external validation.36

2. Linear Free Energy Relationships (LFERs) with 3D-Descriptors

2.1. Introduction to LFERs

As a textbook concept in physical organic chemistry, Linear Free Energy Relationships 

(LFERs) represent a classical method to uncover a correlation between a substituent 

characteristic and reactivity. Briefly, for a reaction class, the variable substituent is described 

(parameterized) most commonly in electronic or steric terms and is correlated directly or 

indirectly with reaction rates. The descriptor may be experimentally or computationally 

determined. For example, in a classical Hammett correlation, the σ descriptor derives from 

the relative acidity of substituted and unsubstituted benzoic and phenylacetic acids. The key 

here is that the substituent (a structural element) is effectively transformed to a ‘number’ 

(the σ descriptor). The extension of this concept to asymmetric catalysis involves correlating 

descriptors of catalyst substituents to the enantioselectivity conferred by those catalysts in a 

synthetic transformation with the aim to uncover mechanistic information as well as predict 

the performance of untested catalysts. In general, only specific subunits of the catalysts, the 

varying substituent, is provided a descriptor. In that sense, such an approach involves only a 

‘local parameterization’ of the catalyst structure.

Here, we concentrate on models employing calculable, 3D descriptors. For example, 

Hammett parameters37,38 and Taft steric parameters39–41 are derived from experimental 

values and will not be a focus of discussion, but Charton values42–54 will be considered 

(however, whether they are truly 3D descriptors is open to debate). The application of linear 

free energy relationships to asymmetric catalysis with calculable, tailored parameters 

represents the largest class of applications in which statistical methods are employed. 

Because multiple publications already exist detailing these endeavors, discussion of this 

section will be less comprehensive.55–59 Finally, many studies included are not typically 

thought of as QSAR. For example, most chemists would not consider a univariate 

relationship between selectivity and a molecular property (e.g. selectivity vs. Hammett 

parameters) as QSAR. However, in the broadest sense, a molecular descriptor is 

quantitatively correlated to catalyst activity; thus, one could argue that this type of 

correlation is a QSAR. To give context to the field, we elected to include some studies 

wherein 3D descriptors are used. First, examples of univariate LFER in asymmetric catalysis 

will be briefly discussed followed by a summary of multivariate methods.

2.2. Selected Univariate Free Energy Relationships in Asymmetric Catalysis

Multiple descriptors, for example, atomic charges, van der Waals radii, polarizability, cone 

angle, etc. can be assigned to a substituent. Subsequent LFERs may be constructed by using 

either a single descriptor or an algebraic combination of multiple descriptors. These two 
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cases result in a univariate or multivariate relationship, respectively. Obtaining every 

example describing a linear relationship between a calculated property and enantioselectivity 

is a daunting task. Thus, the aim of this section is not to provide a comprehensive collection 

of every example of univariate LFERs, but rather to illustrate representative examples.

Steric effects imposed by catalyst substituents are often critical in enforcing high 

enantioselectivities. Such effects are easy to intuitively recognize and predict, especially 

once a reasonable transition state model is hypothesized. Likewise, a campaign for catalyst 

library synthesis commonly has the objective of covering substituents that differ widely in 

their steric contribution. LFERs that attempt to explicitly relate catalyst steric properties 

with enantioselectivity naturally become good starting points to test the application of 

QSAR in asymmetric catalysis. Although a variety of steric descriptors can be used, Charton 

values and Sterimol parameters have emerged as the most popular (Figure 3).60,61 Charton 

values are derived from Taft steric parameters, which in turn are derived from the relative 

influence certain groups have on the rate of hydrolysis of methyl esters. Charton was able to 

fit these measurements to calculated values derived from the van der Waals radii of the 

substituent. Sterimol parameters, developed by Verloop,62 are calculated from the size of 

substituents with respect to a primary axis. The B1 parameter is the smallest radius 

accessible to a group of interest as it rotates around a central axis, the B5 parameter is the 

widest radius possible to that group, and the L parameter is the length from the attachment 

point of the group to the distance away, linearly.

2.2.1 Univariate LFERs Based on Charton Values—Miller and Sigman reported 

the use of Charton values to construct LFERs in enantioselective Nozaki-Hiyama-Kishi 

(NHK) allylation reactions.63 In view of the sensitivity of the proline carbamate moiety in 

the catalyst scaffold to conferred enantioselectivity, five catalysts with differing carbamate 

groups (G) were evaluated. In the reaction of three different substrates, a linear relationship 

is obtained when substituent Charton values are plotted against the logarithm of product 

enantiomeric ratios (Figure 4). This trend is consistent with the empirical observation that 

increasing size of the G group results in enhanced selectivity.

In the same report, the authors explored the generality of this correlation approach. Three 

reactions from the literature were selected to study the relationship between the Charton 

value of a key substituent and enantioselectivity: (1) palladium-catalyzed, enantioselective, 

allylic alkylation reactions,64 (2) enantioselective cyclopropanation of allylic alcohols,65 and 

(3) the Mn-salen catalyzed, enantioselective aziridination of styrenes.66 In the first two 

examples, substituents on the catalysts are varied. In the third, substituents on the β-position 

of the styrene substrate are varied. All three examples produce linear relationships between 

the free energy differential of diastereomeric transition structures and the Charton value 

(Figure 5). Note that in the third example, the descriptor is for a variable substituent on the 

styrenyl substrate rather than the catalyst; in principle, a LFER can be investigated by 

considering any consistently varying substituent on any component in the reaction system.

In the plots in Figure 5, the slope, designated as ψ, provides information about the relative 

influence of the varied substituent and whether selectivity increases or decreases with 

substituent size. A positive slope indicates that large groups are associated with increased 
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selectivity, whereas a negative slope indicates that smaller groups are associated with higher 

selectivity. Thus, this study demonstrated that in these cases, Charton values are satisfactory 

descriptors to recapitulate the empirically observed selectivity trends, with the ψ value as a 

quantitative indicator of sensitivity.

This method of analysis has been applied to other reactions. The studies from Pfaltz and 

coworkers64 employing phosphine oxazoline ligands is contrasted with studies from Park 

and coworkers,67 employing oxazolinylferrocene ligands in an enantioselective, palladium 

catalyzed, allylic alkylation reaction (in both cases the substituent varied was on the 4-

position of the oxazoline). The oxazolinylferrocene ligands (ψ = 0.75) are more sensitive to 

steric effects than the phosphine oxazoline ligands (ψ = 0.35). The enantioselective 

alkylation of aryl aldehydes with chiral Ti-TADDOL complexes by Seebach has also been 

analyzed. A substantial LFER is found for the substituents geminal to the Ti-ligating 

oxygens (ψ = 1.85).68 The enantioselective, vanadium-catalyzed epoxidation of allylic 

alcohols reported by Wu and Wang is demonstrated to have a negative LFER (ψ = −0.30), 

with smaller groups associated with more selective reactions.69 Finally, Quintard and 

Alexakis investigated substrate steric effects in the enantioselective, organocatalytic addition 

of aldehydes to cis-1,2-bis(phenylsulfonyl)ethene, which subsequently undergoes a 1,2-

sulfone rearrangement to give geminal sulfones on the γ-carbon with respect to the 

aldehyde.70 The Charton value of the substituent at the α-carbon of the aldehyde substrate is 

found to correlate with both selectivity and yield, with ψ values of 0.45 and 3.54, 

respectively.

2.2.2 Limitations of Charton Values—It is important to note that Charton values 

approximate substituents as spherical. This assumption may be reasonable for symmetric 

substituents such as H or Me but is clearly incorrect for anisotropic substituents like n-Bu or 

Ph. The following cases highlight situations in which Charton values prove inadequate to 

obtain a reliable and consistent correlation.

The enantioselective hydrogenation of α-(acylamino)acrylic derivatives with P-stereogenic, 

bidentate, C2-symmetric phosphine ligands is observed to have a negative correlation with 

the Charton parameter of a substituent on phosphorus (ψ = 0.73) (the other substituents are 

a methyl and an ethylene linker connecting the phosphorus atoms). However, the authors 

also highlight important considerations while executing this protocol. For example, phenyl 

substituents have two Charton parameters (in-plane of 0.57 and out-of-plane of 1.66) that 

must be judiciously selected in addition to having other electronic influences that have not 

been accounted for. Furthermore, groups such as n-Pr, n-Bu, and i-Bu all have the same 

Charton parameters, but the behavior of these residues in all settings is not identical. Finally, 

results from LFERs with limited datasets must be analyzed with caution – it is 

recommended that either substituents with a broad range of Charton values are used or many 

subunits in a narrow range of Charton values are used to ensure the validity of the LFER.

Sigman and Miller revisited the enantioselective NHK-reaction as well as other literature 

examples to challenge the LFER protocol.71 In the NHK-reaction, additional catalysts were 

synthesized to test if the linear relationship between Charton values and enantioselectivity 

persisted with larger Charton values leading to a more selective catalyst (Figure 6). 
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Combining these new catalysts with those from the first study reveals a break in the plot 

interpreted to arise from a change in the conformation of the catalyst (analogous to how 

breaks in Hammett plots can indicate a change in mechanism). However, in later 

publications the authors attribute this break to a limitation of Charton values resulting from 

their derivation from rates associated with a specific transformation wherein the substituents 

can be approximated as spherical.60

An example of Charton values underperforming with respect to other steric parameters is 

demonstrated by Gustafson, Sigman, and Miller.72 In this work, the remarkable influence of 

a remote substituent in the desymmetrization of 4,4’-methylenediphenol derivatives with a 

peptide catalyst is analyzed with various LFERs using different steric parameters.73 When 

substituents bearing steric bulk close to the benzylic carbon are present, a good correlation 

between the free energy differential and Charton parameter is observed (ψ=1.39). It is 

postulated that steric bulk at the benzylic position orients the phenol rings in a rigid, 

propeller-like conformation, enabling selective enantiodifferentiation. When substituents 

presenting steric bulk farther away from the benzylic position are employed, the resulting 

correlation is poor, likely because the Charton values do not capture the perturbation of the 

substituent on the rings (Figure 7). Other steric parameters such as A-values74 and 

interference values75 give stronger correlations than Charton values. However, a full analysis 

of all different substituents could not be carried out, as both values are experimentally 

measured and not available for all substituents used in this study. This exercise demonstrates 

that descriptor selection in LFERs can be done critically with consideration of how the 

values are derived.

2.2.3 Beyond Charton Values. Electronic Descriptors and Sterimol 
Parameters.—In addition to steric factors, a catalyst substituent may influence transition 

state geometry and energy through charge stabilization, inductive effects, dipole 

minimizations or other effects. In such cases, the use of appropriate electronic descriptors is 

desirable to capture an electronic contribution important for catalyst selectivity.

Jacobsen and coworkers employed LFERs to identify important noncovalent interactions in 

thiourea-catalyzed, polyene cyclization reactions.76,77 The authors find that incremental 

increases in the size of the arene unit proximal to the amide residue of the catalyst correlates 

with increasing enantioselectivity (Figure 8). To better understand the origin of 

enantioselectivity in this system, the selectivity of each catalyst is plotted against the 

polarizability and the quadrupole moment of the corresponding arene subunit. A strong 

linear relationship is found, supporting the authors hypothesis that these larger arene 

surfaces afford more stabilization to the transition structure leading to the major 

stereoisomer through a cation-π interaction, resulting in high stereoselectivity (Figure 8).

Zuend and Jacobsen provide an elegant demonstration of how a carefully considered LFER 

can reveal mechanistic information in the thiourea-catalyzed, enantioselective Strecker 

reaction.78 Computational studies suggested that the rate-determining step of the 

transformation is a rearrangement of the iminium and cyanide ions stabilized by the thiourea 

catalyst. For eight different catalysts, cumulative H-acceptor interatomic distances for the 

hydrogen bond network in the disfavored transition structure (leading to the S-stereoisomer) 
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correlates well with the experimental enantioselectivity (expressed as free energy) (Figure 

9). This correlation suggests that in selective catalysts, the intermediate iminium ion leading 

to the S-stereoisomer is destabilized relative to the R-stereoisomer, and this destabilization is 

reflected in the respective transition structures leading to each enantiomer.

A relatively early example of univariate LFERs in enantioselective catalysis using 3D 

descriptors is the use of calculated atomic charges and the Sterimol B1 parameter62 to 

identify important structural features in the ruthenium-catalyzed, enantioselective, transfer 

hydrogenation of aromatic ketones.79 To deconvolute electronic and steric contributions, 

three LFERs were reported, two of which used the sum of atomic charges on the substrate 

arene as descriptors. The third LFER considered Sterimol parameters as steric descriptors. 

The authors concluded that solvation and dispersion effects are the most influential in 

determining selectivity, followed by electrostatic effects, with only a minor contribution 

from steric effects.

As mentioned above, the research summarized in this section is not an exhaustive summary 

of univariate LFERs using calculated parameters in enantioselective catalysis. However, this 

section has highlighted the value of these methods in ascertaining valuable mechanistic 

information about catalyst structure without the need for rigorous quantum chemical 

calculations and has also provided the context necessary for a discussion of multivariate 

LFERs in the following section.

2.3. Multivariate Linear Free Energy Relationships

Univariate LFERs can capture the correlation of a single structural parameter with 

enantioselectivity and are relatively easy to execute. However, such a reductionist approach 

has its limitations because multiple electronic and steric effects are often important in 

asymmetric catalysis and ideally, a QSAR should take into account all such contributions. 

Furthermore, because selective catalysis is generally affected by an interplay of these 

factors, individual LFER studies with single descriptors may be ineffective or misleading. 

Thus, multivariate LFERs can be considered as the logical next step in QSAR studies. In a 

multivariate approach, a function constructed from an algebraic combination of more than 

one descriptor is correlated with enantioselectivity. In this way, multiple, interdependent 

contributory effects can be identified and the relative contributions of effects represented by 

these descriptors may be estimated. The multivariate LFER approach offers the potential to 

delineate non-obvious contributions, perhaps beyond the chemists’ empirical intuition. 

However, caution must be exercised on the choice and number of descriptors employed; the 

risk of overfitting the correlation increases with increasing number of descriptors. On the 

contrary, inadvertently omitting the causative variable can result in erroneous interpretations 

of models. For example, omitting a causative variable but including a variable correlated 

with the omitted variable will incorrectly assign the significance to the correlated variable. 

In this case, accurate predictions could be made within the domain of the model but the 

correlated variable might be misinterpreted as causative. Further, the omission of important 

variables will not be readily apparent during the model development phase. Clearly this 

phenomenon could be detrimental to the interpretability of a model.
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The first example of the application of multivariate regression analysis applied to the 

prediction of the free energy differential between competing, diastereomeric transition 

structures in enantioselective catalysis was reported by Norrby and coworkers.80 In this 

work, the isomeric ratio of various nucleophilic substitution reactions on palladium η3-allyl 

complexes was predicted. Descriptors used in the model included various structural features 

of ligated, η3-allyl palladium complexes such as bond angles and dihedral angles. A model 

was generated that was used to predict the isomeric mixture of reactions resulting in 

different constitutional (branched vs. linear) or enantiomeric ratios. The model was assessed 

with different internal validation scores, with Q2 > 0.85 in all cases, constituting the first 

example of 3D-QSAR in enantioselective catalysis.

Arguably the most influential work to date in the widespread adoption of statistical methods 

for enantioselective catalyst development has been the application of multivariate regression 

techniques by Sigman and coworkers.58 Throughout this body of work, multivariate linear 

regression is used to construct relationships between experimental outcome and the 

descriptors. In their seminal report, Harper and Sigman used multivariate regression 

techniques to further analyze selectivity in the NHK allylation of benzaldehyde (introduced 

in the previous section).81 Charton values at two variable positions (a bivariate regression) of 

proline-oxazoline catalysts are correlated to enantioselectivity. In this study, twenty-five 

different catalysts are tested and a model constructed as a proof of concept, wherein the best 

catalysts are predicted as such. However, rigorous validation is not reported. Graphically, a 

multivariate regression can be imagined to represent a surface whose dimensionality 

depends on the number of parameters utilized. In this case, the correlation is visualized as a 

3-D surface (Figure 10).

After collecting preliminary results, the following design considerations are used during 

predictive model generation: (1) a training set of data covering the range of possible 

descriptor values can be used to generate models in which future predictions are 

interpolative, increasing the confidence in those predictions, and (2) a uniform response 

variable (e.g. enantioselectivity data) distribution in the training set tends to give stronger 

models than highly skewed data sets. With this in mind, a 9-member subset (the training set) 

from the full 25 member set is selected for identifying a correlation. A critical test for the 

validity of the derived model is to check if accurate selectivity predictions are obtained for 

ligands not included in the 9-member training set. From this exercise, the model does 

provide an accurate prediction for the best ligands (X = Et and i-Pr, Y = t-Bu). Predicted vs. 

observed selectivities are 84:16 vs. 90.5:0.5 and 83:17 vs. 92:8 respectively, although 

predicted values for the other ligands are not provided.

This protocol is repeated for the allylation of acetophenone and ethyl methyl ketone; the 

model for the former predicts the best catalyst even though it is not included in the training 

set (X = i-Pr, Y = t-Bu, predicted 92:8, observed 95.5:4.5). The selectivity surface for the 

NHK-reaction of ethyl methyl ketone indicates that no selective catalyst derived from the 

proline-oxazoline scaffold exists (i.e. the selectivity surface has no high selectivity maxima), 

thus prompting the authors to abandon optimization of that scaffold for that substrate. 

Although this work does not lead to the design of a better catalyst, it serves as a proof-of-
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concept for the simultaneous analysis of multiple variables in linear free energy 

relationships.

The design considerations laid out in the first publication were later used for the 

optimization of enantioselective propargylation of ketones.82 The original set of nine ligands 

from the previous work is used to collect experimental data and construct a mathematical 

model relating Charton values to enantioselectivity. However, a flat selectivity surface led 

the authors to abandon this scaffold (Figure 11). This negative result is a critical design 

element – the authors reported that obtaining experimental data for the nine training ligands 

and construction of a model took one week. Thus, the decision to explore new ligand 

scaffolds rather than continuing to try different permutations of the same scaffold is made 

rapidly, accelerating the rate of discovery. Guided by empirical modifications, the authors 

selected a quinoline-proline based architecture as the new scaffold (QuinPro), wherein 

electronic properties can be modified by the substituent on the quinoline ring and steric 

modifications can be made on the basis of the identity of the carbamate group at the proline 

residue. Nine training catalysts are selected by picking substituents such that the 2D 

chemical space constructed from Hammett parameters and Charton values is spanned evenly. 

Of these nine catalysts, one (E = OMe, S = t-Bu) that displays highly selective 

propargylation of aromatic, vinyl, and aliphatic ketones (17 examples, all over 85:15 e.), is 

chosen. A model is constructed which suggests that the training set catalyst is the most 

selective catalyst in the space, however, validation data is not provided. Although the model 

itself does not lead to identification of a selective catalyst, the experimental design of 

catalyst selection spanning the breadth of a meaningful chemical space facilitates 

optimization of a previously underperforming reaction.

This method has also been employed in the optimization of an enantioselective Heck 

arylation catalyzed by palladium pyridineoxazoline (PyrOX) complexes.83 The reaction 

involves the coupling of aryldiazonium salts with unsaturated alcohols wherein the alkene 

moiety migrates to the distal hydroxyl group through a chain-walking mechanism. For 

modeling selectivities, a nine-member catalyst set is selected on the basis of steric 

parameters of the substituent at the 4-position of the oxazoline ring and the electronic nature 

(using Hammett parameters) of the substituent on the pyridine ring. In analogy to the 

previous study, a selective catalyst is identified in the training set. However, a comparable 

catalyst predicted by the model is used because it can be prepared from a more readily 

available starting material (Figure 12).

