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Effects of temperature fluctuations 
on spatial-temporal transmission of 
hand, foot, and mouth disease
Chengdong Xu1,8, Xiangxue Zhang1,2,8, Li Wang1,3,4, Yuke Zhou5, Gexin Xiao6* & 
Jiaqiang Liao7*

Hand, foot, and mouth disease (HFMD), predominantly occurs among infants and children. Previous 
studies have shown that suitable, stable temperatures favor HFMD virus reproduction; however, 
temperature fluctuations also affect virus transmission, and there are, so far, no studies concerning 
the association between such fluctuations and the incidence of HFMD. The objective of this study 
was to map the spatial-temporal distribution of HFMD incidence and quantify the long-term effects 
of temperature fluctuations on HFMD incidence in children. HFMD cases in children under five, from 
January 2009 to December 2013, in Beijing, Tianjin, and Hebei provinces of China, were used in this 
study. The GeoDetector and Bayesian space-time hierarchy models were employed to explore the 
spatial-temporal association between temperature fluctuations and HFMD incidence. The results 
indicate that HFMD incidence had significant spatial stratified heterogeneity (GeoDetector q-
statistic = 0.83, p < 0.05), and that areas with higher risk mainly appeared in metropolises and their 
adjacent regions. HFMD transmission was negatively associated with temperature fluctuations. A 
1 °C increase in the standard deviation of maximum and minimum temperatures was associated with 
decreases of 8.22% and 11.87% in the risk of HFMD incidence, respectively. The study suggests that 
large temperature fluctuations affect virus growth or multiplication, thereby inhibiting the activity of 
the virus and potentially even leading to its extinction, and consequently affecting the spatial-temporal 
distribution of HFMD. The findings can serve as a reference for the practical control of this disease and 
offer help in the rational allocation of medical resources.

Hand, foot, and mouth disease (HFMD), a disease that predominantly occurring among infants and children. It is 
characterized by flu-like symptoms; a rash on hands, feet, and buttocks; mouth ulcers; poor appetite; and vomit-
ing and diarrhea1,2. The disease is transmitted from person to person by direct contact with respiratory secretions, 
or through fecal-oral transmission. HFMD can be seriously life threatening, particularly in patients who rapidly 
develop neurological and systemic complications, which can be fatal1,2.

The primary viruses that cause HFMD are enteroviruses, of which enterovirus 71 (EV71) and Coxsackie virus 
A16 (CV-A16) are the most commonly reported2. EV71—a single-stranded RNA virus that belongs to the same 
category as poliovirus and was first diagnosed in California in 1967—is commonly related with the most severe 
symptoms, including central nervous system disorders and even the development of fatal pulmonary edema1. 
Over the past few decades, HFMD outbreaks have been reported worldwide, mainly in Asia-Pacific countries, 
including China, Singapore, Vietnam, Japan, and Malaysia3–7. In 2007 and early 2008, China experienced several 
large outbreaks of HFMD and promptly created a national enhanced surveillance system in response. Thereafter, 
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on May 2, 2008, HFMD was listed as a category C infectious disease in China, and was made statutorily notifiable. 
Notably, breakouts of HFMD in many countries have continued to increase due to climate change, viral mutation, 
lack of comprehensive monitoring systems, and limited medical resources8.

The survival of an organism has been affecting by several environmental factors, genetic composition, evo-
lutionary trend, biological composition and so on. And Shelford’s law of tolerance states that an organism can 
exist and multiply in a suitable, stable environment, but if the variation of an environmental factor exceeds the 
tolerance of that organism, the species cannot survive, and may even become extinct9,10. This applies equally to 
enteroviruses, such as HFMD viruses (Fig. 1). Epidemiological evidences also show that the spread of HFMD 
viruses is elevated by meteorological factors3,5. For example, Liu et al. found that moderate temperatures promote 
the growth and transmission of the viruses that cause HFMD11 and Zhu et al. noted that higher temperature pro-
mote faster virus reproduction, contributing to increased risk of HFMD incidence12. Similarly, previous studies 
have demonstrated that, when the temperature is above 25 °C, the infectivity and activity of EV71 is restricted13, 
while an in vitro experiment found that enterovirus replication was enhanced at 39 °C14. Furthermore, in the 
broader study of virology, there is other evidence showing the temperature-sensitive nature of enteroviruses and 
other human enteric viruses15.

