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Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and
programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic
kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available,
except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and
transforming growth factor-3 (TGF-B), are significantly altered in AKI models and have been suggested to play critical roles in the
repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown
evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may
function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain
growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors
originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic

cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior
therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and
diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-
correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
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INTRODUCTION
Acute kidney injury (AKI) is a clinical syndrome with acute renal
dysfunction. The major causes of AKl include ischemic reperfusion,
drug toxicity, and sepsis.' The common pathological feature of AKI
is damage to tubular epithelial cells (TECs), accompanied by
endothelial damage and accumulation of inflammatory cells.>™
AKI shows high morbidity and mortality, and severe or repeated
AKI may progress to chronic kidney disease (CKD) or even end-
stage renal disease (ESRD).> Unfortunately, effective and specific
therapies are unavailable, except for supportive management."®”
In the last century, growth factors such as epidermal growth
factor (EGF), insulin-like growth factor (IGF), and fibroblast growth
factor (FGF) have been widely investigated as an interesting research
area since they are significantly dysregulated and dysfunctional in
different AKI models® (Table 1). Evidence has shown that the
administration of these growth factors promotes renal repair and
restores renal function in animals; however, treatment with growth
factors has not been used clinically.” With the rapid progress in
research technology, growth factors, receptors, and downstream
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effectors have been found to be highly involved in the mechanism
of AKl, including the regulation of inflammation, programmed cell
death, necrosis, cell proliferation, and dedifferentiation.'® Moreover,
certain growth factors or correlated proteins, such as IGF binding
protein (IGFBP)-7 and FGF-23, can serve as biomarkers for AKI due to
their sensitivity and specificity.!’ Paracrine or extracellular vesicle-
delivered growth factors, such as hepatocyte growth factor (HGF) or
vascular endothelial growth factor (VEGF), are major mechanisms by
which mesenchymal stem cells (MSCs) exert therapeutic effects on
renal injury. Growth factor-modified MSCs show superior therapeutic
effects in AKI treatment.'? Therefore, the current review focused on
summarizing the use of various growth factors as biomarkers for
predicting AKI and interpreting their functions and the mechanisms
underlying their roles in both renal injury and renal repair in AKI. We
also evaluated the current growth factor-targeted therapy or
diagnosis in clinical trials and analyzed the limitations of growth
factors in clinical treatment. These findings may add new
information to the search for a target and prediction of AKI and
AKI-CKD progression.
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Table 1. Growth factors may contribute to different types of AKI.

Model of AKI Growth factor

BMP-7/EGF/FGF-2/HGF/
IGF-1/TGF-B1/VEGF/PDGF

BMP-7/EGF/FGF-23/HGF/
TGF-B1/VEGF/IGF-1

BMP-7/TGF-B1/VEGF/
FGF-21/FGF-10/EGF/IGF-1/HGF

BMP-7/FGF-2/TGF-B1/HGF/EGF

Ischemia-reperfusion Injury
Folic acid-induced AKI
Cisplatin-induced AKI

Lipopolysaccharide-induced AKI

Mercuric chloride-induced AKI EGF/IGF-1
Glycerol-induced AKI HGF/TGF-$1
Colistin-induced AKI TGF-B1/EGF

Gentamicin-induced AKI IGF-1/TGF-B1/EGF/PDGF/VEGF

GROWTH FACTORS IN AKI
Bone morphogenetic proteins in AKI
Bone morphogenetic proteins (BMPs) are conserved signaling
molecules that belong to the transforming growth factor-1 (TGF-
B) superfamily. Structurally, BMPs and some TGF-B family
members act as monomeric prepro-forms, including signal
sequences, long latency-associated peptides (LAPs), and mature
cytokines. These precursor dimers are cleaved by an enzyme at R-
X-X-R proteolytic processing sites, which release the biologically
active domain. There is the highest degree of similarity (~40-70%)
at the carboxy-terminal regions among mature peptides that are
the biologically active form of BMP-7 and TGF-1."* To date, no
less than fifteen BMPs have been identified.'* Recently, more
attention has been focused on BMP-7, which is also known as
osteogenic protein-1 (OP-1), for its protective role in acute and
chronic kidney diseases. In the adult kidney, BMP-7 was detected
specifically in the collecting tubule, the thick ascending limb, and
podocytes'® (Fig. 1); however, BMP-7 expression is significantly
reduced in different kidney diseases, including AKI.'®