As alluded to in the univariate LFER section, observation of breaks in Charton plots led to a 

more rigorous exploration of different steric parameters that are more broadly applicable.60 

The authors thus turned to Sterimol parameters to reexamine previous systems wherein 

Charton values give anomalous results. Reexamining the enantioselective NHK reaction of 

benzaldehyde and acetophenone, improved models are constructed wherein the Sterimol B1 

parameter correlates well with the free energy difference between the competing, 

diastereomeric, transition structures. Whereas the previous study using Charton values 

reveals a break in the Charton plot, no break is observed when Sterimol parameters are used 

for both the benzaldehyde and acetophenone examples, changing the interpretation of the 

analysis.
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Revisiting the desymmetrization of 4,4’-methylenediphenol derivatives gives similar results, 

wherein Sterimol B1 and L parameters are used to generate an improved model with respect 

to the original method. These parameters also allow for a more straightforward interpretation 

of the model; the importance of the B1 parameter indicates that the substituent is not freely 

rotatable, consistent with the hypothesis of the group biasing the phenol rings in an 

orientation that can be differentiated by the catalyst (such a rigid system would not be freely 

rotatable as depicted by Charton values). The importance of the L value suggests that groups 

that are too long disrupt the interaction between the catalyst and the substrate, leading to 

reduced selectivity. In general, Sterimol parameters can be considered to be superior to 
Charton values in accounting for steric contributions and should be the preferred descriptor 
for modeling studies.

The work described in the preceding study inspired a related investigation in which steric 

parameters of N-substituents are correlated to enantioselectivities in the alkylation of 

benzaldehyde with diethylzinc.84 Here, chiral 1-amino-2-phosphinamidocyclohexane 

ligands are employed in which the sizes of the amine substituent are represented with 

different steric parameters to uncover LFERs. With NR1R2 and CHR1R2 Charton values (the 

former derived from the hydrolysis of the corresponding amides and the latter linearly 

related to the amine hydrolysis), LFERs are constructed for secondary amines. However, 

when tertiary amines are included, the relationships break down. Turning to Sterimol values 

and using stepwise linear regression analysis, a relationship can be identified wherein the 

Sterimol B1 parameters for each substituent on the amine residue correlates with 

enantioselectivity (Figure 13).

The negative coefficient on the parameter for substituent X (−1.678) is interpreted as the 

interference of larger groups with ligand-metal binding, lowering the degree of 

enantioinduction, whereas the positive coefficient for the Sterimol parameter of substituent 

Y (+1.867) indicates that a large group is necessary on the amine. Another plausible 

explanation, which was not discussed in the manuscript, relates to the distribution of the two, 

in-situ-generated diastereomeric (in which the coordinating nitrogen is stereogenic) 

ethylzinc-diamine complexes, which are the active catalysts. Perhaps the disparate sizes of X 

and Y substituents affects such a distribution favorably toward the isomer providing higher 

selectivity. The stereocenter proximal to the catalytic center could also be responsible for 

enhanced enantioselectivity. It is worth noting that neither internal nor external validation of 

the model was performed; doing so would increase the confidence of these conclusions. This 

work was later expanded to include ketones as substrates with similar results and molar 

refraction was also demonstrated to be a suitable descriptor for the LFER.85

With new, robust steric parameters identified, Harper, Vilardi, and Sigman sought to obtain 

models capable of predicting reaction outcome for a range of substrates and obtain 

mechanistic insight on the origin of enantioinduction in new reactions.86 As a proof of 

concept, the enantioselective propargylation of aliphatic ketones is used as a model system 

(Figure 14). Sterimol parameters (B1, B5, and L) and cross terms are used for pyridine-

proline based catalysts (in which the protecting group on the proline residue is varied) and 

the substituent of different aliphatic, methyl ketones is also varied. A combination of six 

catalysts and five substrates provides a training set of 30 compounds, which is used to 
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generate a model. The model is externally validated by pairwise combination of four 

external substrates with two external catalysts (8 external validation reactions in total). The 

small error (all external validation cases are predicted within 0.2 kcal/mol) supports the 

hypothesis that this method can predict the outcome of new substrates excluded from the 

training data. To expand the utility of this protocol beyond methyl ketones, a new model is 

derived for predicting the results from cyclic ketones as substrates. However, because only 

steric parameters are employed, the model failed to predict enantioselectivities of 

electronically disparate substrates. The authors suggest that implementing steric and 

electronic descriptors would lead to more robust models.

Song and coworkers employ Sterimol parameters to aid in catalyst optimization of an 

enantioselective Henry reaction using chiral 1-amino-2-phosphinamido ligands in the 

presence of dimethylzinc.87 An original set of twelve 1-amino-2-phosphinamido ligands was 

used as a training set, with selectivity values ranging from 39.3:60.7 to 95.8:4.2 er. With B1, 

B5, and L Sterimol parameters for both substituents on the amine residue of the catalyst, a 

model is constructed with a strong, negative dependence on the B1 parameter of the X 

substituent, and a smaller, positive dependence on the B1 parameter of the Y substituent 

(Figure 15). On the basis of validation results with an external test set, the authors postulate 

that a significant size difference of the nitrogen substituents is necessary for stereoinduction. 

A noteworthy observation is that all selective catalysts contain a secondary amine (X = H in 

Figure 15), which is likely deprotonated under the reactions conditions. This process would 

change the coordination environment around the zinc, which may also be necessary for 

stereoinduction. The dependence of the B1 parameter on X arises because X must be H for 

the catalyst to be selective, in which case the only catalyst tuning would be the identity of Y.

Another example of using LFERs to aid in mechanistic understanding of enantioselective 

reactions is the silylation-based kinetic resolution developed by Wiskur and coworkers.88 In 

this work, LFERs are used to probe the mechanism of the tetramisole-catalyzed, kinetic 

resolution of secondary alcohols by selective silylation with silyl chlorides. Steric and 

electronic factors are probed by plotting the log of the s-factor against Charton and Hammett 

values for the substituents on the silyl chloride. The electronic effects are probed by 

variation of electronically disparate substituents at the 4-position of various triarylsilyl 

chlorides, and the Charton values for these substituents are used to probe steric effects. 

Electronic effects are found to be dominant, whereas steric effects are observed only when 

electronically similar but sterically disparate groups are employed (e.g. methyl vs. t-butyl). 

By combining these terms, the authors construct a multivariate free energy relationship 

relating the stereospecificity to σpara and Charton values (log(s) = −0.6σpara + 0.09ν), in 

which the larger magnitude of the electronic term is indicative of the relative importance of 

the electronic effects with respect to steric effects. The authors conclude that positive charge 

is decreasing in the selectivity-determining transition structure, likely because the 

tetramisole catalyst is being displaced by the secondary alcohol. Electron donating groups 

on the silicon electrophile thus cause a later transition structure, in which the silicon-oxygen 

interatomic distance should be relatively shorter. Because the involvement of the alcohol in 

this transition structure is greater than in the case wherein electron-withdrawing groups are 

attached to silicon, the energy differential between diastereomeric transition structures is 

greater, corresponding to higher selectivity.
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Whereas most parameters in physical organic chemistry seek to isolate the effects of specific 

interactions, Sigman and coworkers sought to devise a parameter set capable quantifying 

simultaneous, non-additive interactions.89 In this work, molecular vibrations are identified as 

a descriptor set that could quantify the interaction important for selectivity while capturing 

the interplay of multiple steric or electronic interactions (Figure 16). To evaluate the 

effectiveness of these features, the desymmetrization of bisphenols discussed above was 

studied.72 In the original work, only steric parameters were included, and the substituents 

studied were different in steric but not electronic character. However, when the electronically 

dissimilar CCl3 substituent is tested, the enantioselectivity is much lower than would be 

expected from steric considerations alone. Thus, the authors include molecular vibrations of 

the aromatic ring (1700–1500 wave number region) in addition to Sterimol parameters to 

construct a model capable of identifying both steric and electronic properties responsible for 

enantioinduction. As illustrated in Figure 16, the model that includes molecular vibrations 

more accurately describes electronically dissimilar substrates than the original model.

In a second study from the same publication, the enantioselectivity of iridium-catalyzed 

hydrogenation of α-substituted styrenes is correlated with vibrations of the substrate 

molecule. In this case, intensities rather than frequencies are identified as the most important 

descriptors in construction of a predictive model that is externally validated. Finally, a third 

study in the same publication assesses if vibrational analysis could serve as an alternative to 

Hammett analysis for situations in which aromatic rings are substituted with multiple groups 

or bore ortho substituents. The reaction employed in this study is the enantioselective, redox-

relay Heck reaction. Because the models are used to predict site selectivity instead of 

enantioselectivity, this section will not be thoroughly discussed as it is outside the scope of 

the review. However, the authors are able to use molecular vibrations to construct models 

accurately predicting the site-selectivity.

Sterimol values and molecular vibrations have also been used in the design of a substrate 

library to create a workflow to quantitatively assess substrate scope.90 For development of a 

prototypical workflow, the enantioselective NHK reaction for the propargylation of ketones 

was used as a model system. This workflow consists of four steps: (1) identification of 

adequate, numerical representations of compounds that capture the relevant physical 

properties of those compounds, (2) selection of a set of substrates distributed evenly in the 

space constructed from those physical properties and measuring their experimental outcome, 

(3) construction of a mathematical model relating the descriptors to the experimental 

outcome, and (4) external validation of the model with new substrates.

The substrate space was first defined by tabulating Sterimol values and calculating the 

carbonyl IR stretching frequency for 52 different methyl ketones. Of these, eight were 

selected in a fashion analogous to design of experiment (DoE) sampling. The eight 

substituents on the ketones are then used to construct 28 differentially substituted ketones 

(now no longer methyl ketones, but ketones derived from pairwise combinations of the 

substituents), for which differential Sterimol values and IR frequencies are calculated, 

defining the relevant ketone space. This space is populated with substrates spanning the 

defined dimensions. To evaluate the library, the ketones representative of the substrate space 

are tested in the rhodium-catalyzed, asymmetric transfer hydrogenation (ATH) reaction, in 
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which dialkyl and aryl/alkyl ketones are modeled separately. In model development, a 

different set of descriptors is used, including various IR frequencies, atomic charges of the 

carbonyl oxygen, carbonyl carbon, and both α-carbons, and Sterimol parameters. Predictive 

models for both classes of ketones are constructed and externally validated with high 

accuracy for both external aryl/alkyl and alkyl/alkyl ketones (R2 = 0.97 and 0.95, 

respectively). Thus, by using a strategically selected initial set of substrates, it is possible to 

quantitatively predict reaction outcomes of new substrates.

An interesting extension of this work would be to compare different methods of defining 

substrate space and selecting representative substrate sets. For example, in this work, the 

relevant substrate space was constructed using a different set of parameters than were used 

to construct a model. Thus, it becomes difficult to say if new predictions are interpolative in 

the chemical space used by the model. It would be interesting to use descriptor inputs for the 

stepwise regression algorithm and select a subset from the high-dimensional space. 

Alternatively, principal component analysis (or other variable selection / dimensionality 

reduction methods) could be used on this space to reduce the dimensionality and a subset 

could be selected from this set. Although in this application the current method is clearly 

sufficient, a more thorough comparison could be worthwhile in other settings.

Using stepwise linear regression to facilitate catalyst optimization has been employed in 

multiple settings. One such example is optimization of a PyrOx for the dehydrogenative 

Heck reaction between trisubstituted alkenes and indoles reported by Sigman and coworkers.
91 In this report, the authors initially use the PyrOx ligand identified in an earlier study 

(Figure 17).83 However, when this ligand is tested in the dehydrogenative Heck reaction, the 

selectivity is found to be sensitive to the substitution on the trisubstituted alkene. Thus, a 

series of ligands are tested and a relationship established in which the NBO charge on the 

oxazoline nitrogen is correlated with selectivity. This observation prompted the authors to 

design a catalyst predicted to have greater selectivity on the basis of this relationship, 

leading to a more selective catalyst.

An example of the use of statistical methods to identify structurally relevant features of 

catalysts has been described as part of a collaboration between the Toste and Sigman 

laboratories.92 In this work, a chiral-phosphoric-acid catalyzed, dehydrogenative C-N 

coupling is investigated, wherein 12 substrates and 11 catalysts are systematically selected, 

and experimental data is collected for every pairwise combination (Figure 18). For each 

substrate and catalyst, descriptors are tabulated including Sterimol parameters, interatomic 

distances in optimized geometries, vibrational frequencies, and vibrational intensities. 

Empirical trends are examined for each substrate-catalyst pair. The combination of every 

catalyst with one substrate and vice versa was used to construct models. Results from this 

analysis stimulated the formulation of multiple mechanistic hypotheses on the origin of 

enantioselectivity. These hypotheses include: (1) the triazole ring at the 3,3’-positions of the 

BINOL-phosphoric acid (present in the most selective reactions) is engaged in a π-

interaction with the substrate, (2) the strength of this interaction is modulated by the steric 

and electronic properties of the triazole substituents, (3) π-interactions are strengthened by 

heteroatoms, which is why triazole-containing catalysts are more effective than those with 

two or zero nitrogen atoms in the ring, and (4) benzyl and remote aryl groups on the 
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substrate participate in π-interactions with the catalyst. Observations supporting these 

hypotheses include: (1) the triazole vibrational frequency and the torsion angle between the 

triazole ring and its substituent are selected as important parameters in catalyst models, and 

(2) the selection of various descriptors capturing perturbations on the benzyl or distal 

aromatic ring are selected in substrate models.

With 108 catalyst/substrate combinations, a model is constructed with 54 of the 108 total 

reactions and the remaining 54 were used as an external validation set. This model is used to 

guide the selection of catalysts used to further validate the mechanistic hypotheses. First, a 

catalyst is selected in which the aromatic substituent on the triazole ring is a 

pentafluorophenyl group (R3 on triazole substituent in Figure 18). The selectivity with this 

catalyst is predicted to be similar to catalysts with 2,6-difluorophenyl, 2,6-dimethoxyphenyl, 

and 1-adamantyl substituents, suggesting that this substituent provides only a steric 

contribution; the electronic contribution is negligible. This hypothesis was experimentally 

validated. A second catalyst is selected such that only the 2-position of the aromatic 

substituent of the triazole bears an isopropyl group, probing the hypothesis that bulky groups 

at both the 2 and 6 positions on the aromatic residue bound to the triazole interact 

unfavorably with benzyl groups containing substituents at their para-positions, thus 

disrupting the π-interaction responsible for enantioinduction. This catalyst is both predicted 

and observed to be more selective than the catalyst analogs with 2,6-disubstituted aromatic 

residues, supporting this hypothesis. Finally, to test if structural modifications suggested by 

the model could lead to a higher selectivity catalyst, namely through modulation of the 

torsional angle between triazole and its substituent, a catalyst was selected with a torsional 

angle close to 90°, which was more selective than a previous catalyst for the class of 

substrates with 4-benzyl substituents, validating the hypothesis that the torsional angle 

between the triazole and its substituent is necessary for high selectivity.

To more accurately probe noncovalent contributions, new parameters have been developed to 

quantify π-interactions.93 These parameters, termed Eπ and Dπ, can be calculated for π-

stacking interactions (SEπ and SDπ) and T-shaped C-H-π interactions (TEπ and TDπ), 

wherein Eπ is the interaction energy between the arene substituent in question and a probe 

π-surface (such as benzene) and Dπ is the distance between the midpoints of the arenes in 

the optimized geometry. These descriptors are used to analyze important noncovalent 

interactions in a well-understood kinetic resolution of chiral benzylic alcohols94,95 as well as 

the enantioselective fluorination of allylic alcohols in which the mechanism of 

enantioinduction is less well understood (Figure 19). In the first reaction, a multivariate 

relationship is identified in which the SDπ parameter and the SDπ SEπ cross term are found 

to be significant, consistent with what is previously reported, thus validating the new 

descriptors. The authors then apply these descriptors to understand the enantioselective 

fluorination of allylic alcohols. Multidimensional modeling reveals the significance of the 
TDπ term, suggesting the importance of a T-shaped C-H-π interaction in the 

stereodetermining step. This interaction is validated by DFT studies which indicate that 

aromatic C-H bonds interact with the π-system in the case of 2- or 4-substituted boronic 

acids and that C-H bonds of the 3-methoxy substituent on boronic acids are involved in this 

interaction, thus rationalizing the inversion of selectivity upon inclusion of boronic acids as 

additives.
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Yu, Sigman and coworkers report the use of these multivariate regression methods to 

identify a descriptor set for amino-acid-palladium complexes as well as to select a set of 

compounds with which to start screening campaigns for diverse reactions (Figure 20).96 

Descriptors are derived from either amino acid derivatives bound to the palladium complex 

or from the free amino acids. Parameters including Sterimol parameters, torsional angles, 

percent buried volume, NBO charges, and vibrational frequencies are used to construct 

predictive models in each case. These studies include the enantioselective Csp2-H activation 

and functionalization of substituted pyridines and carboxylates, as well as the 

enantioselective Csp3-H activation of triflimide or amide substituted cyclopropanes. In each 

case, predictive models are calculated, which are internally or externally validated, and 

descriptors from the amino-acid-bound complex give the best performance. Using the 

information from these models, the authors select five amino acid side chains representing a 

broad range in the dihedral angle of the amino acid backbone as well as five N-protecting 

groups according to NBO charges of the corresponding carbonyl oxygens. Assuming the 

pairwise combinations of these two groups span the breadth of descriptors space relevant to 

stereoinduction, the authors suggest a subset of compounds with which to begin screening 

campaigns.

Sigman, Toste and coworkers have applied multivariate methods to the analysis of chiral, 

phase transfer catalysts in the enantioselective Pummerer reaction (Figure 21).97 Using the 

standard set of descriptors applied in previous publications, the authors probe substrate and 

catalyst features. Steric parameters of the substituent at the 3,3’-positions of the chiral 

catalyst are identified to be important for catalyst selectivity. Similarly substrates are 

evaluated phosphoric acid, and the average charges on aliphatic atoms and the size of the 

aromatic substituent on the N-protecting group are found to be associated with catalyst 

efficacy.

Linear free energy relationships have also been applied to the enantioselective, palladium-

catalyzed substitution of allylic alcohols with unsymmetrical 1,3-dicarbonyl nucleophiles 

and chiral diamine catalysts (Figure 22).98 The authors devise what is described as a double 

layer Sterimol model in which parameters of the diamine catalyst subunit are described with 

two parameters intended to represent the “inner sphere” and “outer sphere” steric effects of 

the substituent of interest. The inner sphere is a single substituent on the carbon attached to 

the nitrogen atom whereas the outer sphere refers to the Sterimol parameter of the entire 

substituent on the tertiary amine (each described with the B1 parameter). Multiple models 

are constructed with the best model trained on seven data points and externally validated 

with five data points (two as an external test set and three synthesized as an expansion of the 

external set after construction of the model), although the structural diversity of both sets is 

limited. The authors suggest the larger “inner sphere” group reflects the inability of the 

amine substituent to rotate away from the nucleophile, thus blocking one face more 

effectively and leading to increased stereoinduction.

A recent example in which subunit-derived descriptors are used to predict the 

enantioselectivity of reactions is in the enantioselective benzoin condensation catalyzed by 

N-heterocyclic carbenes (NHCs) (Figure 23).99 In this work, dynamic modulation of the 

chiral environment around the catalyst is achieved by complexation of a free hydroxyl 
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residue with the boronic acid additive under the reaction conditions. Multivariate regression 

with stepwise variable selection was employed to understand the influence of substrate 

structure on enantioselectivity. Features including Hammett values, Sterimol parameters, 

vibrational frequencies, vibrational intensities, NBO charges, and components of the dipole 

moment in an aligned coordinate system were considered as independent variables. Three 

variables are selected to form a cross validated model (Q2 = 0.83, R2 = 0.92 for predicted vs. 

observed): (1) the Sterimol B5 parameter, (2) the Sterimol L parameter and, (3) the dipole 

moment on the axis of maximal length. It was postulated that the dipole moment component 

would reflect the electron withdrawing nature of the aromatic residue, thus correlating to the 

configurational lability of the product. Hence, as the value of this variable increases 

selectivity should go down. This the B5 parameter is actually related to an electrostatic 

interaction with the aromatic residue of the catalyst. This hypothesis is experimentally 

probed by comparing the selectivity values of two substrates, 3-carbomethoxybenzaldehyde 

and 4-cyanobenzaldehyde, with three catalysts with different aromatic residues: phenyl, 

pentafluorophenyl, and mesityl. The results with 3-carbomethoxybenzaldehyde are 

influenced by the identity of the aromatic residue and the phenyl-substituted catalyst is more 

selective than the pentafluorophenyl substituted catalyst. In contrast, the reaction outcome 

with 4-cyanobenzaldehyde is not influenced. Perhaps an electrostatic descriptor that captures 

this interaction can be added to the analysis – such a feature may serve as a mediator of the 

interaction and identifying it would strengthen this hypothesis.