Although it is evident that HFMD virus reproduction and transmission is affected by meteorological condi-
tions, such as temperature and humidity, there remain, to our knowledge, no studies concerned with the asso-
ciation between HFMD and temperature fluctuations that might disrupt the suitable, stable environment for 
the virus and directly affect its survival, and thus influence HFMD transmission12–14. Furthermore, against the 
background of global climate change, temperature variance has been continually intensifying16; thus assessing 
temperature fluctuations and their relationship to human health could provide novel evidence for policy makers 
and medical institutions to identify a focus for interventions and the optimal allocation of health resources.

The objective of our study was to 1) map the county-level spatial-temporal distribution of childhood HFMD 
incidence in the Beijing-Tianjin-Hebei area, China, from 2009 to 2013, and 2) quantify the long-term effects of 
temperature fluctuations associated with HFMD incidence, while controlling for other factors.

Results
Between January 1, 2009, and December 31, 2013, a total of 598,835 cases in five years of HFMD in 208 counties 
were reported in Beijing-Tianjin-Hebei area. There presented cyclical trend during the study period. The highest 
number of cases occurred in the late spring and summer (May to July), with a monthly incidence of 41.03 per 
10,000 people. The lowest number of cases appeared in winter (December to February), with a monthly incidence 
of 1.56 per 10,000 people (Fig. 2).

The relative risk of HFMD varied across the study counties geographically; the GeoDetector q statistic value 
was 0.83 (p < 0.05), which indicates that there was significant spatial heterogeneity for HFMD risk. The high-risk 
areas mainly appear in large cities (e.g., Beijing and Tianjin) and their adjacent counties (Fig. 3).

Effect of potential driving factors on HFMD epidemics.  In the study, the SD of temperature, used as 
the index of temperature fluctuation, and its effects on HFMD were analyzed using Bayesian space-time hierarchy 
model (BSTHM). The results showed that a 1 °C increase in the SD of maximum temperature was associated with 
a decrease of HFMD incidence of 8.22% (95% CI: −14.63 – −1.82), with a corresponding RR of 0.92 (95% CI: 
0.86–0.98). The SD of minimum temperature also presented a similar relationship, with a 1 °C increase in SD of 
the minimum temperature associated with a decrease in HFMD incidence of 11.87% (95% CI: −19.55 – −4.18) 
and a corresponding RR of 0.89 (95% CI: 0.82–0.96). The effects of SD of average temperature were also assessed, 
but there was no significant association with the incidence of HFMD (Table 1).

In addition to the temperature variation factor, other risk factors, used as control variables (e.g., monthly 
average temperature, relative humidity, precipitation, and wind speed), were also analyzed and showed significant 
relationships with HFMD (Table 1).

A positive association was found between average temperature and HFMD incidence, which was different 
from the quantitative relationships between the SD of temperature and the disease. A rise in temperature of 1 °C 

Figure 1.  The law of tolerance for HFMD viruses.
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Figure 2.  Heatmap of case number in the study area from 2009 to 2013.

Figure 3.  The posterior means of the spatial relative risks (RRs) (exp(si)) of HFMD for each county in the 
Beijing-Tianjin-Hebei area.
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was associated with an increase of 17.10% (97.5% CI: 14.84–19.38) in the incidence of HFMD; the corresponding 
RR was 1.19 (95% CI: 1.16–1.21). There was also a positive association between HFMD incidence and relative 
humidity—a 1% increase in relative humidity was associated with a 3.67% increase (95% CI: 3.05–4.30) in the 
incidence of HFMD, with a corresponding RR of 1.037 (95% CI: 1.03–1.04). Precipitation and wind speed showed 
negative correlations with HFMD—a 1 mm reduction in precipitation and a 1 m/s decrease in wind speed were 
associated with 0.15% (95% CI: −0.22 – −0.08) and 17.20% (95% CI: −26.82 – −7.75) decreases in the inci-
dence of HFMD, respectively, with corresponding RRs of 0.86 (95% CI: 0.80–0.92) and 0.84 (95% CI: 0.77–0.93) 
(Table 1).

Discussion
HFMD has become an increasingly significant health problem among children in recent years. In this study, the 
spatial-temporal distribution and effects of temperature fluctuations on HFMD incidence were quantified for the 
Beijing-Tianjin-Hebei area, China. The study found that there was a significant spatial heterogeneity for HFMD 
risk, and that disease transmission had a negative association with temperature fluctuations.