The first evidence regarding the protective role of BMP-7 in AKI
was found in a study that indicated that OP-1 injection preserved
kidney function and increased the survival rate after ischemic AKI
through several mechanisms. These mechanisms included redu-
cing apoptosis and necrosis of tubular epithelial cells, suppressing
inflammation by limiting neutrophil infiltration and the level of
intercellular adhesive molecules, and maintaining the vascular
smooth muscle cell phenotype in pericellular capillaries.'” The
anti-inflammatory effect of BMP-7 was also highlighted in another
study that indicated that BMP-7 regulated the expression of
chemokines, cytokines, and hemodynamic genes (vasoactive
genes) in proximal tubule cells."> By generating tubular-specific
BMP receptor 1A knockout mice, a recent study showed that BMP-
7/Smad1/5/8 signaling accelerated tubular regeneration by
targeting the inhibition of DNA-binding (ID) proteins (Id1, 1d2,
and |d4), thereby mediating recovery after AKI and preventing
fibrosis.'®

Evidence shows that BMP-7 acts as a key target in the
pathological process of AKI. By modifying ligand-receptor inter-
actions to enhance BMP-7 and suppress TGF-3 signaling, Kielin/
chordin-like protein (KCP) is capable of halting folic acid-induced
AKI by decreasing mortality while enhancing the recovery of renal
function.'® Signal peptide-CUB epithelial growth factor domain-
containing protein 1 (SCUBE1) directly binds to the BMP-7 ligand
and stimulates Smad1/5/8 phosphorylation, thereby accelerating
tubular cell proliferation and re-epithelization after renal ischemia-
reperfusion injury (IRI).?® Knockout of uterine sensitization-
associated gene-1 (USAG)-1, the most abundant BMP antagonist
in the kidney, significantly prolonged survival, and preserved renal
function in the AKI model, whereas the administration of
neutralizing antibodies against BMP-7 abrogated the renoprotective
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Fig. 1 Localization of growth factor expression in the kidney. In
the glomerulus, endothelial cells mainly secrete FGF-2, HGF, and
VEGF, mesangial cells secrete HGF, IGF-1, and PDGF-B, and
podocytes are the major source of BMP-7. In renal tubules, growth
factors are primarily expressed in fibroblasts and epithelial cells.
Fibroblasts express and secrete EGF and PDGF-B, and epithelial cells
secrete TGF-p, VEGF, PDGF-B, HGF, and FGF-2. Specifically, BMP-7 is
only detected in thick ascending limb and collecting duct epithelial
cells. EGF is expressed in the proximal tubule, and IGFs are secreted
in the collecting duct. Infiltrating inflammatory cells, such as
macrophages, are the key source of HGF, TGF-p, and PDGF-B.

effect of USAG-1 deficiency, further indicating that BMPs are
promising therapeutic targets in AKI treatment.?' In addition, MyoR
inhibits cisplatin-induced apoptosis and deterioration of renal
function by targeting BMP-7.2 Propofol, a sedative, suppresses
oxidative stress in sepsis-induced AKI by upregulating BMP-7.23
Additionally, epigenetic modification of BMP-7 plays a critical role in
AKI progression. In AKI models induced by both ischemic
reperfusion and sepsis, dexmedetomidine (DEX), an a (2)-adreno-
ceptor (a(2)-AR) agonist, protects against renal injury by restoring
BMP-7 levels via a histone deacetylase 5 (HDAC5)-dependent
mechanism.>***> Furthermore, we recently showed that the HDAC
inhibitors trichostatin A (TSA) or valproic acid (VPA) attenuated
cisplatin-induced renal tubular epithelial cell apoptosis by restoring
BMP-7 expression via targeting HDAC2.2°

The protective effect of BMPs in AKI is also attributed to their
protective role in endothelial cells. A study found that BMP-5
promoted the migration and survival of early endothelial out-
growth cells (eEOCs), thereby improving renal function in the
short term.?” Collectively, the therapeutic effect of BMP-7 may be
due to its anti-inflammatory, antiapoptotic, and proliferative
effects. However, the function of other members of the BMP
family in AKl is still unknown and needs to be further determined.