The inclusion of the L parameter is not discussed, and it would be interesting to see if this 

parameter were selective if a different variable selection algorithm were used. In the analysis 

of boronic acid additives, a linear model could not be identified; instead a regression tree 

was constructed. Catalyst features identified as the most important include: (1) the torsion 

angle between the boronic acid moiety and the aromatic residue, (2) the dipole component 

along the width axis, and (3) the dipole component along the axis of longest length. The 

authors comment that although the model is predictive, it is difficult to obtain mechanistic 

information from this model given that two factors influence selectivity – benzoin formation 

and racemization of the product. This study serves as an excellent example in which 

statistical methods and experimentation are used in concert to probe the origin of 

stereoinduction.

Carbo and coworkers describe an interesting strategy for devising steric descriptors for chiral 

oxazoline ligands in the copper-catalyzed, enantioselective cyclopropanation of styrenes 

with diazo esters.100 The authors suggest that quadrant diagrams,101 which are often used in 

asymmetric catalysis to understand catalyst selectivities, may also be employed to quantify 

steric properties around a reactive center. Data obtained from previous experimental studies,
102–104 was used to develop the parameterization of the chiral complexes (Figure 24).

Construction of the descriptors for the quantitative quadrant model proceeds first by placing 

the ligand-metal complex (using a cationic copper complex bound the =CH2 in silico) in the 

xz plane of a Cartesian coordinate system, with the copper atom placed at the origin and the 

coordinating nitrogen atoms in the xz plane with negative values of z. The xy plane can then 

be divided into four quadrants (each combination of positive and negative values of x and y). 
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The steric parameterization of each quadrant is then dictated by the distance-weighted 

volume parameter (Vw), described by the following equation:

Vw, k, l = ∑
i = 1

n ri
k

di
l

In this expression, Vw,k,l is the distance-weighted volume, r is the van der Waals radius of a 

given atom in a quadrant, d is the distance between that atom and a reference atom (in this 

case, the copper atom), and k and l are exponents that can have values 0, 1, 2, or 3. Thus, the 

distance-weighted volume for a quadrant is the summation of the van der Waals radii divided 

by the respective distance between that atom and the copper center for every atom in the 

quadrant. In this analysis, only atoms with positive values along the z coordinate are 

considered (in which the copper atom is the origin and the ligand nitrogen atoms are in the 

negative z-direction). For comparison, Taft-Charton values are also used as steric parameters 

wherein the value of the substituent at the 4-positions of the oxazoline is used for the 

corresponding quadrant (Figure 24).

Three PLS regression models are constructed from 30 experimental results using either 

Charton parameters, VW,0,3, or VW,1,3 for each quadrant as descriptors. Using q2 as a metric 

to assess model efficacy, the model with Charton values (q2 = 0.78) outperformed those 

constructed with VW,0,3, or VW,1,3 (q2 = 0.76 and 0.70, respectively). Similarly, models 

including cross terms between quadrants followed similar trends, with Charton values 

outperforming VW,0,3, or VW,1,3 (q2 = 0.88, 0.76, and 0.70, respectively). Thus, using steric 

parameters that characterized the environment of specified regions around a reactive center, 

QSSR models are constructed relating the energy differential between diastereomeric 

transition structures to these structural features. This proof-of-concept study has interesting 

implications – for example, it is possible that the reason models with Charton values give the 

best performance is that the value inherently considers flexibility of the substituents residing 

in a particular quadrant. A suggested future experiment would be to use Sterimol parameters 

for each quadrant or to use a conformer-dependent VW parameter to see if improved models 

could be constructed thus increasing the accuracy of the quantitative quadrant model. This 

procedure would facilitate calculation of the parameter (an advantage of VW over Taft-

Charton values) without loss of accuracy.

A final, recent advance is the development of conformationally weighted Sterimol 

parameters, developed by Fletcher and Patton.61 In this work, open source software is used 

to calculate parameters that that are derived from a conformer distribution of structures. For 

rigid systems, the descriptors perform similarly to previously published work, but for 

flexible scaffolds a significant improvement is observed. Further, the software is easy to use 

and freely available thus allowing access to the calculable parameters for non-experts. This 

enabling technology will likely increase the use of LFERs in catalyst design, owing to the 

new found accessibility of the parameters.

Selected cases described in this section illustrate the method and results obtained from a 

multivariate LFER analysis of enantioselective transformations. Additional examples are 
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listed in Table 1; these reports are instructive for readers but are not described in detail 

because they are constructed using the same method.105–118

2.4. Perspectives on Linear Free Energy Relationships

The previous examples illustrate how descriptors for catalyst substituents can be used to 

identify a correlation of catalyst structure to selectivity. In these cases, only the variable 

substituents on a fixed structural scaffold are parameterized (local parameterization, see 

Figure 2). Such an approach assumes that the overall catalyst structure remains constant 

despite the changing substituents. Although this assumption may hold in certain cases, the 

parameterization of the entire catalyst structure may be ideal in other cases. Further, this 

approach assumes that all descriptors relevant to enantioinduction have been incorporated in 

the model. However, as previously described, omitting variables contributing to 

enantioinduction can still result in predictive models that do not have straightforward 

interpretations. Additionally, it is possible that different selection algorithms could identify 

different variables, thus resulting in predictive models generated with different 

interpretations. Finally, it is unlikely that the investigator is aware that an important variable 

has been omitted – if this were easily assessed, the variable likely would have not been 

omitted in the first place. These concerns to not imply that the use of subunit-derived 

descriptors to construct LFERs is not a valuable method by which mechanistic information 

can be garnered, simply that researchers interested in using these techniques must be aware 

of the limitations and analyze their models critically. A global parameterization (see Figure 

2) can potentially account for effects caused by subtle changes in the overall catalyst 

structure when various substituents are incorporated and can avoid the problems associated 

with missing variables. Strategies reliant on this approach are introduced in the next section.

3. Continuous Chirality Measure

3.1. Background of the Continuous Chirality Measure

Continuous Chirality Measure (CCM) was first described by Avnir and coworkers as an 

extension of the related continuous symmetry measure (CSM).119–122 The crux of this 

concept eschews the classical definition of chirality as a binary property of a molecule (i.e. 

either present or not present), but instead posits that the “degree of chirality” is a 

quantifiable property of a chiral molecule. Lipkowitz eloquently describes this concept using 

unsymmetrically substituted aryls (e.g. BINOL) as an example.123 When the biphenyl is 

perfectly planar (dihedral angle of 0° between the two aromatic rings), the molecule is 

achiral. If this dihedral is rotated an infinitesimally small amount away from 0°, the 

molecule becomes chiral. Intuitively, if a molecule possessing such a small structural 

perturbation away from planarity (~1°) were isolable, the structure would likely be 

ineffective in stereodifferentiating reactions. However, as the dihedral angle increases, 

efficient stereodifferentiation becomes more likely because the molecule is becoming “more 

chiral” up to a certain point, until continuing to increase the dihedral approaches an achiral 

molecule once again.

Avnir constructed a mathematical formula capable of calculating this degree of chirality, 

derived from CSM as:
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S′(G) = 1
n ∑i = 1

n Pi − Pi
2

(1)

wherein G is a given symmetry group, Pi are the original set of points, Pi is the 

corresponding points in the nearest G-symmetric configuration, and n is the total number of 

configuration points. The interpretation is best described by the original authors:122 “The 
meaning of eq 1 is the following: find a set of points Pi which possess the desired symmetry 

(G symmetry), such that the total (normalized) distance from the original shape Pi is 
minimal.” Because chirality is the absence of improper symmetry, searching over all achiral 

symmetry groups will give a minimal distance to achirality. Thus, molecules with a greater 

minimal distance to achirality (larger values of S′), that is a higher CCM, are more chiral.122 

CCM is thus a conceptually simple approach to provide a global parameterization of a chiral 

molecule.

3.2. Continuous Chirality Measure in Asymmetric Catalysis

Intuitively, it may be hypothesized that selective catalysis requires the catalyst to have at 

least a certain value of CCM, with larger values suitable for higher selectivity. Lipkowitz and 

coworkers were the first to explore the relationship between CCM and enantioselectivity.123 

Under the premise that the chirality content of a molecule should correlate with 

enantioselectivity in asymmetric reactions, the enantioselective Diels-Alder reaction 

developed by Harada and coworkers, employing a chiral 2,2’-biaryldiol-ligated Lewis acid 

catalyzed was studied (Figure 25).124 In this work, ten different catalysts were evaluated 

with three sets of substrates.

In both the original work and the work by Lipkowitz and coworkers, the calculated dihedral 

angle between the two arenes is strongly correlated to the observed enantioselectivity, with 

an optimal angle identified as ca. 60°. As the dihedral angle is correlated linearly with CCM, 

the maximum selectivity is observed along the CCM coordinate, followed by a subsequent 

decrease in catalyst selectivity (Figure 25). The authors attribute this observation to the fact 

that not all atoms in a molecule contributing to overall chirality also contribute to 

enantiodifferentiation. Identifying subunits of the molecule with CCM values that best 

correlate to enantioselectivity thus identifies a “chiraphore” – the subunit of a molecule 

responsible for its selectivity analogous to a pharmacophore. In this seminal work, the 

authors identified the biaryl moiety and its immediately attached atoms as the chiraphore 

responsible for enantioinduction. Although this was intentionally obvious, it demonstrates 

the development of a tool capable of identifying which structural elements of catalysts are 

responsible for stereoinduction.

A similar approach was pursued by Lipkowitz, Schefzick, and Avnir in which CCM was 

employed to identify the structural features of bisoxazoline ligands responsible for 

stereoinduction in an enantioselective Diels-Alder reaction (Figure 26).125 Calculation of the 

CCM of the four ligands reveals a linear relationship between CCM and enantioselectivity 

(R2 = 0.98). With this relationship identified, coordinates of ligand distortions are scanned to 

identify which structural perturbations are most associated with CCM. Three distortions are: 
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(1) twist, (2) bite, and (3) pucker. The bite distortion is attributed to deformations associated 

with backbone identity (hence the nonuniform CCM differentials between catalysts), 

whereas the twist angle distortion causes the largest change in variance, leading the authors 

to suggest that design of new ligands should focus on exaggerating this twist motion to 

maximize enantioselectivity.

A later study examining subunits of the whole structure identified the chiraphore to be the 

copper, the nitrogen atoms, the substituents on the bisoxazoline core, and parts of the two 

triflate units ligated to the copper center.126 This method identifies the important subunits 

and molecular distortions correlated to stereoinduction for this specific reaction. However, 

application of such an analysis to any other asymmetric reaction has not yet been examined 

to assess the generality of these findings for other bisoxazoline-catalyzed transformations.
127

This method has also been employed in an analysis of the Katsuki-Jacobsen epoxidation 

reaction (Figure 27).128 The catalyst is a manganese-salen complex,129,130 the selectivity of 

which is perplexing given the planar structure of the catalyst.131 Wiest and Plattner found 

that the triplet and quintet spin states of the complexes are geometrically distorted with 

respect to the singlet state,132 as reflected in the chirality content of the compounds. Under 

the assumption that these distortions are responsible for the high enantioselectivity, the 

effects of these distortions on CCM were examined. Four distortions are identified to have a 

substantial impact on the chirality content of the salen complex: (1) the C(1)-C(2) bond 

length, (2) puckering (cup-up or cup-down) of the complex, (3) a “step-induced” distortion 

(minimization or exaggeration of the step-like geometry), and (4) the dihedral angle between 

the two aromatic planes (Figure 27). The authors conclude that elongating the linker (C(1)-

C(2)) increases the chirality content, puckering decreases CCM, step-like distortions 

increase CCM, and the twist motion increases CCM, with twist and step distortions having 

the greatest influence, followed by linker distortions and then puckering.

Bellarosa and Zerbetto introduced a modification to the CCM method termed electronic 

chirality measures (ECM) to asymmetric catalysis wherein the chirality is measured from 

the electronic wave function.133 Although the concept of ECM was suggested earlier,134,135 

this first application sought to evaluate the “amount” of electronic chirality in structures and 

relate it to the enantioselectivity of asymmetric aminohydroxylation reactions.133 The 

authors assumed that the chirality content of the products reflected the chirality content of 

the stereodetermining transition structures and calculated chirality content for six products 

of varying experimentally observed enantiomeric purity. The ECM had a much stronger 

correlation with enantiomeric purity than the analogous CCM values, thus validating ECM 

as a calculable feature capable of quantitatively reflecting the chiral character of molecules.

Continuous chirality measures have also been used to analyze stereodifferentiation at critical 

points along the reaction coordinate of a ruthenium-catalyzed, enantioselective, transfer 

hydrogenation reaction.136 The authors examined two different substrates and four different 

permutations of catalyst structure. With acetophenone as the substrate, all eight possible 

reaction coordinates were examined (each catalyst approaching the Re and Si faces of the 

ketone), whereas for 2-hexanone only two coordinates were examined (Figure 28).
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In the reactions with acetophenone, catalyst 1b is calculated to have much higher energy 

barriers than the other catalysts, and was removed from analysis. Therefore, the remainder of 

the discussion includes only catalysts 1a, 2a, and 2b. The CCM is calculated at each 

stationary point along the energy profile for each of these catalysts, starting from isolated 

starting materials and products, then the precoordination complex of the substrate to the 

catalyst, followed by the hydrogenation transition structure, and finally the post-

hydrogenation complex. The quantum chemical calculations alone are sufficient to reveal the 

greater observed selectivity of 1 compared with 2. The two competing diastereomeric 

complexes 2a and 2b are in equilibrium and both are catalytically competent. However, 

these two diastereomers of the active catalyst lead to different stereoisomers of the product. 

The observed selectivity is the average of the two catalysts, and is thus lower compared to 

the results from catalyst 1. As previously stated, complex 1 has only one catalytically 

competent diastereomer (1a). Because there is no competition with the other diastereomer of 

the catalyst, the observed selectivity is higher with respect to complex 2.

To understand the differences in substrate selectivity, a more thorough analysis is necessary. 

The CCM values of both acetophenone and 2-hexanone are calculated using the geometry of 

the starting materials in the stereodetermining transition structure. Comparison of CCM 

values for acetophenone and 2-hexanone suggests that the acetophenone is forced into a 

state of higher chirality than 2-hexanone and is thus more amenable to 

enantiodifferentiation. Therefore, the ideal catalyst for the enantioselective, transfer 

hydrogenation reaction with 2-hexanone would distort the substrate such that chirality is 

maximized in the transition structure. By scanning the dihedral angle between the hydrogen 

being transferred, the carbonyl carbon, and the two subsequent methylene units of the butyl 

subunit of 2-hexanone, the authors identified a H-Ccarbonyl-C-C dihedral angle between −20° 

and 30° in which the substrate is most chiral. The authors go on to suggest that the design of 

a catalyst forcing the substrate into this conformation in the transition structure should 

enhance the selectivity of the reaction. Unfortunately, this prediction was not validated 

experimentally.

Denmark and Zahrt have investigated the use of CCM as a single parameter in predicting 

reaction outcomes of enantioselective reactions.137 In this work, a dataset from a previous 

study on the enantioselective addition of thiols into aldimines with chiral phosphoric acid 

catalysts was used in an attempt to construct a linear relationship between CCM and 

enantioselectivity of the chiral N,S-acetal formed (Figure 29).138 In contrast to previous 

studies, this univariate representation of molecules did not correlate to enantioselectivity 

(Figure 30). Additionally, conformer-dependent CCM parameters were developed, in which 

the average CCM of a conformer ensemble (with and without Boltzmann weighting) was 

used as the univariate measure. The standard deviation of the ensemble was also tabulated, 

considering large variation in CCM could be a measure of molecular flexibility. No 

conformer dependent method had a univariate, linear relationship with enantioselectivity. It 

was postulated that when vastly different molecular subunits critical for enantioselectivity 

are present in the dataset, this simple representation does not contain the requisite 

information to make accurate predictions of selectivity. However, it was postulated that this 
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measure could be a representation of molecular shape and thus could be used to augment 

other descriptor sets capable of representing subunit steric and electronic parameters.

Thus, Sterimol parameters are used to represent the key subunits of the 3,3’-positions of the 

phosphoric acid catalyst and random forest models are constructed to evaluate if the 

inclusion of CCM parameters result in significant improvement in the predictive 

performance of the model. Models are constructed using only CCM derived parameters, 

only Sterimol parameters, and both CCM and Sterimol parameters as catalyst features. The 

Sterimol parameter model is significantly better than the CCM parameter model (determined 

by ANOVA with Tukey post-hoc test) with MADs of 0.21 and 0.29 kcal/mol, respectively. 

Including both CCM and Sterimol parameters results in the construction of significantly 

more accurate models with MADs as low as 0.176 kcal/mol. However, it was noted that 

models with conformer dependent or one-conformer CCM representations are generally not 

significantly different from one another. This study thus demonstrated three primary points: 

(1) CCM cannot be used as a univariate method to predict catalyst efficacy in some 

enantioselective reactions, particularly when large differences between important subunits 

dictate reaction outcome, (2) it may be possible to use CCM to augment other subunit-based 

descriptors to improve the predictive performance of models, although immediate 

mechanistic interpretation of the model will likely not be possible, and (3) CCM can perhaps 

be treated as a shape index for chiral molecules, but mechanistic interpretations of the 

significance of this index are not straightforward.

3.3. Perspective on CCM

Although CCM has received limited application in asymmetric catalysis, using CCM seems 

to have potential in identifying important structural features of catalysts responsible for 

stereoinduction. However, perhaps the most serious limitation of CCM is that it is not 

necessarily linearly related to enantioselectivity across the entire range of enantioselectivity 

values. Thus, studies in which authors make extrapolative predictions with respect to CCM 

in univariate models must be validated experimentally in each unique case. To date, no 

experimental validation has been reported. Further, no examples are on record in which the 

predictions made on the basis of CCM measures resulted in the design of a more highly 

selective catalyst. However, this is not to say that CCM is not useful in catalyst design, 

rather, that the applications of CCM in the design of more selective catalysts remain to be 

demonstrated. Experimental validation of this method is facilitated by the availability of a 

website for the calculation of CSM and CCM.139 This program therefore could easily be 

used by others interested in implementing CCM-guided workflows for the development of 

new, more selective catalysts.

4. Chirality Codes

4.1 Introduction to Chirality Codes

Aires-de-Sousa and Gasteiger have developed chirality codes to represent chiral compounds.
140,141 Depending on the need to consider specific molecular conformations, these 

representations are termed conformer independent chirality codes (CICC) and conformer 

dependent chirality codes (CDCC). Both chirality codes are constructed by transforming the 
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3D molecular structure into a fixed-length vector.142 A design element in these molecular 

representations is the ability to account for the absolute configuration of a chiral molecule. 

In CICC, this feature is achieved by including a chirality signal (represented as Sijkl), which 

is derived from user-specified properties (e.g. atomic charge) and atomic coordinates of sets 

of four atoms. The molecular environment is then represented by a term Eijkl, which is 

derived from user-specified properties of atoms and the distances between those atoms. For 

the representation to be conformer independent, the distance between two atoms is defined 

as the summation of the bonds connecting those two atoms rather than interatomic distance. 

Using these two terms, a function is constructed. This function is scanned at uniform 

increments to calculate the descriptors; thus, the number of increments dictates the 

dimensionality of the molecular representation (Figure 31).

A more detailed description of the calculation of these descriptors is available in the 

Supporting Information. Further, because only CICC has been applied to asymmetric 

catalysis CDCC will be discussed as a future direction and is also available in the 

Supporting Information.

4.2. Application of CICC

Aires-de-Sousa and Gasteiger first reported the use of CICC to predict the absolute 

configuration of secondary alcohols resulting from the enantioselective addition of 

diethylzinc to benzaldehyde and for the enantioselective reduction of ketones by (−)-DIP-

chloride ((−)-B-chlorodiisopinocampheylborane).140 For each example, literature data is 

used to train a counterpropagation neural network which is then used to predict the major 

enantiomer of the transformation. A counterpropagation network is constructed of two parts, 

a Kohonen layer (the input layer) and an output layer. The Kohonen layer and output layer 

are linked and thus can be used as a look-up table – a neuron in one layer (e.g. the Kohonen 

layer) is linked to a corresponding vector in other layer (e.g. the output layer). A more 

detailed description of a counterpropagation network is available in the Supporting 

Information.