Studies have indicated that there is a suitable, stable temperature for transmission of viruses related to 
HFMD3,6,12. Stantonet al. demonstrated that, compared with replication at 37 °C, enterovirus replication was 
inhibited by nearly 90% at 39 °C, greatly reducing the incidence of HFMD14. Onozuka et al., in Japan, found that 
the effect of temperature on HFMD cases peaked at 29 °C6. In the current study, it was indicated that temperature 
change was closely related to disease risk variant, which is similar to the previous studies. For examples, Zhang 
et al. found that, in Henan province of China, the disease of HFMD risk rise 4.09% with a 1 °C increase in tem-
perature17. Moreover, Dung et al. demonstrated that in Vietnam the HFMD risk increase 7% with a 1 °C rise in 
temperature18. These studies suggest that if the temperature diverges too much from the suitable temperature, it 
can affect the transmission of HFMD.

To our knowledge, some studies have indicated that temperature fluctuation was a serious health risk factor 
for the infectious diseases. For examples, Joshi et al. showed that, in Korea, the aseptic meningitis has a closely 
association with temperature fluctuation19. Similarly, Beck et al. demonstrated that temperature fluctuation was 
significantly connected with malaria within the malaria transmission zone in sub-Saharan Africa20. Meanwhile, 
Abbas et al. found that, in Karachi, temperature fluctuation presented significantly association with dengue 
fever21. Additionally, Joshi et al. presented that, in Korea, temperature fluctuation closely related to hemorrhagic 
fever22.

The study found that the HFMD risks also were strongly related to temperature fluctuations, which presented 
different quantitative relationships compared with that between the disease and average temperature. It was indi-
cated that a 1 °C increase in the SD of maximum and minimum temperatures was associated with decreased risk 
of HFMD incidence of 8.22% and 11.87%, respectively. The potential mechanism may be because HFMD virus 
growth and reproduction have adapted to the most suitable temperature, if a large temperature fluctuation occurs, 
this would exceed the tolerance of virus growth or multiplication and inhibit the activity of the virus or even cause 
its extinction9,10, ultimately affecting the incidence of HFMD.

Moderate and stable temperatures in the environment may be good for the survival of HFMD viruses, accel-
erating their transmission11,12, while large fluctuations of temperature may weaken the reproductive capacity of 
infectious pathogens and vectors, thus altering the survival of viruses in the physical environment and decreasing 
disease prevalence accordingly. This is reasonable according to experimental findings that indicate that, when 
the temperature is higher than 25 °C, the activity and infectivity of EV71 is restricted13. A study by Shelford also 
demonstrated that if the quantity (or quality) of a factor is insufficient or excessive for an organism to exist and 
multiply, the species cannot survive, and may even become extinct9,10. A further study demonstrated that sero-
logical antibodies in the human body may adjust according to temperature changes23, and thus environmental 
temperature fluctuations may be one of the major underlying factors influencing the incidence of this disease. To 
assess the influence of temperature fluctuations, other potential meteorological factors were used as control vari-
ables. A positive association was found between relative humidity and HFMD incidence, which is consistent with 
the results from previous studies. For example, one study indicated that every 1% increase in relative humidity 
was association with a 4.7% rise in HFMD, and found a threshold of humidity at 80%6; another study observed 
that increased relative humidity was related to a 13% increase in the risk of HFMD23.

The current study found that wind speed and precipitation were negatively correlated with HFMD inci-
dence, which is also consistent with other studies. For example, a previous study in Hong Kong found a negative 

Variables Posterior mean (95% CI) (%) RR (95% CI)

SD of maximum temperature(°C) −8.22** (−14.63, −1.82) 0.92 (0.86, 0.98)

SD of minimum temperature(°C) −11.87** (−19.55, −4.18) 0.89 (0.82, 0.96)

SD of average temperature(°C) 6.56 (−4.26, 17.80) 1.07 (0.96, 1.20)

Average temperature (°C) 17.10** (14.84, 19.38) 1.19 (1.16, 1.21)

Relative humidity (%) 3.67** (3.05, 4.30) 1.04 (1.03, 1.04)

Wind speed (m/s) −17.20** (−26.82, −7.75) 0.86 (0.80, 0.92)