EGF and the EGF receptor in AKI

The EGF-related peptide growth factor family consists of groups of
ligands. The first group includes EGF, transforming growth factor-a
(TGF-a), and amphiregulin. These factors work by specifically
binding to EGF receptor (EGFR). Members of the second group,
including heparin-binding EGF (HB-EGF) and betacellulin, bind to
both EGFR and ErbB4.2% Activation of EGF/EGFR triggers down-
stream intracellular pathways, including MAP kinase, JAK/STAT,
and PI3K/AKT, to control cell apoptosis, proliferation, and
differentiation.

In the kidney, EGF is highly expressed in renal proximal tubule
epithelial cells (RPTCs) and transiently decreases after IRI*° (Fig. 1).
Clinical evidence shows that urinary human EGF (hEGF) levels are
largely downregulated in patients with AKI compared to those of
control subjects3® A study showed that the administration of
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exogenous EGF increased the DNA replication and recovery of
renal function in IRI>' EGF also attenuates mercuric chloride
(HgCl,)-induced tubular necrosis by stimulating the regeneration
of resident cells rather than bone marrow-derived cells.*?

EGFR function has attracted more attention in recent years.
EGFR is widely expressed in mammalian kidneys, with high levels
of expression in RPTCs and interstitial fibroblasts. It is a
transmembrane protein with intrinsic tyrosine kinase activity and
can be activated by several ligands, such as EGF, TGF-$1 and
IGF.5% Activation of EGFR can be detected 5-30min after
reperfusion, accompanied by generation of superoxide anion/
hydrogen peroxide and a reduction in EGF. This finding indicates
that early activation of EGFR may not be EGF-dependent.?
Functional studies showed that conditional deletion of EGFR from
RPTCs or treatment with an EGFR tyrosine kinase inhibitor
(erlotinib) delayed renal function recovery on day 6 after IRI, but
activation of EGFR with exogenous EGF or HB-EGF accelerated
renal repair.>* Furthermore, a recent study identified that EGFR
promoted the dedifferentiation and proliferation of surviving
RPTCs by activating Yes-associated protein (YAP) and transcrip-
tional coactivator with PDZ binding motif (TAZ).3> Strikingly,
deletion of ErbB4, a type | transmembrane receptor tyrosine
kinase of the EGFR superfamily, accelerated cell proliferation and
unbalanced cell apoptosis, which was related to the activation of
YAP, resulting in renal function deterioration and fibrosis following
ischemic injury. This finding was further confirmed in other renal
fibrosis models, such as polycystic kidney disease and UUO
nephropathy.>**” As mentioned previously, activating EGF/EGFR
signaling appears to be a promising strategy for treating AKI and
recovery after AKL3® However, it is noteworthy that sustained
activation of EGFR is associated with cell cycle arrest at the G2/M
phase, leading to renal fibrogenesis after AKI3**° Therefore,
exogenous EGF or HB-EGF may not be suitable for long-term
treatment. Consistently, functional inactivation of EGFR by over-
expression of dominant-negative EGFR in RPTCs decreases
tubulointerstitial lesions after renal injury.’’ These findings
indicate that EGFR may function as a double-edged sword by
regulating both repair and fibrosis, which may be determined by
the degree and duration of EGFR activation in response to renal
injury.>

FGF in AKI

Mammalian fibroblast growth factor signaling involves interac-
tions between 18 FGF ligands and 4 FGF receptors (FGFR1-4).*?
Some FGFs, such as FGF-2 and FGF-23, play specific roles in
mediating or predicting AKI.

FGF-2, also called basic fibroblast growth factor (bFGF), is a well-
characterized survival factor for both endothelial cells and
epithelial cells** (Fig. 1). Administration of bFGF induces an early
repair process after ischemic AKI by inducing various morphogens
that are involved in renal repair, such as FGF-2 itself, HGF, BMP-7
and VEGF.*** This observation was further confirmed by a recent
study that found that FGF-2 protected against mitochondrial
damage and the HMGB1-mediated inflammatory response
induced by IRL*® However, the function of FGF-2 is still
controversial. Other studies have shown that increased circulating
FGF-2 levels fails to improve the outcome of lipopolysaccharide
(LPS)-induced AKI but leads to further renal damage because
circulating FGF-2 may predispose endothelial cells to undergo
apoptosis in response to LPS or induce inflammatory changes.*®
This was further confirmed by high serum FGF-2 levels in children
with sepsis who were at a high risk of developing AKI. This
discrepancy may be explained by the difference in AKI insults.