For the enantioselective addition of diethylzinc into benzaldehyde, CICC is calculated at 75 

evenly distributed values for a series of 50 amino alcohol catalysts for which literature data 

is available for the transformation of interest (Figure 32). Thus, each molecule is represented 

by a 75-dimensional vector. These vectors are used as input into a counterpropagation neural 

network, which is trained with 45 catalysts and tested with five catalysts. For the training set, 

catalysts that give the (+)-enantiomer of the product are given an output value of +1 and 

catalysts that give the (−)-enantiomer of the product are given an output of −1. For the test 

set, the absolute configuration of the product is predicted on the basis of the sign of the 

output value. In each case, the network is able to successfully predict the major stereoisomer 

from the reaction (Figure 33).

For the enantioselective reduction of ketones by (−)-DIP-chloride, literature data for 50 

different ketones was obtained for which the absolute configuration of the corresponding 

secondary alcohol is available (Figure 34). The input vectors are derived by calculating 

CICC at 31 evenly spaced points for each enantiomer of the product alcohol. If the 

configuration of the input alcohol structure corresponds to the major isomer formed, the 
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output value i set to +1. If the opposite configuration of the alcohol (with respect to the input 

structure) is formed preferentially, the output value is set to −1. This training protocol is 

used for 45 alcohol pairs (the two possible enantiomers for each parent ketone). The trained 

model is evaluated with the five remaining alcohols pairs and four of the five test cases are 

predicted correctly. The incorrect prediction is attributed to the configurational variability 

obtained from the reduction of fluorinated substrates by DIP-chloride.

This seminal publication on the utility of CICC to predict the absolute configuration of 

products represents a unique application of chemoinformatics in asymmetric catalysis. 

Typically, selectivity is predicted as a continuous variable wherein experimentalists search 

for a maximum. This example highlights the ability of chirality codes to store information 

related to the absolute configuration of a catalyst in a way that is conformation independent 

and alignment independent – a unique capability absent from other descriptor classes.143,144

Aires-de-Sousa and Gasteiger later applied CICC in a regression analysis to predict 

enantioselectivity in the addition of diethylzinc to benzaldehyde, wherein enantiomeric 

excess (%) is the regressand.145 In this work, the authors employ a number of modeling 

methods including feed-forward neural networks, perceptrons (neural networks with no 

hidden layers), multilinear regression, and support vector machines to predict the continuous 

selectivity output. In the reaction system developed in a previous study,146 five different 

racemic amino alcohol ligands are used simultaneously with 13 different enantioenriched 

amino alcohol additives (Figure 35). This set, containing 65 experimental data points, is 

used to evaluate if CICC could predict a continuous output. The enantioenriched chiral 

additives are represented by 101-length chirality codes, whereas the racemic catalysts are 

represented by the absolute value of the 101-length chirality code of a single enantiomer. 

Prior to modeling, all low variance features are eliminated, leaving only 28 parameters per 

reaction. Using these descriptors, a neural network is used to identify the relative weights of 

each individual feature, allowing the number of variables to be reduced further to 11 features 

per reaction. Following this, the different modeling methods are evaluated, with feedforward 

neural networks providing the best performance with a combined 3-fold cross-validated R2 

of 0.923 and an RMSE of 6.9% ee. Notably, this example uses % ee rather than e.r. or free 

energy differential as the regressand. Thus, in this case and all other cases in which this is 

true, it is possible to calculate predicted values of % ee that are over 100%. Because this 

value exceeds the theoretical maximum, these are simply interpreted as very selective 

predictions. Alternatively, generating models with other regressands such as e.r. or free 

energy differential removes the possibility of producing physically meaningless values. This 

work thus demonstrates the capacity of CICC to predict a continuous output using data from 

combinatorial experimentation. The approach is particularly appealing given the conformer 

and alignment independence of CICC.

Another example of the application of CICC to asymmetric catalysis is enantioselective 

transfer hydrogenation.147 In this work, a published data set148 is used to determine if CICC 

with counterpropagation neural networks could be used to identify an optimal catalyst by 

experimentally testing only a small number of catalysts. In the original work by Bellefon 

and coworkers,148 selectivity and conversion data for a combinatorial library of 1914 

catalysts are experimentally measured in the enantioselective transfer hydrogenation of 
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acetophenone catalyzed by chiral metal-amino alcohol complexes (Figure 36). A genetic 

algorithm is then used to identify selective catalysts on the basis of a normalized 

performance factor (NPF), calculated by multiplying the conversion by two then adding that 

product to the enantiomeric excess. The value is then normalized to the catalyst with the 

highest NPF, thus each catalyst has an NPF value between 0 and 1. By using a genetic 

algorithm to guide catalyst selection, Bellefon and coworkers are able to identify at least five 

of the top ten catalysts, on average, by only testing 10% of the total library.

Subsequently, Xu and coworkers calculated CICC for the complexes in the following 

manner: (1) the CICC for the amino alcohol portion are encoded with a 51-dimensional 

vector (corresponding to CICC with 51 different increments), (2) the CICC corresponding to 

the N-protecting group, (B) are calculated using 63 increments, yielding a 63-dimensional 

vector, (3) the metal complexes are encoded by a binary, 6-dimensional indicator vector in 

which each dimension corresponds to the presence of one metal precatalyst (thus, for each 

complex, five dimensions zero and one dimension is 1), and (4) these descriptors are then 

concatenated combinatorially, yielding 120-length vectors for each member of the 

combinatorial library. Dimensions in which every catalyst had a value of zero are removed, 

reducing the dimensionality of the final vector to 108. These vectors can then be used as 

input to a counterpropagation network, in which the weight of the output layer associated 

with the winning node moves towards the NPF associated with the input catalyst vector.

The authors select a training set of 198 compounds semi-randomly, with the conditions that 

each metal complex appears 33 times, each amino alcohol portion appears 18 times, and 

each N-protecting group appears either 6 or 7 times to ensure an even representation of the 

different possible catalyst permutation. The remaining 1716 catalysts are then used as a test 

set. Performance is evaluated by calculating a hit number (N), defined as the percentage of 

the top 10 catalysts (termed target catalysts) in the combinatorial library that would have 

been uncovered by the simulated optimization. For example, if 198 catalysts are used to train 

a network, the network could then rank the remaining 1716 catalysts. The top 50 are then 

“selected”, simulating the next set of catalysts that would be synthesized and tested in a real 

optimization campaign. Inclusion of one of the top ten catalysts in the dataset, as according 

to NPF, is defined as a successful end to the simulated optimization and the number of top 

ten catalysts identified in the 50 selected catalysts is thus a metric of success. As an 

example, inclusion of one of the top 10 catalysts would give N = 10% for 246 reactions (198 

training and 50 top predicted). This process is repeated multiple times with different 

selections of training data to remove error associated with random selection of training data.

On average, random selection of 198 (10% of the combinatorial library) gives a success rate 

of N = 9%, far below the success rate of N = 50% observed in the original report employing 

a genetic algorithm. Using a counterpropagation neural network, success rate is increased to 

N = 78.5% on average by “screening” the top 200 predicted catalysts from the test set 

(totaling 20.8 % of the entire combinatorial library). The dimensionality of the input vectors 

are reduced by a genetic algorithm, and these new descriptors are used with 20.8% of the 

combinatorial library to achieve a success rate of N = 85.5%. The number of catalysts 

surveyed could be reduced to 13% of the total library (198 training catalysts and top 50 test 

catalysts) to achieve a success rate of 55%, a similar level of success when compared with 
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the original study. Because the training data is 10% of the combinatorial library, a direct 

comparison with this method and the original method is not possible. However, this report 

does represent an alternative method by which new enantioselective methods could be 

optimized with significantly greater success over random sampling alone.

In a continuation of this work, Xu and coworkers use a subset of this dataset in regression 

modeling to predict the performance of an external test set of catalysts.149 Only reactions in 

which the yield is over 5% and some enantioinduction is observed are considered in the 

study, limiting the dataset size to 296 catalysts. Both a regression tree and a random forest 

regressor are trained on 237 members of the dataset and used to predict the remaining 59 

catalysts, which are used as a test set. For the regression tree, the predictivity is low with R2 

= 0.71 and 0.56 for training and test sets respectively. Random forest models performed 

significantly better, with R2 = 0.71 and 0.77 for training and test sets, respectively. Using a 

genetic algorithm to reduce the dimensionality of the input vectors to 28 further increased 

the predictivity of the resulting model, with R2 = 0.77 and 0.82 for training and test sets, 

respectively, with RMSE = 9.96 % ee. Predictivity observed with this method is limited, but 

it demonstrates the capability to use machine learning methods with a vector representation 

of a molecule that: (1) is not fragment based, (2) is alignment independent, (3) is conformer 

independent, and (4) can account for the absolute configuration of the catalyst.

4.3. Other Chirality Codes

Zhang and coworkers have also developed variants of chirality codes for the prediction of 

the major isomer of enantioselective reduction of ketones to form secondary alcohols.150 

The authors propose a physicochemical atomic stereodescriptor derived from numerous 

topological properties that are taken from the groups attached at the stereogenic carbon of 

the secondary alcohol. In particular, the two substituents other than the -H and -OH groups 

are described arbitrarily as “right” and “left” groups, and are used to generate the individual 

codes. The vector representation of the molecule is constructed from the concatenation of 

right and left groups, which in turn comprises: (1) the number of atoms in the group, (2) the 

number of atoms three bonds away from the stereocenter, (3) the distance (in number of 

bonds) the farthest atom is away from the stereocenter, (4) the maximum distance (in 

number of bonds) between two atoms in the group, (5) atomic charge, (6) sum of atomic 

charges, (7) atomic polarizability, (8) electronegativity, (9) charge density, (10) total charge 

density, and (11) a steric hindrance parameter. To account for chirality, chiral connectivity 

indices151 and chiral topological charge indices152,153 are employed.

Datasets used to benchmark this new chirality code are the enantioselective reduction of 

ketones by (−)-DIP chloride140 and the enzymatic resolution of racemic alcohols with a 

lipase.154 In case of the former, the 100 possible stereoisomers derived from the 50 parent 

ketones are divided into two groups – Group A contains the experimentally observed, major 

stereoisomer of the alcohol whereas Group B consists of the minor stereoisomer. A random 

forest classifier is used to predict which would be the major isomer of the reduction, which 

could be improved by feature reduction with a genetic algorithm. After being trained on 40 

alcohol pairs, the classifier achieves a 90% success rate classifying the remaining 10 pairs of 

alcohols. The same workflow is implemented for the enzymatic resolution of alcohols with a 
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lipase, which achieved an 87% success rate classifying a test set of 15 pairs after being 

trained on 52 pairs.

Zhang and coworkers later developed a simpler permutation of chirality codes designed to 

facilitate the generation of an empirical rule governing the preferred enantiomer of the 

product formed in the same reactions discussed above.155 Using the same datasets, codes for 

chiral secondary alcohols are generated as 12-dimensional bits derived from the carbons 

attached to the stereogenic carbon of the secondary alcohol (6-bits for each substituent). The 

bits are binary indicators categorizing the carbon atom into one of six groups: (1) sp carbon, 

(2) sp2 carbon, (3) sp3 carbon with four degrees of branching (sp3D4, i.e. tert-butyl group), 

(4) sp3 carbon with three degrees of branching (sp3D3, i.e. iso-propyl group), (5) sp3 carbon 

with two degrees of branching (sp3D2, i.e. an ethyl group), and (6) sp3 carbon with one 

degree of branching (sp3D1, i.e. a methyl group). These vectors are used as input for Fischer 

linear discriminant analysis, a pattern recognition supervised method, to build a 

classification model. Using 40 alcohol pairs as training data, the model is able to categorize 

the 10 test alcohol pairs with 100% accuracy, marking the best performance on the dataset to 

date. The authors use the model to inform a ranked list of significance, as follows: sp3D4 > 

sp2 > sp3D3 > sp3D1 > sp3D2 > sp. Using this list, the authors suggest what they term the 

“PT rule”, consisting of two situations: (1) if the category for the “left” substituent is greater 

for than the “right” substituent (“left” and “right” defined with respect to the positions of the 

alcohol residue and hydrogen atom on the stereogenic carbon atom, depicted in Figure 37), 

the isomer of the alcohol being analyzed is predicted to be the major product, and (2) if the 

values of “left” and “right” substituents are identical, the relative sizes of those substituents 

dictate the enantiomer of the product formed wherein a larger “left” substituent indicates the 

isomer of the alcohol being analyzed is predicted to be the major enantiomer.

4.4. Conclusion and Perspective

The primary limitation of CICC is that it necessitates the definition of neighborhoods, which 

in turn necessitate the presence of a tetrahedral, stereogenic center in the molecules of 

interest. Thus, certain classes of chiral compounds (i.e. atropisomers) cannot be described by 

the above representation. To address this limitation, CDCC was developed. CDCC differs 

from CICC in that a chirotopic atom is not explicitly considered; rather all atoms are 

considered. Further, the interatomic distances in the form of through-space Cartesian 

distances are used, rather than the summation of bond length separating the atoms. As a 

result, the chirality code becomes dependent on molecular conformation. A more detailed 

description of CDCC is available in the Supporting Information.

The application of CDCC to asymmetric catalysis would expand the scope of compounds 

that can be described using chirality codes. However, no application of this representation in 

asymmetric catalysis has been demonstrated. Given the initial success of CICC, it is 

surprising that CICC and CDCC have not attracted more widespread implementation in 

enantioselective catalysis. A possible explanation for this is the inaccessibility of these 

descriptors; to the best of our knowledge, no open source implementations of this 

representation exist. We anticipate that an open source version (i.e. a downloadable module 

on GitHub) would facilitate more widespread adoption of this molecular representation. 
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Another limitation of this molecular representation is its interpretability. This representation 

is not intuitive – thus, it is difficult to conceive of a way to garner insight regarding the 

origin of stereoinduction with this representation. Other chirality codes may be more 

interpretable but are not readily applicable to a wide array of chemical systems.

5. Molecular Interaction Field (MIF) Based Methods

Among strategies to provide a ‘global’ description of catalyst structures, Comparative 

Molecular Field Analysis (CoMFA)156 has emerged as a popular 3D-QSAR method. 

CoMFA aims to enable a common description of structures in a catalyst library regardless of 

specific substitution patterns or ideally, even gross structural changes. Such a description 

should implicitly account for varying steric and electronic effects in the library members. 

Although there are other Molecular Interaction Field (MIF)-based descriptors, most 

conceptually resemble CoMFA; thus, an overview of CoMFA will be given here to provide a 

reference for other methods. This section will be divided into two subsections: alignment 

dependent methods and alignment independent methods.

5.1. Alignment Dependent MIF Methods

5.1.1. Background to Alignment Dependent MIF Methods—The comparison of 

two library members is naturally simplified if a common reference frame is employed. For 

example, in a library of BINOL derived phosphoric acids, the common BINOL core can be 

used as a fixed reference. Intuitively, it is expected that two members differing only in 

substitution pattern around the core will share many of the descriptors for common structural 

regions. For this to occur in practice, it is necessary to align the structures and attain a 

common reference frame (in this case, the BINOL core). A general description of such 

alignment dependent protocols is depicted in Figure 38. First, the molecules of interest are 

aligned to allow comparison of analogous regions of space around the core structures. Next, 

molecules are placed into common grids with defined grid spacing. Probes are placed at 

each grid point to calculate the steric or electronic interaction between the probe and the 

catalyst at a specific point in space, thus achieving a ‘global’, grid-based molecular 

description. These interaction energies are then used as descriptors to make a mathematical 

model relating the calculated properties to an outcome of interest, and this model is 

validated either by internal or external validation (or both). On the basis of a validated 

model, it is then possible to either identify important catalyst properties for enantioinduction 

or to predict the activity of catalysts that have not yet been synthesized. For the steric 

interaction energies, traditionally Lennard-Jones potentials157 are employed with some 

reference atom at each grid point. The electronic MIF is typically constructed from 

Coulombic interaction of each structure with a charged particle at each grid point. Model 

validation can be performed with either cross-validation methods (internal), wherein a set 

number of entries from the training set (the set of compounds originally used to make the 

model) is excluded from model generation iteratively until all entries have been excluded 

once, or by attempting to predict the observed properties of a test set not used in model 

generation (external). However, best practices recommend using both internal and external 

validation for evaluating models.36
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5.1.2. Applications of Alignment Dependent MIF-Based Methods in 
Asymmetric Catalysis—The first example of the application of CoMFA to asymmetric 

catalysis was reported by Lipkowitz and coworkers in 2003.158 The aims of this study were 

to demonstrate that “out-of-the-box” (meaning readily available from commercial software 

packages without extensive optimization) CoMFA could be used to generate models capable 

of predicting catalyst selectivity and to identify which catalyst features were important for 

enantioinduction in an enantioselective Diels-Alder reaction (Figure 39). The authors 

calculate descriptors using the workflow described above for 23 different catalysts whose 

selectivity values are readily available from the literature, and span over a wide range (55:45 

e.r. to 99.05:0.5 e.r.).159–163 The common oxazoline core is used for reference alignment. 

The authors perform two different validation protocols — partial least squares (PLS) 

modeling with internal validation (leave-one-out (LOO) cross-validation) and external 

validation (modeling with 18 catalysts, then using this model to predict the selectivity of the 

remaining five). Internal validation methods yield high q2 values ranging from 0.533 to 

0.840 (q2 values greater than 0.5 are typically considered to be acceptable)158 depending of 

the factors such as grid spacing, field type, probe type, dielectric function, and number of 

latent variables used in PLS modeling. Using external validation (18-member training set), 

the authors are able to predict the external catalysts with exceptional accuracy (R2 = 0.94 in 

the predicted vs. observed plot with slope near unity and y-intercept = 7.5), thus 

demonstrating the ability to use readily available software to make validated QSAR models 

for chiral catalysts. The authors then demonstrate the ability to obtain information pertaining 

to which structural features of catalysts are responsible for enantioinduction. Specifically, 

the aim is to quantify the relative importance of steric and electronic effects in determining 

the reaction outcome. Using the best PLS models obtained, it is found that 60–70% of the 

variance in the data is described by steric effects, whereas 30–40% is described by electronic 

effects, suggesting that steric properties of the catalyst are relatively more important for 

enantiodifferentiation. From examination of the steric MIF, two important regions of space 

are identified where steric occupancy either enhanced selectivity or was detrimental to 

selectivity (Figure 39). The region where increased steric bulk enhances enantioselectivity is 

green, whereas the region which must be devoid of occupancy for high-selectivity is yellow. 

The complex depicted in Figure 39 is the most selective catalyst in the study that fits these 

guidelines, supporting the hypothesis that CoMFA can be used to obtain useful structural 

information about how catalyst structure relates to selectivity.

Contemporaneous with Lipkowitz’s report, Kozlowski and coworkers employed an MIF-

based method to predict the selectivity of β-amino-alcohol-catalyzed alkylation of aldehydes 

with organozinc reagents.164 Rather than using classically calculated MIFs, semi-empirical 

methods (PM3) are used to calculate approximate transition structures for the reaction. 

These structures are aligned and used to calculate an electronic MIF again at the PM3 level 

of theory. A quantitative structure-selectivity relationship (QSSR) is then calculated using 

different combinations of only two grid points at a time, resulting in the generation of a 

“best” 2-variable model and an “average” model constructed by weighting all accepted 2-

variable models. The model is validated externally (R2 = 0.90 for averaged model), 

demonstrating the ability to use semi-empirical calculations to construct MIFs capable of 
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generating models that predict enantioselectivity to comparable accuracy165 as other high-

level (e.g. DFT) methods (Root Mean Square Error (RMSE) = 0.29 kcal/mol).

Kozlowski and coworkers later used a similar method to evaluate the importance of the A-

ring of sparteine for enantioselectivity in enantioselective lithiation reactions.166 Prior work 

had demonstrated that the D-ring of sparteine had little impact on the enantioselectivity of 

lithiation reactions.167 However, the A-ring was important in enantioinduction because 

omitting the A-ring resulted in a reduction in selectivity from 98.5:1.5 er to 60.5:39.5 er 

(Figure 40).168 The researchers sought to determine if the entire A-ring is necessary for 

enantioinduction, and thus prepared an analog devoid of the A-ring leaving only the N-

methyl carbon and the carbon affixed to the corresponding stereogenic center on the B-ring. 