Sun hours (h) 0.06 (−0.07, 0.18) 1.00 (0.99, 1.02)

Precipitation (mm) −0.15** (−0.22, −0.08) 0.84 (0.77, 1.04)

Table 1.  Quantified posterior means and RRs of BSTHM coefficients. Note: 95% CI indicates confidence 
interval with a confidence level of 0.95, **Statistical significance level: 0.01.
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association between HFMD incidence and wind speed24, while a study in Singapore reported a negative relation-
ship between precipitation and HFMD25, as heavy downpours can disrupt the survival environment of viruses26. 
Another study found that heavy rainfall is negatively related to physical activity27, thus significant precipitation 
could interrupt transmission by reducing social contact24.

The results from the BSTHM showed that the spatial distribution of HFMD risk was non-homogeneous. 
Notably, areas with the highest incidence were mainly concentrated in large cities and their adjacent areas. The 
areas with developed economies, high population density, and mixed socio-human environment (e.g. Beijing 
and Tianjin) were the main epidemic regions, which is consistent with previous studies. For instance, a previous 
study found that the HFMD incidence in economically developed areas, including Beijing, Tianjin, Shanghai, and 
Zhejiang, was higher than in less developed areas17,28–30. A further study found that the incidence of HFMD was 
higher in the provincial capital city of Chengdu than in other counties in Sichuan province, China31. A potential 
mechanism may be that, due to rapid economic development and urbanization in recent years, there is both 
higher population density and an increased floating population in large cities and their adjacent counties, thus 
inevitably promoting more frequent communication and contact with others, which is conducive to the trans-
mission of HFMD.

There are some limitations to this study that should be mentioned. Spatial data at the county level was used, 
which could introduce an ecological fallacy. Spatial heterogeneity also exists within a county area; for example, 
populations in urban and rural areas may have different living conditions and healthcare, which would reflect 
on temperature variations differently. In future studies, data at a finer spatial scale (e.g., villages and towns) will 
be collected to analyze the relationship between HFMD and environmental factors. Furthermore, the data used 
in this study was from 2009 to 2013 in Beijing, Tianjin and Hebei province of China, although the findings and 
conclusions were applicable to the time period and region, in the future, the data covering more regions in recent 
years will be collected and analyzed to strengthen the study.

Conclusions
Temperature fluctuations play an important role in shaping HFMD spatiotemporal patterns. HFMD trans-
mission is negatively associated with temperature variations, implying that the risk of HFMD decreases in 
temperature-unstable environments. These findings can serve as reference and basis for the surveillance and 
control of the disease in practice, and may be helpful in the rational allocation of medical resources.

Methods
Study area.  The study region is located in the north of China; includes Beijing, Tianjin, and Hebei provinces; 
and is a typical semi-humid continental monsoon climate in the North Temperate Zone. It is hot and rainy in 
summer, and cold and dry in winter. The geographical location of the study area is shown in Fig. 4.

Beijing is the capital of China, a megalopolis, with an area of 16,400 km2 and a population of 20.7 million. 
Tianjin is a municipality directly governed by the central government, with an area of 11,900 km2 and a popula-
tion of 14.1 million. Hebei province is located around Beijing and Tianjin, with a total area of 188,800 km2 and a 
population of 72.9 million.

Data.  Data on HFMD cases in children under five, from January 2009 to December 2013, was obtained from 
the Chinese Center for Disease Control and Prevention (http://www.phsciencedata.cn). Monthly meteorological 
data was obtained for the same period from the China Meteorological Data Sharing Service System (http://data.
cma.gov.cn/). Temperature fluctuations were measured by the monthly standard deviation (SD) of average tem-
perature, calculated using the daily average, maximum, and minimum values. In addition to these factors indicat-
ing temperature fluctuations, referencing the previous studies, other meteorological factors, including monthly 
average temperature, relative humidity, precipitation, hours of sunshine and wind speed, were used as control 
variables in the model (Figs. 5 and 6).

GeoDetector.  GeoDetector is a novel spatial variation analysis method, which can be used to explore the 
stratified heterogeneity of a responding variable, where phenomena within strata are more similar than between 
strata32–34. In this study, GeoDetector was used to quantify the heterogeneity of the temporal and spatial variations 
of HFMD risk.