As a novel predictive and prognostic biomarker for AKI, FGF-23
has recently been widely investigated in different types of animal
models and AKI patients."’ FGF-23, induced by multiple factors
such as IRl, folic acid, and rhabdomyolysis, is significantly
increased in AKl patients and murine models.""*”*® Clinical
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evidence confirmed that FGF-23 levels significantly increase in
infants, children, adults, and older individuals suffering AKI.**~>3
FGF-23 is not only an early prognostic marker for cardiac surgery-
associated AKI and intensive care unit (ICU)-associated AKI but
also serves as a prognostic marker for adverse outcomes in
patients with established AKL.'" Several studies have revealed the
mechanisms underlying the upregulation of FGF-23 in AKIL. A
recent study showed that hyper-IL-6 (HIL-6) activates the FGF-23
promoter by STAT3 phosphorylation and increases circulating
FGF-23 in both AKlI and CKD.>* Activation of FGF receptor 1
(FGFR1) further increases FGF-23 synthesis in folic acid-induced
AKI>®> Moreover, decreased FGF-23 clearance in AKI also
contributes to high circulating levels of FGF-23."" However,
whether FGF-23 plays a functional role in mediating AKI is an
important topic and remains to be explored.

The participation of other FGF ligands or receptors has also
been determined. Evidence shows that inhibiting nitric oxide
synthase with Nw-nitro-L-arginine (L-NNA) abolishes the suppres-
sive effects of FGF-1 on neutrophil infiltration, indicating that nitric
oxide may be involved in the anti-inflammatory effects of FGF-1.>
FGF-10 works by binding to the high-affinity receptor FGFR2-lllb
splicing isoform and protects against kidney IRI by inhibiting
excessive autophagy and the inflammatory response.>” FGF-21, a
key regulator of the energy metabolic balance and cell stress
responses, is induced in cisplatin nephropathy. FGF-21 knockdown
accelerates cisplatin-induced tubular cell injury via p53-dependent
mechanisms, but this effect is attenuated by supplementation
with recombinant FGF-21.® Additionally, a study showed that
bFGFR2 knockdown prevented the repair process and induced a
fibrotic response after ischemic injury, indicating the therapeutic
potential of bFGFR2 in AKI.>®

Hepatocyte growth factor and c-met in AKI

HGF was originally isolated as a potent mitogen for hepatocytes
that binds to the c-met receptor and stimulates its transactivation.
HGF exerts multiple effects on tubular repair and regeneration in
the kidney.5°~®2 Epithelial cells, mesangial cells, endothelial cells,
and macrophages are the major origins of renal HGF? (Fig. 1). In
the early phase of AKI, HGF, and c-met mRNA significantly
increase; however, the total protein level of HGF in the kidney is
downregulated 24 h post injury.?° Evidence shows that previous
partial hepatectomy-induced HGF overexpression attenuates
tubular apoptosis and necrosis.%® Furthermore, HGF gene therapy
reduces renal failure and mortality by attenuating tubulointer-
stitial damage, proinflammatory cytokine production, necrosis,
and hemodynamic deterioration.*®> Previous studies showed
that human umbilical cord-derived MSC (hucMSC) transplantation
improved renal function in ischemia/reperfusion-induced AKI rats,
and HGF-modified hucMSCs showed high efficiency in treating AKI
via antiapoptotic and anti-inflammatory mechanisms.%® Addition-
ally, evidence showed that HGF-transgenic mesothelial cell sheet
transplantation supports renal recovery and attenuates fibrosis in
AKI murine models.”%® It is noteworthy that the balance between
HGF and TGF-f signaling at the initial stage of IRl facilitates the
acute repair response, but the balance switches to TGF-f3 signaling
during abnormal repair and fibrogenesis.®® In addition, HGF is
highly correlated with active B-catenin in fibroblasts. 3-catenin
deficiency in renal fibroblasts induces HGF expression and
activates tyrosine phosphorylation of the c-met receptor after
IRI, thereby promoting cell proliferation and renal repair.”® In
injured kidneys, proHGF is processed and cleaved to form mature
HGF that binds to the c-met receptor.? Conditional knockout of c-
met in renal tubules exacerbates renal injury and inhibits renal
regeneration after AKI. This indicates that tubule-specific c-met
signaling plays an essential role in renal protection due to its
proliferative, antiapoptotic, and anti-inflammatory properties.”' 3
Consistently, HGF/c-met attenuates renal injury and inflammation
while accelerating repair after glycerol-induced AKL’*