Interestingly, this analog gives low, opposite selectivity. To explain this unexpected reaction 

outcome, a QSSR model is generated using 16 chiral diamine ligands, employing a similar 

method to their original work (vide supra). However, PM3 electrostatic potential MIFs did 

not give satisfactory results correlating the calculated descriptors to activity. Thus, the 

authors developed G-QSAR in which the electrostatic potential energy (ESP) MIFs are 

derived from higher-level methods (DFT, HF, MP2, etc.) using Gaussian98. By employing 

more accurate ESP calculations (BLYP/6–31G**), predictive models are generated again 

using two-point linear regression models (q2 = 0.68, R2 = 0.82). Probe energies at defined 

regions of space with respect to the chelated lithium ion correlate well with observed 

selectivity.

Figure 41 (sparteine) depicts one example of many possible chelating diamine ligands, in 

which the red and blue spheres represent analogous regions of space in the common core 

scaffold. As the interaction energy at the center of the red sphere decreases (owing to either 

fewer steric interactions or the presence of a relatively electronegative group), the 

enantioselectivity increases. Conversely, high interaction energies at the center of the blue 

sphere are found to be associated with high selectivity. From these observations, the authors 

suggest three guidelines: (1) larger groups below the ring (e.g. near the blue region) result in 

high selectivity, (2) aromatic groups above the ring are associated with higher selectivity, 

and (3) large alkyl groups above the ring give rise to low selectivity. The authors are also 

able to accurately predict the outcome of new catalysts using their calculated descriptors.

In a study of the enantioselective addition of organozinc reagents to aldehydes catalyzed by 

amino alcohols, Kozlowski and coworkers used a similar, modified workflow for the 

accurate prediction of reaction outcome for novel catalysts (Figure 42).169 Rather than use 

calculated transition structures as inputs as in the original study,164 a zinc dimer representing 

the ground state is used for descriptor calculations to make the method more agnostic to 

mechanism. GQSSR and QMQSAR (MIF calculated with semi-empirical methods, i.e. 

PM3) methods are used for calculating the electronic MIF for 18 training compounds, and k-

fold cross-validation (k=2) was used in model construction (q2 = 0.85), in which the models 

are relatively unaffected by training set compounds (independence on training set selection 

is indicative of robust models). The model is then used to predict the selectivity of 17 

compounds for which experimental data was unavailable, 13 of which were then synthesized 

and evaluated. The model accurately predicts the enantioselectivity of new catalysts prior to 

their synthesis, an important “first” in this field. However, it is worth noting that employing 
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external validation sets (a test set, demonstrated previously)158,164,166 is identical to 

predicting the selectivity of novel compounds, then synthesizing them and collecting data — 

data collection before or after model generation is irrelevant because that data is not used in 

model generation in either situation (both are external sets, only the order of the workflow is 

different).

This method was again used by Kozlowski, Hsung and coworkers to evaluate the selectivity 

of a new class of chiral amino alcohols ligands for the addition of diethylzinc to aryl 

aldehydes (Figure 43).170 3D-QSAR models with semi-empirical (QMQSAR) and DFT 

methods (GQSAR) were employed. With a training set of 17 compounds and the same 

computational workflow described above accurate models could be generated. These models 

are then used to predict the performance of catalysts not yet synthesized at a range of 

temperatures by constructing different models using training data collected at each of the 

three temperatures.

Kozlowski and coworkers have also used quantum electronic MIFs to predict the 

enantioselectivity of a single, common catalyst with different substrates in the 

enantioselective addition of diethylzinc to aldehydes.171 With the same QMQSAR method 

as previously described,169,170 two different sets of aldehydes are used to generate models 

predicting the reaction outcome. Models are generated for two datasets, the first with 11 aryl 

aldehydes and the second with eight aryl aldehydes, furfural, seven α,β-unsaturated 

aldehydes, and two aliphatic aldehydes (Figure 44).

Both datasets generate cross validated models (q2 = 0.67 for the first, q2 = 0.61 for both 

models in the second); however, in the second dataset the aryl aldehydes and non-aryl 

aldehydes must be treated separately to generate robust models. Although no external 

validation is done in the study, it does represent an important proof of concept that QSAR 

models could be used to predict reaction outcome for novel substrates in established 

systems.

Lower-level methods (using classical rather than semi-empirical or ab initio methods), such 

as “traditional” CoMFA, have also been applied to asymmetric catalysis. Hirst and 

coworkers used CoMFA to predict the outcome of enantioselective, phase-transfer-catalyzed 

reactions.172 This method combines high-throughput screening with computational catalyst 

evaluation wherein 88 cinchonidinium catalysts are combinatorially synthesized and 

evaluated in asymmetric alkylation reactions (Figure 45).

To rapidly generate data, catalysts are synthesized in situ through sequential N- and O-

alkylation of dihydrocinchonidine. Because catalyst permutations are on a common core 

scaffold, the authors model only the substituents rather than the entire catalyst scaffolds in 

an attempt to decrease the amount of “noise” in the data resulting from low-variance points 

near common parts of the core and to speed up the total calculation time by reducing the 

number of features. The authors train the reaction on 70 of the catalysts (LOO q2 = 0.72), 

withholding all catalysts with 4-iodobenzyl substituents as an external test set. By using this 

strategy, accurate 3D-QSAR models could be generated (RMSE = 0.13 on external training 

set) with only substituent descriptors (predicted vs. observed plot in Figure 45). Most 
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importantly, the report demonstrated a catalyst design approach using rapid catalyst 

generation combined with chemoinformatic analysis.

Similar substituent-based analyses have been performed with a different class of biaryl-

derived phase transfer catalysts.173 In this study, Hirst and coworkers used selectivity data 

measured from a combinatorial library of 40 catalysts in an enantioselective alkylation 

reaction (Figure 46).

Two catalyst scaffolds were identified, denoted as i and ii. The + and − forms of the biaryl 

are assumed to be in equilibrium in solution and have been designated only for future 

discussion – the biaryl precursor used in catalyst synthesis is achiral. For scaffold i, 
substituent combinations from S2Sa through S8Se are synthesized (wherein the Sn refers to 

the R’ substituent and Sx refers to the corresponding chiral, secondary amine shown in 

Figure 46). For scaffold ii, catalysts S1Sa through S1Se are synthesized. This 40 member set 

gives an observed selectivity range from 65:35 to 4.5:95.5 (S:R) er.

With this set of catalysts, the authors sought to evaluate the predictive capabilities of 3D-

QSAR (CoMFA-like), 3.5D-QSAR,174 and 4D-QSAR175 methods. Both 3.5D- and 4D-

QSAR methods take the conformer distribution of molecules into account. 4D-QSAR uses a 

molecular dynamics trajectory to calculate time-averaged occupancy values at each grid 

point. 3.5D-QSAR is so named because it can be thought of as a hybrid between 3D-QSAR 

and 4D-QSAR. In 3.5D-QSAR, different conformations are taken from a molecular 

dynamics trajectory. These structures are minimized and are all used to calculate descriptors 

in a MIF.

To obtain the best 3D-QSAR models, many attempts were made to select a single, 

representative conformer. First, five different conformer selection methods are tested: (1) the 

lowest energy conformation of each catalyst, (2) the lowest energy (+)-backbone 

configuration for each catalyst, (3) the lowest energy (−)-backbone configuration for each 

catalyst, (4) the opposite backbone configuration of each catalyst with respect to the lowest 

energy conformer for each catalyst, and (5) random conformer selection for each catalyst. It 

is worth noting that only the substituent coordinates are used in descriptor calculation for 

3D, 3.5D, and 4D methods. Considering only (+) or (−) backbone configurations produce 

inaccurate models (R2 = 0.68 and 0.54, respectively), suggesting that both (+) and (−) forms 

of the backbone are in equilibrium in solution. The best model is obtained from considering 

the global minimum energy conformer (R2 = 0.94, q2 = 0.78). The opposite backbone 

configuration gives a similarly correlated, but perhaps overfit model (R2 = 0.88, q2 = 0.65) 

whereas random selection (on average over 100 different selections) give generally weak 

models (R2 = 0.59, q2 = 0.22). The best model is compared with 3.5D and 4D methods.

Descriptors for both 3.5 and 4D approaches are calculated using two methods — MIFs and 

indicator fields. Indicator fields differ from MIFs in that rather than calculating a molecular 

interaction (MIF), simple metrics are used to identify occupied regions of space. For 

example, the steric indicator field is calculated with a binary metric of occupancy (1 if a grid 

point of a conformer overlaps with the van der Waals radius of an atom, 0 if it does not). 

Similarly, the electronic indicator fields assign the value of the atomic charge to a grid point 

Zahrt et al. Page 37

Chem Rev. Author manuscript; available in PMC 2020 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



within the van der Waals radius of an atom. For the 3.5D method, a hydrogen bond acceptor 

indicator field is also employed, calculated the same way as the steric indicator field but 

populated only when the grid point overlaps with a hydrogen bond donor. When compared 

with MIFs, these simpler descriptors performed worse in 3D-QSAR, but better in 3.5D- and 

4D-QSAR, likely because they minimized noise in the data for the latter methods.

To compare 3D-, 3.5D-, and 4D-QSAR methods, two-deep cross-validation was used.176,177 

In this study, the authors first used 4-folds (four sets of 10 catalysts), wherein 30 are used to 

create a model and 10 were used to validate the model. The 30 training catalysts are then 

used to make a model, using LOO cross validation and the residuals of the remaining 10 

catalysts are used to validate the model. This process is repeated until all 40 catalysts have 

been used in the first validation set. With this more robust method of cross validation, 3.5D 

descriptors including the hydrogen bond acceptor indicator field give the best models (q2 = 

0.73) followed by 4D descriptors (q2 = 0.71) followed by 3.5D descriptors with only steric 

and electronic indicator fields (q2 = 0.70), with 3D descriptors giving the weakest models 

(q2 = 0.64). Thus, 3.5D and 4D descriptors may be computationally more intensive, but also 

lead to more robust models.

The application of 3D-QSAR in the study of chiral phase transfer catalysts has been 

implemented by Denmark and coworkers.178,179 A novel class of cyclopentapyrrolizidinium 

catalysts was synthesized by the tandem inter [4 + 2]/intra[3 + 2] cycloaddition of 

nitroalkenes with chiral enol ethers followed by hydrogenolysis. This route allows the 

synthesis of 160 catalysts that are then tested in an asymmetric alkylation reaction.

To elucidate the features important for enantiodifferentiation, 3D-QSAR models (CoMFA) 

were generated. Chemoinformatics methods using 0D, 1D, 2D, and 3D descriptors were also 

calculated and correlated to catalyst activity. However, because the focus of this review is 

3D-QSAR and its application to asymmetric catalysis, only the study of enantioselectivity 

will be discussed here; interested readers are directed to the original work for more 

information regarding catalyst activity.178,179

Following a similar workflow, a global minimum conformer was located for each catalyst 

with molecular mechanics that was later verified with DFT (B3LYP/6–31G*). Because the 

global minimum conformer may not be the relevant conformer in the stereodetermining 

transition structure, multiple conformer classes were identified and categorized on the basis 

of the scaffold conformation (Figure 47). The core structures are assigned to different 

libraries considering their substituents and the relative conformation of the b ring. To 

evaluate the best set of conformers, each library is used to generate QSARs, in which the 

best conformer set is selected according to which library gives the strongest models.

Molecular charges are calculated with MNDO, and MIFs are calculated using Coulombic 

potentials and Lennard-Jones potentials. Cutoff energies are applied to avoid extraordinarily 

large values for grid points within the van der Waals radius of an atom. Indicator fields have 

also been explored; instead of a binary indication of occupancy, grid points overlapping with 

the van der Waals radius of an atom are assigned the cutoff energy value and other are 

assigned a value of zero. The conformers in library D (defined in Figure 47) with indicator 

Zahrt et al. Page 38

Chem Rev. Author manuscript; available in PMC 2020 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fields at a 30 kcal/mol steric cutoff and 15 kcal/mol electronic cutoff give the best models 

(R2 = 0.924, q2 = 0.778).

QSAR models can be used to identify regions of space around the catalyst where increasing/

decreasing steric or electronic effects impact enantioselectivity. These contour maps (Figure 

48) are discussed with reference to the perspective of the actual structure shown on the far 

left. The green surfaces on the bottom right next to the methyl group indicate that steric bulk 

in that region is necessary to shield that portion of the b-ring. The green contours 

overlapping with the 3,5-positions of the arene ring are consistent with substitutions here 

increasing selectivity. The green contour next to the benzyl substituent (R3) on the oxygen 

atom is consistent with the observation that having hydrogen at the R2 position decreases 

selectivity – if this position is a hydrogen atom, the arene ring rotates into this region of 

space. This arrangement is associated with low selectivity. The yellow contour near the 

nitrogen atom indicates that bulky groups at R4 leads to low selectivity, presumably because 

of shielding of the electrostatic interactions. The electrostatic potential map corroborates this 

analysis, with the blue contour over the a-ring indicating this region as a productive binding 

site for the substrate.

These observations are consistent with the following stereochemical rationale: each face 

favors association with either the Re or Si face of the enolate. Although the extent of 

selectivity for Re or Si face may not be perfect, enolate association is likely at either the a-

ring or the b-ring and the competition in binding is responsible for diminished selectivity. 

These findings led to the following design criteria to optimize this catalyst scaffold: (1) the 

monopole is not variable, (2) the dipole can be reinforced by installing polarizing groups 

near the nitrogen, (3) R2 = aryl may result in favorable π-interactions that could increase 

selectivity, (4) the addition of steric bulk to three of the four faces of the core should disfavor 

association to all faces except one, and (5) the removal of steric bulk from the remaining 

face should facilitate selective enolate association.

CoMFA models have also been used to study enantioselective ketone hydrogenation 

reactions.180 In this study, 25 ruthenium complexes with both chiral diamine ligands and 

chiral bisphosphine ligands with known experimental selectivity values for the 

enantioselective hydrogenation of acetophenone are selected and split into a training set of 

20 members and an external test set of five members.181–185 The data in this set ranges from 

99.5:0.5 er (R is the major enantiomer) to 0.5:99.5 er (S is the major enantiomer). Steric, 

electronic, and H-bond donor MIFs as well as indicator fields are calculated for each 

catalyst. The performance of the five member external test is accurately predicted (R2 = 

0.974 for the predicted vs. observed plot for the external test set), indicating a strong model. 

From this model, contour maps could be developed to elucidate the structural features of the 

catalyst responsible for enantioinduction (Figure 49).

The relative contributions from steric and electronic effects are found to be 80% and 20%, 

respectively. The green contour, where more steric bulk leads to greater selectivity, is 

localized around the diamine ligand. The N-H-O interaction postulated in the 

stereodetermining transition structure suggests that increasing steric bulk around the amide 

residue will bias one diastereomeric transition structure over another, leading to enhanced 
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selectivity. Examination of the electronic MIF suggests that introducing negative charge in 

the vicinity of the aromatic rings of the diamine should also increase selectivity. To test this 

hypothesis, the authors increased the electron density in the aromatic ring of catalyst A1 
(experimental selectivity = 87% ee, predicted selectivity = 78.1% ee) by installing NH2 units 

on the para positions (Figure 49). This new catalyst is predicted to have a selectivity of 

84.3 % ee.

Unfortunately, the authors did not synthesize this catalyst, but instead calculated the free 

energy differential between the competing diastereomeric transition structures leading to 

enantiomers of the product. Whereas the calculated free energy differential for the two 

transition structures employing A1 is 1 kcal/mol, the free energy differential for the 

corresponding transition structures employing C1 is 2 kcal/mol. Although experimental 

validation would provide more compelling evidence to unambiguously prove the 

conclusions drawn in this report, this example represents a case in which the selectivity of a 

chiral catalyst is improved theoretically by making modifications suggested by 3D-QSAR.

Except for a few reports, most studies described in this section use projection to latent 

structure (PLS) modeling for the QSAR. However, many of the regression coefficients for 

the descriptors used in CoMFA and related methods could be assigned to zero, such as in 

grid points that reside far away from the catalytically active entity or points with variance 

approaching zero. Yamaguchi and coworkers have used least absolute shrinkage and 

selection operator (LASSO)/Elastic net regressions to construct QSARs assigning values of 

zero to unimportant coefficients.186 These authors used steric indicator fields as descriptors 

as well as calculated electronic descriptors,187 including only a global minimum energy 

conformer for esterification reactions and the enantioselective addition of phenylboronic 

acid to 1-napththaldehyde. However, as the focus of this review is on asymmetric catalysis, 

only the latter will be discussed.

A summary of the catalysts employed and selectivity values obtained are given in Figure 50. 

Eighteen catalysts are used in the training set and five in the external test set. LASSO/Elastic 

net regression analysis gives good models (R2 = 0.92 for the predicted vs. observed plot of 

the external test set). In analogy to the previous discussion, regions in space where steric 

occupancy is either beneficial or detrimental to enantioselectivity can be visualized using 

these methods (Figure 50). The Figures 50b and 50d corresponds to a catalyst in which 

R=R’=3,5-dimethylphenyl. The red region in Figure 50b designates that occupancy in this 

region of space is associated with diminishing enantioselectivity. Thus, the authors 

synthesized a catalyst in which the methyl groups are removed (R=R’=3-methylphenyl, 

shown in Figure 50a and Figure 50c. The selectivity of this catalyst is improved with respect 

to the original, validating that LASSO/Elastic Net can be used to generate QSARs and the 

physical information in these relationships can be used to enhance selectivity. No attempt 

was made in this work to further optimize the reaction.

5.1.3. A Complete, Chemoinformatics Guided, Catalyst Discovery Workflow
—Recently, our laboratory has developed a computer-guided workflow that uses 

chemoinformatics at all stages of development.138 This workflow consists of the following 

components: (1) construction of an in silico library of a large collection of conceivable, 
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synthetically accessible catalysts of a particular scaffold, (2) calculation of robust chemical 

descriptors for each scaffold, (3) selection of a representative subset of the catalysts in this 

space.

This subset is agnostic to reaction or mechanism as the only input in the selection algorithm 

is the intrinsic properties of the catalysts. Accordingly, it is named a Universal Training Set 

(UTS). The next steps are: (4) collection of the training data, and (5) application of modern 

machine learning methods to generate models that predict the enantioselectivity of each 

member of the in silico library. These models are evaluated with an external test set of 

catalysts (predicting selectivities of catalysts outside of the training data). The validated 

models can then be used to select the optimal catalyst for a given reaction.

As a prototype of this workflow, an in silico library of 806 chiral phosphoric acids is 

generated. For each member, steric and electronic descriptors are calculated. The newly 

developed steric descriptors, called average steric occupancy descriptors (ASO) are used 

which are conceptually similar to Hirst’s 3.5D descriptors.172 First, a conformer distribution 

for each catalyst in the in silico library is obtained. Second, for each catalyst, all of the 

conformers are aligned and individually placed in identical grids. If a grid point is within the 

van der Waals radius of an atom, it is assigned a value of 1; otherwise it is assigned a value 

of 0. This process is repeated for n conformers and upon completion each grid point has a 

cumulative value ranging from 0 to n. The values are then normalized by dividing by n such 

that all grid points have a value between 0 and 1. These values comprised the steric 

descriptors for the structures. For electronic descriptors, a calculable parameter arising from 

the perturbation of the electrostatic potential energy of trimethylammonium ions by 

substituents has been developed which correlates well with Hammett parameters. 

Calculation of these descriptors for each catalyst affords the chemical space on which the 

Kennard-Stone subset selection algorithm is applied, yielding the UTS (Chart 1). These 

descriptors are also used to digitize the reactants and products; concatenation of catalyst, 

reactant, and product descriptors combinatorially yields an in silico library of unique 

reactions.

To validate this workflow, the training set was evaluated on a previously optimized model 

reaction. The enantioselective formation of N,S-acetals (Figure 51A) developed by Antilla 

and coworkers was selected.188 For the selected model reaction, a four by four grid of 

imines and thiols is chosen, resulting in 16 reactions per catalyst (Figure 51A). Evaluating 

the 24-member training set with each substrate combination then results in 384 training 

reactions which are used for model development. The range of selectivities covered by the 

UTS in the 16 training reactions spans from 28.5:71.5 to >99.5:0.5 er with the same 

enantiomer of catalyst, further supporting the hypothesis that this training set selection 

method covers a broad range of selectivity-space.