The q value can be expressed as:

q
N

N1 1
(1)h

L
h h2 1

2∑
σ

σ= − =

where q denotes the degree of stratified heterogeneity for the dependent variable. Its value ranges from 0 to 1—
the larger the q value, the more significant the spatial heterogeneity from the target variable. N is the number of 
counties and σ2 expresses the variance across all the statistical units in the study area. The study area is stratified 
into L strata, presented by h = 1, 2,…, L, implemented through a discretization process. σh

2 is the variance within 
stratum h in the study area.

Bayesian space-time hierarchy model.  The BSTHM has been widely used in disease mapping with 
sparse data. This model can overcome, to a certain extent, the shortcomings of a small sample and the autocorre-
lation of spatial-temporal data. And it also can make full use of the overall information, sample information, and 
prior information to estimate the posterior distribution of spatial-temporal parameters.

In this study, we used the BSTHM to analyze the county-level spatial-temporal distribution of HFMD inci-
dence from 2009 to 2013 and quantify its relationships with temperature variation, after controlling for other 
meteorological factors. A space-time hierarchy model with Poisson distribution was used to model the monthly 
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cases of HFMD. Letting yit and ni represent the number of disease cases and the risk population, respectively, with 
county i = (1,…,208) and month t = (1,…,60), the disease cases can be modeled as:

y Poisson n u

u s b t v b t x x

( ),

log( ) ( ) (2)

it it it

it i t i v vit n
N

n nit it0 1 1∑α β β ε

∼

= + + + + + + +=
⁎ ⁎

where uit indicates the potential risk of HFMD in region i and month t. Among them, α is the overall log disease 
risk during a selected period in the study area. The spatial index, si, throughout the total study period, denotes 
the residual spatial distribution of disease risks across the study area; this was affected by some temporal rela-
tive stable factors in the study period, such as local geographic environment, economic conditions, and medical 
resources. Time span relative to the midpoint tmid over the study period is represented by t* = t − tmid. The calcu-
lated spatial-temporal variability in disease risk in this model is decomposed in the following way:

The temporal term, (b0t* + vt), indicates the overall time trend for all counties, defined as a linear trend, b0t*, 
and additional Gaussian noise, vt. Specifically, the term b1it* represents the departure from b0 for each county, 
which allows for each county to have its own trend, while b0 measures the overall temporal change in disease 
risk. For example, a positive estimate for b1i suggests that the local variation intensity is higher than the overall 

Figure 4.  Geographic location of the Beijing-Tianjin-Hebei area in China, with average monthly incidence of 
HFMD in children from 2009 to 2013.

Figure 5.  Potential driving factors and Proxies of HFMD.
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variation trend; conversely, a negative estimate for b1i reveals that the local variation intensity is lower than the 
overall variation trend.

The term xvit repressents the temperature variation variable for area i and month t, and βv is the corresponding 
regression coefficient. The term xnit represents the n-th of the other potential confounds; the regression coefficient 
of these explanatory variables is βn.

The Gaussian random noise variable is represented by ε1i, involving all the factors that are not considered 
in the model but affect the explanatory variable, which is assumed to follow a normal distribution. That is, the 
Gaussian noise εit is modeled as εit ~N (0, σε

2), and the temporal noise as vt ~ N (0, σv
2). As suggested by Gelman, 

in this model, the prior distribution of the SDs (e.g., σv, σε) of all the random variables is determined as a strictly 
positive half Gaussian distribution N+∞(0, 0.1).

In this study, the Besag, York, and Mollie (BYM) spatial model was introduced to determine the prior distri-
bution of the parameters si and b1i

35,36. It is a convolution of a spatially unstructured random effect and a spatially 
structured random effect, and can be expressed as follow:

u v f clog( ) ( ) (3)i i i iµ = α + + +

where the ui represents unstructured random effects, and the vi represents spatially structured heterogeneity, f(ci) 
is the non-linear effect of acovariate ci.

And the conditional autoregressive (CAR) prior is used to enhance the random effect of spatial structure in 
BYM with a spatial adjacency matrix W. The CAR prior on the spatial random effect indicates that adjacent coun-
ties tend to have similar disease risks.

All parameters were implemented in WinBUGS37, a statistical software package that was designed specifically 
for Bayesian calculations. Posterior distributions of all parameters in the model were obtained through Markov 
chain Monte Carlo (MCMC) simulations.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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