SPRINGER NATURE



Potential targeted therapy and diagnosis based on novel insight into...
Gao et al.

IGF and IGFBPs in AKI

IGF, a peptide growth factor that is secreted by the collecting duct
of the adult kidney, binds with IGF1R and phosphorylates insulin
receptor substrate proteins, thereby initiating downstream path-
ways, including PI3K-Akt-mTOR, to participate in the regulation of
cell proliferation and apoptosis’>’® (Fig. 1). Infusion of IGF-1
improves hemodynamic parameters, such as renal plasma flow
(RPF), inulin clearances (GFR), and renal vascular resistance (RVR),
in fasted rats.”” Previous studies have shown that IGF signaling is
highly involved in kidney development and different types of
kidney diseases, including AKI”®”® However, the function of IGF in
AKl is still controversial. IGF-1 decreases following ischemic injury,
and treatment with exogenous IGF-1 accelerates recovery by
limiting cell apoptosis and promoting cell proliferation.2%®" These
findings were further confirmed by a study indicating that
administration of rhlGF-1 2h post injury suppresses the renal
inflammatory response and upregulates EGF levels.®? IGF-1 also
promotes tubular regeneration after AKI by transactivating EGFR.2
In contrast, it is unfortunate that data from a clinical trial showed
less salutary results for IGF-1 treatment,®*®> because administra-
tion of IGF-1 induced an inflammatory response, especially
neutrophil accumulation, in rats with AKI, and this may lead to a
higher mortality risk in patients.®*®” In addition, induction of the
fibrotic response in mesangial cells may be another reason for the
failure of IGF-1 treatment.®® Although IGF-1-based AKI therapy is
disappointing, serum IGF-1 appears to be a potential biomarker
because a reduced level of serum IGF is clearly correlated with
increased mortality and the nutritional status of patients. The
serum stability and short half-life of IGF-1 make it a suitable
candidate as an early and sensitive biomarker for AKI mortality in
intensive care units.®° In addition to IGF ligands, receptors, and
insulin, a family of high-affinity IGFBPs has been identified in the
IGF system and has gained more attention. These factors primarily
antagonize IGF actions and may serve as biomarkers for AKI.%°
Among these IGFBPs, IGFBP-7 is well studied, and emerging
evidence shows that urinary IGFBP-7 and tissue inhibitor of
metalloproteinase-2 (TIMP-2) can be applied as early diagnostic
biomarkers for AKI following cardiac surgery,”’ sepsis,”> and other
renal insults of varied etiology.”>™®° These factors appear to be
ideal biomarkers for moderate and severe AKI, and the US Food
and Drug Administration already permitted marketing of Nephro-
Check® (Astute Medical) to detect urinary [TIMP-2]*[IGFBP-7] in
critically ill patients in 2014.°%9>7 However, it is noteworthy that
the kinetics of urinary TIMP-2 and IGFBP-7 do not match the
exposure of radiocontrast in patients suffering from stage 2-3
AKI.

TGF-B in AKI

TGF-B exerts multiple biological functions in renal diseases by
binding to its receptors and activating downstream Smad and
non-Smad pathways, and renal TGF-B mainly originates from
epithelial cells, leukocytes, or the circulation®®'%° (Fig. 1). TGF-B1 is
a well-recognized profibrotic factor.'’~'%* Activation of TGF-B/
Smad signaling is detected in AKI models induced by different
types of insults, such as IRL'® In the IRI model, the level of TGF-B1
is increased by 1.5-fold at 12 h and more than 3-fold at 24 h and is
sustained at a high level until 14 days,'® which was confirmed by
our recent study showing that the production of TGF-f1 was
significantly induced in cisplatin nephropathy.'® However, the
exact role of TGF-B in AKl is not fully understood.