A suite of models is generated and used to predict the selectivity of three families of test sets 

(Figure 51B), namely: (1) a “substrate test set” of reactions generating new products (i.e. 

those formed from substrates not included in the training set), (2) a “catalyst test set” of 

reactions generating the same products in the training set but with catalysts not included in 
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the training data (Figure 51C), and (3) a “substrate/catalyst (sub/cat) test set” of reactions 

creating new products also using catalysts not included in the training set.

Support vector regressors with a second order polynomial kernel gave the highest 

performance on the basis of the mean absolute deviation (MAD) from the combined external 

test sets (Figure 52A). The first test set evaluated only the ability of the models to predict the 

selectivity of reactions forming new products. In this role, the model excelled with an MAD 

of 0.161 kcal/mol. Next, the same model is used to predict the selectivity of the external test 

set of catalysts. The performance of the model is still highly accurate, with an MAD of 

0.211 kcal/mol. Finally, reactions forming new products with the external test catalysts are 

predicted with an MAD of 0.236 kcal/mol. The chemical space constructed from the first 

three principal components of descriptor space also reveals regions of high-, medium-, and 

low- selectivity space, indicating the ASO descriptors are accurately capturing the catalyst 

features responsible for enantioinduction (Figure 52B).

To demonstrate the potential to identify new, selective catalysts, a situation was simulated in 

which highly selective reactions have not been achieved. To do this, only reactions below 

80% ee were used as training data. Deep feedforward neural networks accurately reproduce 

the experimental selectivities (MAD = 0.33 kcal/mol, Figure 53A) and the general trends in 

selectivity on the basis of average catalyst selectivity. As shown in Figure 53B, the most 

selective catalyst evaluated is predicted as the most selective catalyst. The next two catalysts 

are also the second and third most selective catalysts (the order is inverted, but they are 

within experimental error of each other).

5.1.4. Perspective on Alignment Dependent MIF-based Methods—Alignment 

dependent MIF-based methods and related protocols have the capacity to identify how 

perturbations of the steric and electronic environments around the active catalytic entity can 

influence the enantioselectivity of that scaffold. Moreover, the studies detailed in this 

subsection demonstrate the general applicability of this method across multiple catalyst 

architectures. Thus, MIF-based methods are indeed a promising avenue of research if one 

wishes to identify a general, chemoinformatics-driven protocol to catalyst optimization. The 

most serious limitation of these methods is the alignment dependency. For comparing 

variations of catalysts of the same basic core scaffold, alignment is trivial. However, if one 

wishes to compare multiple catalyst scaffolds, alignment can quickly become challenging. 

To address this limitation, GRid INdependent Descriptors (GRIND) have been developed 

which constitute the topic of the next section.

5.2. GRid INdependent Descriptors (GRIND)

5.2.1. Introduction to GRIND—To address the necessity of alignment for the 

previously described MIF-based methods, the GRIND class of descriptors was developed.189 

These descriptors are derived from MIFs that then undergo processing to generate GRIND. 

The first step is a simplification of the MIF of interest by identifying important regions in 

space where interaction energies are of large magnitude (either large negative for favorable 

interactions or large positive for unfavorable interactions). These regions are identified by 

points (termed nodes in the GRIND nomenclature) of high interaction energy. Subsequent 
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selection of new regions is derived from additional points of high interaction energy outside 

a predefined distance away from previously selected regions. Then, the grid points 

surrounding the high interaction energy grid points are included to identify the important 

regions in space around the molecule. This process is called filtering and only the selected 

grid points (high interaction energy points and surrounding points) are taken on to future 

steps. For all the selected grid points, the pairwise products of all the interaction energies are 

calculated and sorted on the basis of the distance between the two grid points multiplied. For 

example, all products from grid point pairs in which the distance between points is 1–2 Å 

would be one class, whereas products from grid point pairs in which the distance between 

points is less than 1 Å could be another class. The highest value(s) in each class are taken 

forward and used as a descriptor. Thus, the number of descriptors per molecule is 

determined by the number of distance ranges used and the number of values kept per 

distance range (Figure 54). This method was later augmented with a molecular shape field.
190

5.2.2. Applications of GRIND in Asymmetric Catalysis—The first application of 

this method to asymmetric catalysis was reported by Higginson and Morao191 and sought to 

benchmark descriptor performance with Lipkowitz’s CoMFA models,158 Kozlowski’s 

QMQSAR models,164 and an enantioselective reduction of acetophenone with borane 

catalyzed by chiral β-amino alcohols reported by Damen and coworkers.192 GRIND was 

calculated following the protocol above with steric, electronic, and hydrogen-bonding MIFs, 

in which only the highest value per distance range in the field was kept. When compared 

with Lipkowitz’s models, the cross-validated correlation coefficient from LOO cross 

validation is lower than reported in the original study (q2 = 0.52 vs. 0.84, respectively). 

Although Kozlowski does not provide a q2, the two methods predict similar external 

validation sets, with Kozlowski’s MAD of 6.25% and Higginson and Morao’s MAD of 

6.75%. It is noteworthy that different modeling methods are used in each of these studies, 

confounding whether the descriptors themselves are comparable or a more advanced 

modeling method paired with inferior descriptors gives results similar to the original study. 

For the final study, the q2 value for both the GRIND descriptors and the Damen study are 

approximately 0.8, but given that the original report did not disclose their descriptor 

calculation method it is difficult to draw conclusions from this result. Examining the relative 

performance of the GRIND with respect to the three original studies, the GRIND descriptors 

at best give similar results, as suggested in the second two comparisons. When compared 

with Lipkowitz’s work, the GRIND gives somewhat diminished, although still potentially 

meaningful results.

This protocol has been modified by the use of values obtained from quantum mechanics 

from which the descriptors were calculated.193 Two fields are calculated from which to 

derive GRIND; a molecular shape field (MSF) and a molecular electrostatic potential field 

(MEP). The MEP field is calculated using DFT methods in a way similar to the 

aforementioned GQSAR method.166 The MSF is calculated by using the local curvature of 

the molecular surface.190 Convex areas range from −1 to 0, whereas concave areas range 

from 0 to 1. These MIFs are then subjected to filtering and pairwise multiplication, and the 

products sorted by inter-point distance, as described in the general GRIND method. These 
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descriptors are then evaluated in the enantioselective addition of dialkylzinc reagents to 

aldehydes. This reaction is chosen because the set of 18 catalysts evaluated by 

Kozlowski166,169 is available for comparison and a 40 member set is available using other 

literature sources.194,195 When training on the same 14 catalysts as Kozlowski and 

Higginson and Morao with the same four remaining catalysts held out as an external test set, 

a MAD of 15.7% ee between the predicted and observed values for the four test catalysts is 

found, significantly higher than the two previous cases (6.25 and 6.75% ee respectively). 

Moving on to the 40-member set, this group is divided into a training set of 30 members and 

a test set of 10 members. The predicted vs. observed values found in the test set are 

compared and the model predicts moderately to highly selective catalysts accurately but 

performs poorly when predicting low selectivity catalysts (Figure 55). The authors attribute 

this disparity to the skew of the data set, wherein most training catalysts have an energy 

differential between the diastereomeric transition structures leading to different enantiomers 

of the product greater than 1 kcal/mol.

The relative importance of each selected grid point can also be calculated to identify 

important regions of space around that catalytic entity. The individual contribution of each 

node can be calculated by first tabulating the product of the following three values for each 

node – node interaction: (1) QSSR coefficient, (2) the correlogram value (the product of the 

interaction energies at two nodes), and (3) the relative contribution of the node to the 

correlogram value across all pairwise combinations of which that node is a part. The 

summation of these product values for each node quantifies the relative importance of that 

node. These relative importance values are then attributed to structural motifs on the basis of 

the relative proximity of the node to different substituents. This value is termed the Group 

Structural Influence (GSI) ratio, which quantifies the overall contribution of the individual 

group to the enantioselectivity. An example of relative contributions of each group for 

selectivity is shown for the diethylzinc alkylation of benzaldehyde (Figure 55).

For this structure, the claim that the phenyl substituent makes no contribution to the 

observed enantioselectivity is surprising. Unfortunately, the authors did not report the 

synthesis of a catalyst with a different group at this position to test this conclusion. It is also 

possible that the phenyl substituent has a secondary effect of changing the equilibrium 

conformation of the O-trityl group and thus this contribution cannot be detected by the GSI 

ratio. Another interesting observation is the high contribution attributed to the ethyl ligand, 

given that this residue is constant across all catalysts examined. Nevertheless, this method 

does represent an attempt to quantify the relative importance of groups. Further development 

and validation of GSI ratios could facilitate the extraction of useful structural information 

pertaining to catalyst selectivity.

This method of using GRIND calculated from quantum mechanically derived MIFs has also 

been applied to the study of enantioselective, rhodium-catalyzed hydroformylation reactions.
196 This work also studied catalyst activity; however, because the focus of this review is on 

asymmetric catalysis only this section of the work will be discussed. The original workflow 

was modified by a second filtering method, in which the most negative values in the MEP 

field (points representing the most basic areas of the catalyst denoted as BAS) are removed.
197 Thus, four descriptor types could be calculated, two for each filtering method (filtered on 
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the basis of the most convex areas of the isosurface as in the original publication or on the 

basis of the most negative values in the MEP field). These include: (1) MSF-MSFconvex, (2) 

MEP-MEPconvex, (3) MSF-MSFBAS, and (4) MEP-MEPBAS. Twenty catalysts were selected 

from the literature to use in modeling and model validation (Figure 56).198,199

The four descriptor types listed previously are each tested by modeling the above data set 

and validating with LOO cross-validation. Neither the MSF-MSF nor the MEP-MEP 

descriptors generated with the BAS filtering method give acceptable models (q2 = 0.12 and 

0.41, respectively). Both MSF-MSF and MEP-MEP descriptors derived from the filtering 

method derived from the most convex regions give good results (q2 = 0.68 and 0.60, 

respectively). With the MSF-MSF descriptors from this filtering method five catalysts are 

selected at random from the twenty-member set to be withheld as an external validation set 

with the remaining 15 used to construct a model. This process is repeated four times such 

that the effect of which training catalysts are used on model efficacy could be examined 

(Figure 57). Rounds 1, 2, and 4 afford moderate success when predicting ligand selectivity 

in that the models generated can typically predict whether a catalyst will give high, medium, 

or low selectivity. Round 3 shows the worst performance, likely because only one catalyst 

left in the training set had over 55:45 er. Thus, this region of high selectivity chemical space 

may not have been well described by the model. The authors are also able to use the 

coefficients from the QSSR to extract some physical information pertaining to how catalyst 

structure influences catalyst performance, identifying regions where steric encumbrance is 

related to high enantioselectivity.

5.2.3. Perspective on GRIND—In general, grid-independent MIF-based methods 

underperform with respect to their alignment dependent counterparts. We hypothesize that 

during the construction of the correlogram, information pertaining to high interaction 

energies in different regions of space is lost. For example, one can imagine a hypothetical 

situation wherein a catalytic entity has two regions of high-interaction energy – one at the 

“front” of the molecule, near the catalytically active center, and one at the “back”. First 

consider the situation in which a substituent at the front of the catalyst has the highest 

interaction energy whereas the substituent in the back has the second highest interaction 

energy. Second, consider the same core catalyst scaffold in which the highest interaction 

energy is now at the back of the catalyst and the second highest interaction energy is at the 

front. Because the sorting of the node-node products is distance based, these catalysts will 

appear nearly identical in GRIND-space. Moreover, if groups responsible for producing the 

highest and second highest interaction energies give different selectivity values, the 

calculated descriptors will not capture the important relative spatial information necessary 

for differentiating the two compounds. One could argue that selection of the correct number 

of high interaction energy regions or use of the right MIF or indicator field could result in 

stronger models. However, this correction will likely require individualized optimization for 

each new system studied.

Another possible explanation could be that constructing the correlogram introduces more 

noise into the descriptors. Thus, when GRIND descriptors are used on small data sets, it is 

much more difficult to construct meaningful QSSRs than with their alignment-dependent 

counterparts. Perhaps using the standard GRIND-based method on larger datasets could 
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increase the performance of these methods. Despite being somewhat less explored than 

alignment dependent methods, GRIND has the potential to be very useful in that it becomes 

possible to bypass the alignment process. Although alignment dependent MIF methods may 

have an advantage over GRIND when it is easy to align the molecules of interest, GRIND 

may be the best tool available when evaluating more structurally diverse scaffolds in which 

alignment is not straightforward. In this sense, GRIND, a much younger technology than 

CoMFA, represents a promising avenue of research that should be investigated further.

6. Other Applications of Chemoinformatics in Enantioselective Catalysis

The previous sections in this review illustrate descriptors derived from the 3D representation 

of molecular structures. Alternatively, lower-dimensional representations can be used to 

formulate descriptors for applications in chemoinformatics. Such representations have 

several advantages over 3D descriptors including (but not necessarily limited to) the 

following: (1) they can be calculated much more rapidly than their 3D counterparts, (2) there 

is no need for optimization of molecular structures, and (3) there is no need for 

conformational analysis. However, one could argue that these representations inherently lack 

critical information about the 3D structure of the molecules of interest and are thus inferior 

representations. As the following section will demonstrate, it is possible to construct 

predictive models using such descriptors to represent variable subunits of a common core in 

a similar way Sterimol parameters were used in the LFER section. A commentary on the 

interpretability of these models will be discussed throughout, if applicable, and at the end of 

this section in the perspectives section.

6.1. Topological Indices as Descriptors in Enantioselective Catalysis

Topological indices are an example of 2D descriptors such as those developed by Xu and 

coworkers.200 These descriptors are calculated for a molecule by first defining three path 

matrices, termed A, B, and C. A path matrix is a two-dimensional representation of the 

connectivity of a molecule determined by which atoms are bound to each other. Thus, each 

dimension of a matrix is an identical list of atoms, wherein the matrix element 

corresponding to the intersection between two different atoms receives some value 

representing the relationship between those two atoms. In this particular case, matrix A is 

constructed such that each matrix element receives a value of 1 if the path between vertices 

has a value of 1 (i.e. the atoms are separated by one bond). If the path between vertices is not 

1, it receives a value of zero. For matrix B, if the path between vertices is equal to 2, the 

matrix element receives a value of 2 and otherwise receives a value of 0. The same is true for 

matrix C, wherein a path length of 3 corresponds to a matrix element of 3 and otherwise a 

value of 0 is assigned. To these matrices are added two columns: (1) the square root of the 

vertex degree (i.e. square root of the number of non-hydrogen atoms bound to the atom), and 

(2) the square root of the van der Waals radius of the atom. This operation results in the 

formation of three new matrices, termed G1-G3. These matrices are then multiplied by the 

corresponding transpose matrices (i.e. G1G1’) which gives three new matrices Z1-Z3. The 

topological indices (AX1, AX2, and AX3) are then defined as the largest eigenvalue of each 

respective matrix divided by 2 (Figure 58).
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You and coworkers used these molecular representations to predict reaction outcomes in 

three enantioselective reactions;201 enantioselective cyclopropanation,202 enantioselective 

pinacol coupling203 and, enantioselective cross-coupling reactions with Grignard reagents.
204 In each case, multiple regression analysis is employed.

The enantioselective cyclopropanation employs a copper-salen-derived complex (Figure 59). 

The ligand contains three groups that are varied, the substituent on the stereogenic carbon 

atom of the ligand (R1 in Figure 59), the ortho substituent of the aromatic residue attached to 

the oxygen-bearing carbon (R2 in Figure 59), and the substituent on the 5-position of the 

aromatic residue affixed to the oxygen-bearing carbon (R3 in Figure 59). Topological 

descriptors are calculated for each of the three substituents, generating a total of 9 

descriptors for each catalyst. The 17 different catalyst structures employed are divided such 

that 16 are used to develop the linear regression model and the remaining catalyst is used to 

validate the model. The regression analysis yielded a reasonable correlation (R2 = 0.823, 

Figure 59) with a standard error of 8.3% ee. A simple neural network provides slightly 

diminished performance.205

A related analysis is then performed using a different cyclopropanation reaction (Figure 60). 

In this case, data for both diastereomers of the product is available; thus, two different 

models are constructed to predict the enantiomeric composition of each diastereomer. In this 

model, three topological descriptors are derived from each the styrene aromatic residue, the 

identity of the substituent on the ester residue of the diazo compound, and the identity of the 

heteroaromatic residue on the catalyst. In addition to these 9 descriptors, an indicator of 

either −1 or +1 is given to specify the configuration of the L- or D-menthyl substituent on 

the ester residue, whereas achiral residues receive a value of 0. Using these 10 descriptors, 

regression analysis is performed to predict the reaction outcomes for both possible 

diastereomers, the results of which are given in Figure 60. Of the 14 available data points 13 

are used to construct the model and one additional data point is used for external validation. 

This model is quite accurate giving an R2 = 0.908 and a standard error of 4.8% ee for the 

trans isomer and an R2 = 0.919 and standard error of 5.0% ee for the cis isomer. An 

interesting observation is the large coefficient in the regression analysis of the Ax3
R1 term. 

Because this matrix is associated with three-bond connections the authors suggest that this 

result indicates the importance of the steric bulk of the styrene substrate to achieve high 

selectivity (larger substituents lead to higher selectivity). This interpretation is surprising 

given the similar sizes of the R1 substituents – C6H6, 4-MeC6H5, 4-MeOC6H5, and 4-

ClC6H5. By most metrics the latter three substituents would not be considered significantly 

sterically different; the most obvious difference among the groups is the electronic character. 

Because no electronic information is available in the descriptors, it is surprising that the 

model can accurately identify this trend and make accurate predictions. One possible 

explanation is that because the van der Waals radius is present in the original A, B, and C 

matrices, the model developed some method of “penalizing” the compounds with chlorine 

atoms (or atoms with larger van der Waals radii) present and can thus reproduce the trend. 

An interesting challenge to this model would be to prepare the 4-CF3C6H5 or 4-FC6H5 

analogs as external tests for further validation of this interpretation and potentially exposes 

shortcomings in the descriptors used. If the model fails to predict the 4-FC6H5 case, this 

could suggest the correlation (and its interpretation) is not founded in the underlying physics 
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and that the variable with a large coefficient is also correlated with the actual causative 

property within the domain of the model. Such a situation would both confound extraction 

of physical meaning from the model and limit the domain of applicability. Additionally, it 

would be interesting to include Hammett parameters in the model and see if the significance 

of the other variables decreases. If this is the case, it is likely that the physical interpretation 

of the current model is unfounded.

The authors revisited this system to compare the performance of models generated with 

linear regression with those generated by neural networks.205 The neural network contained 

two output neurons and could thus predict the enantiomeric composition for both 

diastereomers simultaneously. Unfortunately, different combinations of the aforementioned 

topological indices are used in each case making direct comparisons between the models 

difficult. Similar predictive capabilities are observed in each case (trans and cis products) for 

both modeling methods.

In the second case study, the diastereoselectivity of a pinacol coupling is predicted using the 

percentage of dl/(dl+meso) as the dependent variable (Figure 61). Of the 13 data points 

available, 12 are used as training data with one validation case. Topological indices are 

calculated for both a variable catalyst substituent of interest and the variable portion of the 

aldehyde substrate (Figure 61). During the regression analysis, all except two cases are 

predicted with exceptional accuracy. These two cases highlight limitations of the topological 

descriptors used in the analysis. In the first case, a large error is present in predicting the 

selectivity of the 2-BrC6H4 – substituted aldehyde substrate. Because only the aromatic 

residue is treated in the analysis, the 2-Br, 3-Br, and 4-Br substituted phenyl rings are 

identical in the molecular representation. Thus, predicting the influence of an ortho 
substituent is impossible. In the second case, two methylene substituents linking the phenyl 

ring and the aldehyde are erroneously predicted to be a competent substrate and very similar 

in selectivity to cinnamaldehyde. This outcome is unsurprising given the nearly identical 

topological representations of these groups. Thus, the descriptors used here are incapable of 

identifying such changes and are unable to predict their influence on enantioselectivity.

Finally, the authors examine an enantioselective Kumada cross coupling (Figure 62). In this 

case study the aromatic substituent on the phosphine ligand, the chiral amine-containing 

substituent of the ligand, and the identity of the Grignard reagent are used to obtain 9 

descriptors. The planar chirality of the ferrocene is included as an indicator such that +1 

designates R and −1 designates S configurations, respectively. Using these descriptors, 13 

data points are used to construct a multivariate model with good correlation (R2 = 0.915) and 

a standard error of 12.3% ee (one additional point is used for validation). However, this 

model excluded two points with high deviation which the authors postulate to have 

mechanistic differences and are therefore difficult to predict with the current method. An 

alternative hypothesis could be that even though the process is mechanistically the same, the 

descriptors do not adequately describe an important feature of the catalyst structure for those 

two points and thus cannot accurately predict them. The model is slightly improved with by 

the use of neural networks but could still not accurately predict the problematic points.205
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Topographical descriptors are beneficial in that they require minimal computational cost 

with respect to other 3D descriptors. However, the descriptors in this work give a limited 

representation of the molecules of interest. It is probable that using more physically 

meaningful representation (i.e. that contain information about shape and electronic 

characteristics of molecules) could lead more robust models. Further, although the models 

discussed give reasonable predictions, they lack rigorous validation likely owing to the lack 

of available experimental data.

Later work by You and coworkers examined the enantioselective addition of diethylzinc to 

aldehydes.206 In this work, topological descriptors employed are the Randić index,207 Kier 

and Hall index,208 and the Kier shape index.209 A more detailed discussion of how these 

descriptors are calculated is available in the Supporting Information. In addition to these 

topological descriptors, AM1210 charges for key atoms are also used. The authors used 3-

layer feedforward neural networks to construct models in four different case studies.

The first data set is taken from Pericás and coworkers, in which a single amino alcohol 

ligand is used to catalyze the addition of diethylzinc into a series of aldehydes (Figure 63).
211 Nineteen different aldehydes are represented with Randić order 2, Kier and Hall order 2, 

and Kier shape index order 3. A neural network with three input neurons, three nodes in a 

hidden layer, and one output neuron is used to produce a model to predict enantioselectivity. 

The model had acceptable accuracy over the narrow range of observed selectivity in the 

training data, with q2 = 0.5245 (5-fold cross validation) and R2 = 0.8575. It is interesting 

that the model can accurately predict the outcome of the reaction with 2-

methoxybenzaldehyde as the substrate. Similar substrates, including 2-chloro and 2-

methylbenzaldehyde, give high selectivity. Given that the descriptors contain no direct 

information about electronic contributions, the origin of this ability to accurately predict the 

reaction outcome for this substrate is mysterious.

The second case study206 is obtained from a data set from Kang and coworkers in which 

various amino thiol ligands with different N-substituents are evaluated as catalysts (Figure 

64).212,213 Aldehyde substrates are represented with the Kier and Hall order 2 index whereas 

the catalysts are represented with the Kier and Hall order 2 index for the N-substituent and 

the partial charge (AM1) on the nitrogen atom. A set of 28 reactions is used to train a 

network with 3 input neurons, 3 hidden neurons, and one output neuron. The model is 

internally validated with 7-fold cross validation (R2 = 0.8580, Q2 = 0.6376). The researchers 

attempted to use the model to probe if the size of the R-group on the aldehyde substrate is 

necessary for selectivity as suggested by Noyori for amino alcohol catalysts.214,215 Reaction 

selectivities are predicted for substrates with increasing linker distance between the aldehyde 

residue and a phenyl substituent to probe the expected influence of steric bulk of the 

aldehyde in the reaction. As expected, less steric bulk correlated to lower predicted 

selectivity. However, no experiments are performed to validate these predictions. Although 

there is no reason to believe amino thiols require different substrate features to achieve high 

selectivity when compared with amino alcohol catalysts, experimental validation would be 

valuable to further test model robustness by treating the predicted values as an external test 

set and assess if the model is still applicable in the domain of less sterically biased 

substrates.
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In a third case study,206 You and coworkers examined a reaction developed by Falorni and 

coworkers.216,217 A set of 15 aldehydes are represented by Randić order 3 index, Kier and 

Hall order 3 index, and the partial charge (AM1) on the oxygen of the aldehyde (Figure 65). 

Additional features included for each reaction are the temperature and reaction time. A 

neural network with 5 input nodes, 2 nodes in a hidden layer, and one output neuron is 

trained and internally validated with 5-fold cross validation (Q2 = 0.8570, R2 = 0.9334). 

Using this model, the authors plotted the relationship between predicted selectivity over 

time. A maximum is identified at 40 h; however, it is likely that this occurs simply because 

the only reactions available in the training data that required long reaction times also had 

low selectivity. Thus, the longer reaction time regime for selective reactions is likely outside 

the domain of applicability of the model.

Finally, the You and coworkers experimentally evaluated histidine-derived catalysts with 

various N-substituents (Figure 66).206 This particular scaffold is of interest because of its 

multiple potential binding sites. Aldehydes and the catalyst N-substituent are represented 

with the Randic order 2 index. Further, the partial charge of the oxygen atom of the aldehyde 

is selected as an input variable. Experimental data is collected for 11 unique reactions, for 

which a model is constructed with internally validation (Q2 = 0.5451, R2 = 0.8833). The 

authors intended to predict a more selective catalyst using this information, however, the 

predicted values for two additional N-substituents (naphthyl and t-butyl) suggested no 

improvement beyond what is already observed. This conclusion would benefit from 

experimental justification – it is likely that the two new N-substituents are outside the 

domain of applicability of the model, especially considering the very small data set used to 

train the model. Thus, it is not possible to definitively say whether the new catalysts could be 

more selective. The authors also suggest that further experimental work is necessary; 

however, to our knowledge no further experimental study has been published.

6.2. Other Applications of QSAR in Enantioselective Catalysis

Damen and coworkers have reported the application of QSAR to predict the reaction 

outcome of the enantioselective reduction of acetophenone with chiral oxazaborolidine 

reagents (Figure 67).192 A 24 member training set of different amino alcohol catalysts is 

used to construct a model using partial least squares regression which is then validated with 

a four member external test set (R2 = 0.978, Q2 = 0.797). However, the specific descriptors 

used in the study are not specified. The study served as a proof of concept exemplifying the 

application of QSAR to enantioselective catalysis.

A similar study performed by these researchers has examined the catalytic, enantioselective 

hydrogenation of ketones with chiral ruthenium complexes (Figure 68).218 Thirteen 

unsymmetrical benzophenone derivatives are subjected to Noyori enantioselective 

hydrogenation and the results are used to construct a PLS model correlating structure to 

reaction outcome. The descriptors employed are obtained using DRAGON software219 with 

3D-structures as input, then removing descriptors that are highly skewed. However, the 

descriptors actually included are not specified. Two models are constructed each with 

different relative conformers of ortho-substituted aromatic rings in the benzophenone 

starting material. A dependence on conformation is observed in which the first model 
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underperforms with respect to the second model (average Q2 = 0.58 and 0.66, respectively). 

The improved model is able to more accurately predict substrates with ortho-substituents by 

using a conformation with the substituent canted toward the ketone residue rather than away.

With improved models identified, numerous predictions are made for other in silico 
substrates. The predictions follow reasonable trends; substrates containing one ortho-

substituted aromatic residue are the most selective followed by meta-substituted and para-

substituted as the least selective. However, the predicted values are not validated 

experimentally.

Carnell and coworkers published the development of Quantitative Structure-Property 

Relationship (QSPR) models in the study of rhodium catalyzed, enantioselective conjugate 

addition of arylboronic acids to acyclic enones (Figure 69).220 Eighteen different diene 

catalyst structures are synthesized and evaluated in the model system. Descriptors are 

calculated using DRAGON software from which an optimal three-component model is 

identified using a genetic algorithm for descriptor selection. At most, a maximum of three 

dimensions are used in the model to maximize model robustness by minimizing overfitting 

resulting from the inclusion of many parameters. The model constructed is validated using 

leave-one-out cross validation (LOO), as well as 10-fold cross validation and the bootstrap 

method (Q2 = 0.70, 0.70, and 0.76, respectively). The specific descriptors used in the model 

are the total number of tertiary sp3 carbon atoms in the catalyst structure, which is thought to 

reflect steric parameters, and MATS6i and MATS3m, which are 2D descriptors thought to 

reflect the electronic characteristics of the ligands.221 The authors note that interpretation of 

the significance of these parameters is not straightforward and thus discerning mechanistic 

rational from the model is not possible. However, the model could be used predictively with 

substrates for which an ideal catalyst has not been identified.

6.3. Perturbation Theory QSAR

An interesting subfield of QSAR applied to enantioselective catalysis is Perturbation Theory 

QSAR (PT-QSAR) developed by González-Díaz and coworkers.222 Interested readers are 

referred to the original work for the mathematical formulation of this theory. The 

significance of this method is the capability to predict multiple output efficiencies (e.g. yield 

and enantioselectivity) simultaneously, if desired. In this method, the goal is to predict the 

efficiency of a new chemical transformation with respect to a known chemical 

transformation. Thus, the new transformation can be treated as a perturbation of the original 

one (for example, a change in chemical structure). Using this workflow, general equations 

for chemical systems can be constructed relating input structures to performance. As an 

example of this workflow over 9,000 predictions are made for the outcome of the 

enantioselective carbolithiation of olefins. However, to the best of our knowledge no 

predictions are validated experimentally. The reader is referred to the original work for a 

comprehensive list of predicted values.

A later example of this method is the analysis of enantioselective Heck-Heck cascade 

reactions.223 In this work, literature data224–231 is used to construct a model capable of 

predicting both yield and enantioselectivity outcomes of the Heck-Heck cascade reactions. 

Descriptors are calculated with DRAGON software: (1) substrates are described by their 
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hydrophobic index and topological polar surface area (N and O contributions only), (2) 

products are described by logP, (3) bases are described by logP, (4) ligands are described by 

topological polar surface area (N, O, P, and S contributions), and (5) solvents are described 

by their dipole moment. Other nonstructural parameters are included by multiplying their 

values by the corresponding descriptors (for example, amount of base is multiplied by logP 

of base to obtain the value of one independent variable). These features are used to construct 

a PT-QSRR equation such that subsequent multivariate linear regression analysis is used to 

create a quantitative relationship to yield and selectivity. Multiple models are generated in 

this manner and are trained with 520 reactions the best of which had an R2 of 0.79, q2 of 

0.79, and standard error of 1.19 % ee.

Using this model the authors performed a simulated optimization for a non-optimal reaction 

(Scheme 1). First, 2000 reaction conditions are screened computationally each with identical 

reaction components but different catalyst, base, and ligand loadings. A ternary diagram is 

constructed with this data revealing high, predicted selectivity in the region with 2.5–7.5 mol 

% of palladium catalyst, 7.5–20 mol % of ligand, and 2.5 to 7.5 equiv of base. It is a curious 

observation that the highest catalyst and ligand loadings (10 mol % and 30 mol %, 

respectively) are left out of this highest predicted range as one would not expect diminished 

performance with increased catalyst loading while maintaining the catalyst/ligand ratio. 

Ligand and substrate structures are then varied resulting in predicted selectivity values up to 

100:0 er. Unfortunately, these predictions are not validated experimentally. It is unclear if 

these predictions are within the domain of the model; thus, further experimentation is 

needed to assess the validity of this approach.

PT-QSAR has also been applied to the chiral Brønsted acid catalyzed addition of 

enecarbamates to acyliminium ions (Scheme 2).232 This reaction is performed with 

numerous chiral phosphoric acids and triflimide catalysts; BINOL-derived phosphoric acids 

catalysts yield the best enantioselectivity but BINOL-derived triflimides produce the highest 

yield. Further, unusual temperature effects are observed; improved enantioselectivity values 

are obtained around 40 °C with respect to the room temperature reaction. Descriptors are 

calculated for reactants, catalysts, and solvents using DRAGON software and multivariate 

models are constructed using STATISTICA233 software. A significant multivariate 

regression model is constructed with descriptors for substrates, products, catalysts, 

nucleophiles, and solvent. Virtual screens are conducted, varying the catalyst structure and 

the nucleophile structure to identify a suggestion of optimal reaction conditions for a target 

reactant. Though an intriguing approach, the suggested reaction is not experimentally 

validated.

Although the capability of predicting both enantioselectivity and yield is exciting, rigorous 

validation of this approach has not been realized. For example, experimentally challenging 

the predictions with an external test set or experimentally testing the in silico optimized 

conditions is necessary to demonstrate the viability of this approach. This validation is 

especially important when predictions are made for structures distinct from those found in 

the training data which likely constitute extrapolative predictions that may not be well 

described by the model.
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6.4. Perspectives on 0–2 D Descriptors in QSAR Applied to Enantioselective Catalysis

Descriptors not requiring a 3D molecular structure have multiple advantages over 3D 

descriptors. These advantages include rapid calculation and conformer independence. 

However, these rapidly calculable descriptors frequently do not contain the chemical 

information necessary for many applications, including for some systems in enantioselective 

catalysis.234 Further, when correlations are constructed that are predictive it is likely that the 

model is simply recognizing patterns in features and relating them to experimental 

performance. One could argue that this approach is fundamentally different than having the 

model learn the underlying physics responsible for enantioinduction; the former does not 

allow for understandable models that can be used to form hypotheses about mechanism 

whereas the latter could help guide mechanistic investigation. Further, one would expect a 

model that has learned the underlying physics of a system to be more successful in domain 

adaptation (i.e. making predictions for novel substrates, extrapolating into novel catalyst 

space, etc.). Despite these limitations, multiple applications have demonstrated that these 

readily calculable descriptors can be used to make predictive models in certain situations and 

may be sufficient for specific applications.

6.5. Related Fields

Several areas of research related to using computational methods to assist catalyst design in 

enantioselective catalysis are beyond the scope of this review but warrant mention. Force 

field methods represent a class of prominent examples for which excellent summaries are 

already available.235–238 These methods are particularly appealing because they allow a 

virtual screening of new catalysts and do not require generation of experimental data. 

However, the stereodetermining step of the transformation typically must be known. 

Similarly, modern computation and recent advances have enabled screening campaigns 

using quantum chemical methods that are reliable, proceed in a reasonable time frame, and 

are accessible to the general community.239 Other areas of research include various mapping 

strategies, wherein molecular properties or structures are mapped to allow for a visual 

representation of important molecular influences, comparison between catalyst structures, 

and searches on the basis of similar molecular properties.240–243 These methods are 

particularly useful for understanding stereoinduction and could likely be adapted in some 

way to merge with QSAR (e.g. derivation of new descriptors), but are typically not used to 

make quantitative predictions and are thus outside the scope of this review.

7. Perspectives

The dawn of the 21st century brought with it an increased interest in the application of 

statistical methods to catalyst design. In the last two decades, the field has matured beyond 

the proof-of-concept stage. Looking to the future, two primary goals can be identified to 

motivate the phase of development: (1) accurate, predictive identification of new, optimal 

catalysts, and (2) retrospective rationalization of structural features responsible for 

enantioinduction. Whereas examples to achieve these goals exist, most focus on the latter. 

The groundwork to achieve the former goal is accumulating but a true realization of 

predictive design remains an outstanding challenge. In our view, success in this endeavor 

must satisfy three conditions: (1) an unoptimized reaction needs to be selected, (2) available 
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catalysts must affect these reactions in poor to moderate enantioselectivities, (3) a 

chemoinformatics model must enable identification of non-trivial determinants of selectivity 

from the catalyst performance data and predict new structures that affect high 
enantioselectivities, and (4) this method must be made accessible to non-experts such that it 

can impact routine decision making processes encountered by bench chemists. A general 

demonstration of this strategy is a holy grail in the field and will lead to a revolutionary 

change in the way researchers approach catalyst optimizations in asymmetric reactions.

One interesting observation regarding the application of chemoinformatics to predict more 

selective catalysts is the number of publications in which suggestions are made to achieve a 

more selective transformation compared to the number that are experimentally evaluated. 

For new methods to be accepted as tools for catalyst optimization they must demonstrate the 

capability to optimize a real system which in turn must be supported by experimentation. 

One method to facilitate experimental validation of new computational predictions would be 

to construct large datasets that can be used to benchmark new descriptor sets and modeling 

methods. This resource would alleviate the computational scientists’ need for an 

experimental collaborator in addition to enabling experimentalists develop new 

computational tools that can be directly compared with the same data set. Of course, the 

interface between statistical analysis and enantioselective catalysis is an exciting opportunity 

for collaboration given the interdisciplinary nature of the field. With increasing interest, the 

emergence of tools tailored to optimization rather than interpretation can be expected in the 

immediate future.

Given the preliminary success of a variety of approaches toward making predictions of more 

selective processes it seems likely that the adoption of such tools by those engaged in 

asymmetric catalysis is imminent. The need for expert knowledge for the implementation of 

chemoinformatics is perhaps the greatest limitation to its widespread adoption. However, 

given the recent work focused on making computationally guided methods more accessible 

to the bench chemist optimization campaigns employing these methods will assist more 

widespread adoption.21,61,238,243 Optimization strategies, however, are typically designed 

for implementation over a relatively small domain of chemical space. For example, they are 

often limited to a specific class of catalyst structures and rarely include reaction conditions. 

A greater challenge, and an arguably more significant advance, would be the ability to use 

statistical methods for comparison of vastly different catalyst structures. Engineering 

descriptors to capture the differences between such disparate structures would be a 

monumental task. The alternative approach of implementing modern deep learning methods 

may be a more a promising direction for the solution to this problem. However, the amount 

of data necessary to train the machine learning networks to optimize new systems could be 

prohibitive, particularly given the absence of low and moderately selective reactions from 

the literature. It is possible that using machine learning with high throughput screening 

methods could alleviate deficiencies in available data. Although challenging, solving such a 

problem now seems within the grasp of the community and would represent a leap forward 

for this field. It also follows then that the ability to propose new in silico structures on the 

basis of ideal chemical descriptors would be the pinnacle achievement in this endeavor. Such 

technology already finds precedent244 and adapting similar technology toward this goal has 

exciting implications for enantioselective catalysis.
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The realm of garnering new mechanistic insights using statistical methods has already been 

established as a “launching pad” for generating new mechanistic hypotheses. As 

chemoinformatics tools become increasingly accessible, it is likely that such methods will 

find their way into the routine toolkit of synthetic chemists. However, as accessibility 

increases so must the necessity to scrutinize mechanistic claims made on the basis of these 

methods. Constructing a model with good predictive power in a particular domain does not 

guarantee that the model is interpretable. For example, confounding variables can conspire 

to convolute the interpretation of models. Further, descriptor selection methods are not 

infallible; many types of descriptor selection methods exist many of which have not been 

widely implemented. For example, embedded methods (e.g. LASSO) have some precedent 

in catalysts but have not been widely adapted.186,245 Random forest models have also been 

used recently to identify important features137,246,247 as have neural networks.145 Genetic 

algorithms are able to reduce the number of descriptors necessary to produce good models.
149 It is possible that using a collection of methods and comparing which descriptors are 

selected with each method could provide more trustworthy results. Unfortunately, the 

methods cited above are data intensive. In any case, mechanistic conclusions should not be 

made using only this information. Rather, such methods serve as a powerful construct to 

formulate mechanistic insights, which are then corroborated with complementary 

investigations.

The interpretability of a model is also dependent on the descriptors used to construct it. 