Several studies have provided evidence that TGF-81 may be
protective in AKI. It has been reported that a deficiency in TGF-f1
in mice increases renal damage and deteriorates renal function,'®’
and this was further confirmed by another study showing that
sevoflurane protects against IRlinduced renal injury.'®® Addition-
ally, a recent study showed that TGF-B-induced CD4 + Foxp3 +
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Tregs prevented antibody-mediated acute renal allograft injury by
targeting multiple effectors.'® However, other studies have
shown controversial data that TGF-B1 is possibly detrimental in
AKI. In the IRI rat model, blockade of TGF-B1 signaling with anti-
TGF-B antibodies attenuates renal hypertrophy and interstitial
cellularity and has a beneficial effect on microvascular structure
but fails to accelerate the recovery of renal function."'® This
finding was further confirmed by a recent study showing that
SB4315432, a TGF-B1 receptor | inhibitor, decreased Nox4 levels
and cell injury following colistin exposure."'" In addition, over-
expression of type | TGF-B receptors specifically in tubular
epithelial cells is sufficient to induce acute tubular injury and
renal inflammation, which partly depends on mitochondrial-
derived ROS."'? Consistently, conditional knockout of type II
receptors from tubular epithelial cells blocks hydrogen
peroxide-induced apoptosis, at least partly, through a Smad-
dependent mechanism.'”® Some studies revealed the potential
function of downstream Smads in AKI. Global knockout of Smad3
protects against ischemic AKI by reducing IL-6 production.'™*
Moreover, Smad3 binds directly to p27 and inhibits the CDK2/
cyclin E complex, thereby promoting AKL''®> As an inhibitory
Smad, Smad7 protects against AKI by rescuing tubular epithelial
cells from Smad3-mediated G1 cell cycle arrest.''® The function of
Smad2 in AKI has drawn attention. A recent study showed that the
activation of Smad2 is highly correlated with AKI progression.'®
Our group further identified that conditional knockout of Smad2
protects against AKI by alleviating cell necroptosis, apoptosis and
inflammation via the Smad/p53 interaction.'®® Interestingly, we
previously reported that Smad2 protects against renal fibrosis by
suppressing Smad3 signaling;''” however, Smad2 and Smad3 are
both detrimental in the progression of AKI, which indicates that
the functional interaction between Smad2 and Smad3 might be
distinct in different conditions; this needs to be further
determined in future studies.'®

It is noteworthy that TGF-B/Smads play a predominant role in
the progression of AKI to CKD.''® In the tubular injury phase,
proximal tubular cells dedifferentiate and proliferate to replace
lost epithelial cells. However, when the insult is severe and
unresolvable, some cells fail to redifferentiate and continue to
produce growth factors such as TGF-B, finally leading to renal
fibrosis.'' Additionally, a recent study showed that TGF-BRII
deletion in macrophages prevents tubulointerstitial fibrosis
following severe ischemic renal injury by abrogating TGF-
B-dependent chemoattraction of macrophages.'’® Collectively,
the functions of TGF-B/Smads may vary according to their
activation level, disease stages, and types of AKI models, which
need to be further validated. Exploring the detailed function of
TGF-B and downstream Smads may help us to better understand
the pathological mechanisms of AKI and its progression to CKD.