Subunit-derived, local descriptors are particularly appealing given the feasibility of direct 

interpretation. In contrast, global descriptors like CCM, chirality codes, and GRIND have 

more convoluted interpretations. Alignment-dependent grid descriptors have the benefit of a 

potentially straightforward interpretation, but the number of descriptors present impacts 

which modeling methods can be used and can consequently necessitate more data. However, 

subunit-derived descriptors are also theoretically more susceptible to the omitted variable 

bias248,249 because it is unlikely that every molecular property that contributes to 

enantioinduction is adequately described. Whole-molecule global representations are less 

likely to be missing information and therefore less likely to erroneously assign the 

significance to another descriptor. However, this is only true if the global representation 

adequately represents the important structural features of interest. For example, CCM is a 

whole-molecule representation but also a single number – it is unlikely that this single 

number represents every feature responsible for enantioinduction and in some cases is 

indeed inferior to subunit derived descriptors.137 It is possible that some methods such as 

alignment-dependent grid methods might give a more accurate representation of a molecule, 

but the high dimensionality of the molecular representations necessitate some method of 

dimensionality reduction, which thus omits information from the raw descriptors. The 

number of descriptors can also necessitate larger datasets (this can potentially be 

circumvented with preprocessing descriptors, but that discussion is outside the scope of this 

review). Comparing the accuracy of models derived from different molecular 

parametrizations may suggest which descriptors are superior. However, a representation, just 

because it leads to more accurate models in a given situation, is not necessarily superior in 

terms of the interpretability of the model. The best representation, at least with current 

methods, is likely to be case dependent. Further, it is possible that the model could be “right 
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for the wrong reasons”, i.e. the model could make accurate predictions within its domain but 

not actually be generally interpretable. Realizing domain adaptation could also be another 

way to assess if a model is founded in the underlying chemistry of a transformation which 

could give more credence to formulating mechanistic hypotheses. From the perspective of a 

chemist, the best approach is to validate the hypotheses with other methods. A related 

concept is that most of the aforementioned methods do not explicitly deal with the absolute 

configuration of the catalyst. Thus, the model is limited to predict values for only one 

enantiomer of the catalyst. This issue is not necessarily a problem, but it does pose a 

limitation of the method. Alternatively, some approaches that could explicitly treat the 

absolute configuration of the catalyst might not do so in practice. In these cases, models with 

an intercept in predicted vs. observed plots will fail to give an equal but opposite magnitude 

of selectivity for enantiomeric catalyst pairs. Again, this problem is easily solved by 

considering only one enantiomer of the catalyst, but the model is then limited to making 

predictions only for that enantiomer. An alternative to engineering descriptors such as those 

mentioned above could be to use more advanced machine learning algorithms. It is possible 

that more advanced methods could achieve improved performance with simpler 

representations. However, as discussed above, this would likely also be much more data 

intensive.

The use of chemoinformatics to optimize and understand new enantioselective reactions has 

advanced from its infancy to adolescence in the past 20 years. This field holds tremendous 

promise for formalizing and extending the chemists’ intuition to allow predictions of new, 

unknown catalyst structures. With increasing interest in the field, more advanced 

computational models, more accessible protocols combined with high-throughout data 

generation, we can confidently anticipate the transformation of this emergent field into 

routine tools used by the practicing chemist in the not-too-distant future.
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Figure 1. 
References obtained from a Scifinder search including the words or the concept “asymmetric 

catalysis” since 1990.
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Figure 2. 
An overview of chemoinformatics guided catalyst optimization.

Zahrt et al. Page 71

Chem Rev. Author manuscript; available in PMC 2020 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Charton and Sterimol steric parameters. Reproduced from Brethomé, A. V.; Fletcher, S. P.; 

Paton, R. S. Conformational Effects on Physical-Organic Descriptors: The Sterimol Steric 

Parameters. ACS Catal. 2019, 9, 2313–2323. Copyright 2019 American Chemical Society.
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Figure 4. 
Catalysts and substrates used in enantioselective NHK reaction and a univariate correlation 

of enantioselectivity with substituent Charton values. Adapted with permission from 

reference 63. Copyright 2008 John Wiley and Sons.
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Figure 5. 
Top: LFER for enantioselective, palladium catalyzed alkylation of allyl acetates. Center: 

LFER for enantioselective cyclopropanation of allylic alcohols. Bottom: LFER for 

enantioselective aziridination of styrene. Adapted with permission from reference 63. 

Copyright 2008 John Wiley and Sons.
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Figure 6. 
Catalysts with accompanying LFER plots for benzaldehyde and acetophenone allylation. 

Reproduced from Sigman, M. S.; Miller, J. J. Examination of the Role of Taft-Type Steric 

Parameters in Asymmetric Catalysis. J. Org. Chem. 2009, 74, 7633–7643. Copyright 2009 

American Chemical Society.
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Figure 7. 
LFERs for desymmetrization of bisphenol substrates with a peptide catalyst (top). 

Reproduced from Sigman, M. S.; Miller, J. J. Examination of the Role of Taft-Type Steric 

Parameters in Asymmetric Catalysis. J. Org. Chem. 2009, 74, 7633–7643. Copyright 2009 

American Chemical Society.
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Figure 8. 
LFERs between enantioselectivity and polarizability (top) and quadrupole moment (bottom) 

of the aromatic substituent on thiourea catalysts. Adapted with permission from reference 

77. Copyright 2010 National Academy of Sciences.
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Figure 9. 
Interatomic distances (top left) in transition structures leading to R and S stereoisomers 

(right) and their correlation with enantioselectivity (bottom left). Reproduced from Zuend, S. 

J.; Jacobsen, E. N. Mechanism of Amido-Thiourea Catalyzed Enantioselective Imine 

Hydrocyanation: Transition State Stabilization via Multiple Non-Covalent Interactions. J. 
Am. Chem. Soc. 2009, 131, 15358–15374. Copyright 2009 American Chemical Society.
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Figure 10. 
Pairwise combinations of X and Y substituents on the common core give 25 unique catalysts 

(top right). Experimentally determined enantioselectivities are used to construct a 

multivariate relationship between catalyst descriptors and selectivity (bottom). Predictive 

models are constructed by using a 9-member training set evenly covering the descriptor 

space. Adapted with permission from reference 81. Copyright 2011 National Academy of 

Sciences
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Figure 11. 
Scaffold comparison for the enantioselective propargylation of ketones.
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Figure 12. 
Palladium catalyzed enantioselective Heck arylation.
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Figure 13. 
Enantioselective alkylation of aryl aldehydes (top). LFERs with Charton parameters 

(center), Sterimol parameters (bottom). Reproduced from Huang, H.; Zong, H.; Bian, G.; 

Song, L. Constructing a Quantitative Correlation between N-Substituent Sizes of Chiral 

Ligands and Enantioselectivities in Asymmetric Addition Reactions of Diethylzinc with 

Benzaldehyde. J. Org. Chem. 2012, 77, 10427–10434. Copyright 2012 American Chemical 

Society.
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Figure 14. 
Enantioselective propargylation reaction (top) and test catalyst / substrate combinations with 

their predicted and observed values in kcal/mol (bottom). Reproduced from Harper, K. C.; 

Vilardi, S. C.; Sigman, M. S. Prediction of Catalyst and Substrate Performance in the 

Enantioselective Propargylation of Aliphatic Ketones by a Multidimensional Model of Steric 

Effects. J. Am. Chem. Soc. 2013, 135, 2482–2485. Copyright 2013 American Chemical 

Society.
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Figure 15. 
Enantioselective Henry reaction catalyzed by 1-amino-2-phosphinamido ligands. 

Reproduced from Huang, H.; Zong, H.; Bian, G.; Yue, J.; Song, L. Correlating the Effects of 

the N-Substituent Sizes of Chiral 1,2-Amino Phosphinamide Ligands on Enantioselectivities 

in Catalytic Asymmetric Henry Reaction Using Physical Steric Parameters. J. Org. Chem. 

2014, 79, 9455–9464. Copyright 2014 American Chemical Society.
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Figure 16. 
Models with and without molecular vibrations as descriptors.
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Figure 17. 
Dehydrogenative Heck reaction optimized using a predictive model. Reproduced from 

Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. Enantioselective 

Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct 

Quaternary Stereocenters. J. Am. Chem. Soc. 2015, 137, 15668–15671. Copyright 2015 

American Chemical Society.
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Figure 18. 
(a) Phosphoric acid catalyzed dehydrogenative C-N coupling indicating substituent 

variability in substrates and catalyst members. (b) Multivariate LFER with indicated 

descriptors, for the triazole substituted catalyst and the resulting correlation. Adapted with 

permission from reference 92. Copyright 2015 American Association for the Advancement 

of Science.
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Figure 19. 
Predictive models for the kinetic resolution of secondary alcohols (top) and the 

enantioselective fluorination of allylic alcohols (bottom). Reproduced from Orlandi, M.; 

Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.; Sigman, M. S. Parameterization of Non-covalent 

Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. J. Am. 
Chem. Soc. 2017, 139, 6803–6806. Copyright 2017 American Chemical Society.
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Figure 20. 
Four case studies to identify structural effects of amino acid ligands in palladium catalyzed 

C-H activation reactions and the resulting suggested ligand set. Reproduced from Park, Y.; 

Niemeyer, Z. L.; Yu, J.-Q.; Sigman, M. S. Quantifying Structural Effects of Amino Acid 

Ligands in Pd(II)-Catalyzed Enantioselective C-H Functionalization. Organometallics. 2018, 

37, 203–210. Copyright 2018 American Chemical Society.
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Figure 21. 
A multivariate LFER for an enantioselective Pummerer reaction. Adapted with permission 

from reference 97. Copyright John Wiley and Sons.
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Figure 22. 
Enantioselective, palladium catalyzed substitution of allylic alcohols. Predicted vs observed 

selectivities for various substrates for two different catalyst classes. Reproduced from Wang, 

Y.; Zhou, H.; Yang, K.; You, C.; Zhang, L.; Luo, S. Steric Effect of Protonated Tertiary 

Amine in Primary-Tertiary Diamine Catalysis: A Double-Layered Sterimol Model. Org. 
Lett. 2019, 21, 407–411. Copyright American Chemical Society.
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Figure 23. 
Enantioselective benzoin reaction.

Zahrt et al. Page 92

Chem Rev. Author manuscript; available in PMC 2020 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 24. 
Copper catalyzed, enantioselective cyclopropanation with a representative oxazoline ligand 

set (top) and generation of distance-weighted volume and Charton-Taft values (bottom).
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Figure 25. 
Chiral Lewis acid catalyzed enantioselective Diels-Alder reaction. (a) CCM vs. dihedral 

angle for 2,2’-biaryldiols. Sets a, b and c refer to the different ester residues in the starting 

material (b) Biphenyl dihedral angle and CCM as they relate to enantioselectivity. 

Reproduced from Gao, D.; Schefzick, S.; Lipkowitz, K. Relationship between Chirality 

Content and Stereoinduction: Identification of a Chiraphore. J. Am. Chem. Soc. 1999, 121, 

9481–9482. Copyright 1999 American Chemical Society.
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Figure 26. 
Illustration of twist, bite, and pucker distortions and their relation to CCM. Reproduced from 

Lipkowitz, K.; Schefziek, S.; Avnir, D. Enhancement of Enantiomeric Excess by Ligand 

Distortion. J. Am. Chem. Soc. 2001, 123, 6710–6711. Copyright 2001 American Chemical 

Society.
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Figure 27. 
The four distortions studied in reference 128 and their relation to CCM. The numbering 

system described in the original work has been included for reference.
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Figure 28. 
Ruthenium-catalyzed, enantioselective, transfer hydrogenation reaction.
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Figure 29. 
Selectivity of phosphoric acid catalysts in the synthesis of chiral, N,S- acetals.
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Figure 30. 
External test sets for models generated with CCM parameters, Sterimol parameters, and both 

set representing catalysts. Adapted with permission from reference 137. Copyright 2019 

Elsevier.
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Figure 31. 
CICC calculations. Reproduced from Aires-de-Sousa, J.; Gasteiger, J. New Description of 

Molecular Chirality and Its Application to the Prediction of the Preferred Enantiomer in 

Stereoselective Reactions. J. Chem. Inf. Comput. Sci. 2001, 41, 369–375. Copyright 

American Chemical Society.
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Figure 32. 
Enantioselective addition of diethylzinc to benzaldehyde and 45 training catalysts. The 

major isomer formed when the catalyst is used in the reaction is designated by the (+) or (−) 

under the catalyst structure.
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Figure 33. 
Test catalysts for the enantioselective addition of diethylzinc into benzaldehyde. The major 

isomer formed when the catalyst is used in the reaction is designated by the (+) or (−) under 

the catalyst structure.
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Figure 34. 
Secondary alcohols synthesized by the reduction of the corresponding ketone with (−)-DIP-

chloride. The major isomer of the product is depicted in each case.
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Figure 35. 
Enantioselective diethylzinc alkylation of benzaldehyde with the predicted vs. observed plot. 

Reproduced from Aires-de-Sousa, J.; Gasteiger, J. Prediction of Enantiomeric Excess in a 

Combinatorial Library of Catalytic Enantioselective Reactions. J. Comb. Chem. 2005, 7, 

298–301. Copyright American Chemical Society.
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Figure 36. 
Enantioselective transfer hydrogenation for the reduction of acetophenone.
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Figure 37. 
Designation of “left” and “right” substituents used in reference 155.
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Figure 38. 
Alignment dependent MIF workflow to represent a molecule with a grid based descriptor.
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Figure 39. 
CoMFA for enantioselective, Diels-Alder reaction. Most selective catalyst in reference 158 

with areas where high occupancy corresponds to selectivity (green) and where low 

occupancy corresponds to selectivity (yellow). Reproduced from Lipkowitz, K.; Pradhan, M. 

Computational Studies of Chiral Catalysts: A Comparative Molecular Field Analysis of an 

Asymmetric Diels-Alder Reaction with Catalysts Containing Bisoxazoline or 

Phosphinooxazoline Ligands. J. Org. Chem. 2003, 68, 4648–4656. Copyright 2003 

American Chemical Society.
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Figure 40. 
Sparteine and sparteine analogs employed as ligands in enantioselective lithiation of N-

Bocpyrrolidine.
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Figure 41. 
Regions with grid points (red and blue) correlated with catalyst enantioselectivity.
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Figure 42. 
Sparteine and sparteine analogs employed as ligands in enantioselective lithiation of N-

Bocpyrrolidine.
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Figure 43. 
Temperature dependent selectivity predictions in the enantioselective diethylzinc addition to 

benzaldehyde.
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Figure 44. 
Catalysts for the enantioselective addition of diethylzinc into aryl aldehydes.
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Figure 45. 
Cinchonidinium alkaloid catalyzed, enantioselective phase transfer alkylations along with 

Predicted vs. Observed plot for training (diamonds) and test (circles) catalyst sets. Adapted 

with permission from reference 172. Copyright Royal Society of Chemistry.
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Figure 46. 
Enantioselective alkylation with biaryl-derived phase transfer catalysis.
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Figure 47. 
Different possible conformations of the catalyst scaffold. aaryl = Ph, 1-naphthyl, mesityl. 
bLibrary containing different conformer combinations, cConformation of scaffold. 

Reproduced from Denmark, S. E.; Gould, N. D.; Wolf, L. M. A Systematic Investigation of 

Quaternary Ammonium Ions as Asymmetric Phase-Transfer Catalysts. Application of 

Quantitative Structure Activity/Selectivity Relationships. J. Org. Chem. 2011, 76, 4337–

4357. Copyright 2011 American Chemical Society.
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Figure 48. 
Top: steric contour maps from two different perspectives. Green contours indicate regions 

where steric bulk leads to increased enantioselectivity, whereas yellow regions indicate 

regions where less steric bulk leads to increased enantioselectivity. Bottom: Electrostatic 

contour maps from two different perspectives. Blue contours indicate regions where 

increased positive charge leads to greater enantioselectivity, whereas red contours indicate 

regions where decreased positive charge (or increased negative charge) leads to increased 

enantioselectivity. Reproduced from Denmark, S. E.; Gould, N. D.; Wolf, L. M. A 

Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase-Transfer 

Catalysts. Application of Quantitative Structure Activity/Selectivity Relationships. J. Org. 
Chem. 2011, 76, 4337–4357. Copyright 2011 American Chemical Society.
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Figure 49. 
Top left: steric contour map for catalysts in enantioselective ketone hydrogenation reactions. 

Green contours indicate regions where steric bulk leads to increased enantioselectivity, 

whereas yellow regions indicate regions devoid of steric bulk which lead to increased 

enantioselectivity. Top right: Electrostatic contour map. Blue contours indicate regions 

where increased positive charge leads to greater enantioselectivity whereas red contours 

indicate regions where decreased positive charge (or increased negative charge) lead to 

increased enantioselectivity. Experimental catalyst (A1) and theoretically improved catalyst 

(C1). Adapted with permission from reference 180. Copyright Royal Society of Chemistry.
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Figure 50: 
Rhodium catalyzed enantioselective addition of phenylboronic acid to 1-naphthaldehyde 

with depiction of ligand library. (a)–(d) Space filling models and digitized structures of two 

catalysts. The red areas designate regions where steric bulk is associated with diminished 

selectivity, and the blue regions designate areas where steric bulk is associated with high 

selectivity. The circled region in (b) and (d) contains the methyl unit that was removed (it is 

absent is (a) and(c)). Reprinted from with permission from reference 186. Copyright 2017 

John Wiley and Sons.
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Figure 51. 
(A) Formation of chiral N,S-acetals with train and test substrate combinations. (B) Catalyst 

and substrate combinations forming different train and test sets. (C) External test catalysts. 

Adapted with permission from reference 138. Copyright 2019 American Association for the 

Advancement of Science.
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Figure 52. 
A) Predicted vs. observed free energies (kcal / mol) of the train and test sets overlaid for a 

support vector machine using a second order polynomial kernel. Accuracy metrics are listed 

in the table below. B) The selectivity space as represented by the first three principal 

components of the full feature-space. Adapted with permission from reference 138. 

Copyright 2019 American Association for the Advancement of Science.
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Figure 53. 
(A) Predicted vs. Observed plot for simulated reaction optimization. (B) Average predicted 

and observed selectivity data for all catalysts wit average selectivity over 80 % ee. Adapted 

with permission from reference 138. Copyright 2019 American Association for the 

Advancement of Science.
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Figure 54. 
Graphical representation of the process for the calculation of GRIND.
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Figure 55. 
Predicted and observed selectivities for enantioselective addition of diethylzinc to 

benzaldehyde. GSI ratios for different structural motifs are depicted in color.
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Figure 56. 
Rhodium-catalyzed hydroformylation of terminal alkenes.
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Figure 57. 
Predicted and observed selectivity data for selected catalysts.
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Figure 58. 
Construction of matrices Z1, Z2, and Z3.
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Figure 59. 
Enantioselective cyclopropanation and predictive model of enantioselectivity. Adapted from 

Jiang, C.; Li, Y.; Tian, Q.; You, T. QSAR Study of Catalytic Asymmetric Reactions with 

Topological Indices. J. Chem. Inf. Comput. Sci. 2003, 43, 1876–1881. Copyright 2003 

American Chemical Society.
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Figure 60. 
Enantioselective cyclopropanation and enantioselectivity predictive model. Reproduced 

from Jiang, C.; Li, Y.; Tian, Q.; You, T. QSAR Study of Catalytic Asymmetric Reactions 

with Topological Indices. J. Chem. Inf. Comput. Sci. 2003, 43, 1876–1881. Copyright 2003 

American Chemical Society.
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Figure 61. 
Diastereoselective pinacol coupling and predictive model of diastereoselectivity. Reproduced 

from Jiang, C.; Li, Y.; Tian, Q.; You, T. QSAR Study of Catalytic Asymmetric Reactions 

with Topological Indices. J. Chem. Inf. Comput. Sci. 2003, 43, 1876–1881. Copyright 2003 

American Chemical Society.

Zahrt et al. Page 130

Chem Rev. Author manuscript; available in PMC 2020 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 62. 
Enantioselective Kumada coupling reaction. Reproduced from Jiang, C.; Li, Y.; Tian, Q.; 

You, T. QSAR Study of Catalytic Asymmetric Reactions with Topological Indices. J. Chem. 
Inf. Comput. Sci. 2003, 43, 1876–1881. Copyright 2003 American Chemical Society.
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Figure 63. 
Catalyzed addition of diethylzinc to benzaldehyde.
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Figure 64. 
Enantioselective addition of diethylzinc to aldehydes using amino thiol ligands. Adapted 

with permission from reference 206. Copyright 2006 Elsevier.
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Figure 65. 
Enantioselective addition of diethylzinc to aldehydes using an amino pyridine ligand. 

Adapted with permission from reference 206. Copyright 2006 Elsevier.
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Figure 66. 
Enantioselective diethylzinc alkylation, case study 4 from reference 206. Adapted with 

permission from reference 206. Copyright 2006 Elsevier.
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Figure 67. 
Reaction and catalysts studies in enantioselective acetophenone reduction. Adapted with 

permission from reference 192. Copyright 2004 Elsevier.
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Figure 68. 
Enantioselective hydrogenation reaction studied in reference 218.
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Figure 69. 
Enantioselective β-arylation reaction. Adapted with permission from reference 220. 

Copyright 2012 Royal Society of Chemistry.
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Chart 1. 
UTS for chiral, phosphoric acid catalysts.
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Scheme 1. 
Enantioselective Heck-Heck cascade reaction.
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Scheme 2. 
Chiral Bronsted acid catalyzed addition of enecarbamates to acyliminium ions.
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