VEGF in AKI

In the kidney, VEGF is mainly expressed in epithelial and
endothelial cells (Fig. 1). Five isoforms of amino acids 121, 145,
165, 189, and 206 are produced through alternative splicing of
VEGF mRNA. These amino acids bind to VEGFR-1 (flt-1), VEGFR-2
(flk-1), or VEGFR-3 to perform biological functions. In response to
ischemic AKI insults, VEGFR-2 is upregulated in kidney tissues,
although VEGF mRNA and protein levels are not increased,
suggesting the possibility for exogenous VEGF treatment.'?%"'%2 A
study showed that treatment with VEGF-121 protects against renal
microvessel structure and prevents the AKI-CKD transition in
response to increased sodium intake.”® Mechanistically, VEGF
promotes renal repair following AKI by directly mediating
mitogenic and antiapoptotic effects on TECs.'** In addition, VEGF
expression stabilizes microvascular density, diminishes capillary
rarefaction, and improves renal perfusion, which decreases
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Fig.2 Effect of growth factors on AKI and AKI-CKD progression. Many growth factors, such as BMP-7, EGF, FGF-2, HGF, IGF-1, VEGF, and TGF-
1, are involved in the programmed cell death of endothelial or epithelial cells in the acute injury phase. BMP-7, FGF-2, HGF, TGF-$1, and IGF-1
participate in the regulation of the inflammatory microenvironment that is responsible for cytokine production and immune cell recruitment.
TGF-p1 is a double-edged growth factor. In addition, TGF-$1 exerts anti-inflammatory effects, and TGF-f1 overproduction leads to acute
tubular injury. After injured epithelial cells fail to regenerate through differentiation, fibrosis is induced as a self-limiting repair process to limit
damage. In this stage, overproduction of growth factors such as TGF-p1, PDGF, and FGF induces fibroblast/pericyte proliferation,
transdifferentiation of tubular epithelial cells, endothelial cells, and macrophages, and extracellular matrix production, leading to CKD.
Concurrently, abnormal synthesis of PDGF-B, VEGF, EGF, and TGF-p1 has a negative impact on endothelial integrity and causes capillary

rarefaction, accelerating renal fibrosis.

chronic hypoxia and hemodynamics in ischemic AKIL'?>'2¢ Of

note, the transcriptional regulation of VEGF has drawn increasing
attention. As a key transcription factor, hypoxia inducible factor-1
(HIF-1) induces VEGF production to protect against hypoxic renal
injury in the acute hypoxia phase of the ischemic AKI model.'*’
Preischemic targeting of HIF prolyl hydroxylation attenuates AKI
and prevents AKI-CKD progression.'?® However, HIF-1-induced
overproduction of several growth factors (such as VEGF and
connective tissue growth factor (CTGF)) contribute to renal fibrosis
in chronic hypoxia conditions.'?*'® Thus, the disease condition
might be critical when HIF-1/VEGF-targeted therapy is applied.

Platelet-derived growth factor in AKI

Platelet-derived growth factors (PDGFs) consist of five dimers
termed PDGF-AA, -AB, -BB, -CC, and -DD, and they bind and
activate PDGF receptors (PDGFR-aq, -aB, and -BB) with distinct
binding affinities.'>' PDGFs are secreted by injured epithelial cells
after AKI, and other cells involved in the progression of CKD also
secrete PDGFs, including mesangial cells, fibroblasts, and peri-
cytes'' (Fig. 1). Similarly, PDGF receptors are predominantly
expressed on mesenchymal cells.'*? In the early phase of IRI,
PDGF-B/PDGFR is expressed in the S3 segments of the proximal
tubule. This is related to proliferation activated by Src kinase,
which induces tubular epithelial cell self-renewal."**"** Concur-
rently, PDGF-B signaling is highly involved in fibroblast transfor-
mation, capillary damage, and rarefaction that result in alterations
in renal hemodynamics. This indicates that PDGF contributes to
the development of the AKI-CKD transition.'® However, the
function of PDGF and PDGFR in the AKI-CKD transition, especially
in the early stage, should be verified with conditional knockout
models.

Signal Transduction and Targeted Therapy (2020)5:9

GROWTH FACTORS AND THE AKI-CKD TRANSITION
Pathophysiology of the AKI-CKD transition

Accumulating evidence indicates that the severity of AKI and the
number of AKI episodes are positively correlated with the
subsequent development of CKD.'*®> When renal ischemia, toxic
exposure, or obstruction occurs, TECs initiate renal self-renewal,
including redifferentiation and proliferation, to replace the injured
cells.’*® Moreover, G2/M phase cell cycle arrest of some TECs
results in a failure to regenerate and acquire a profibrotic
phenotype, mediating the secretion of fibrotic cytokines such as
TGF-B and CTGF, which accelerate the course of interstitial fibrosis,
including fibroblast/bone marrow (major precursors of fibroblasts)
differentiation or proliferation.'**'¥” Additionally, ischemia and
oxidative stress induce endothelial cell apoptosis, which mediates
microvasculature rarefaction, causing leakage of large macromo-
lecules that are responsible for inflammatory and profibrotic
responses in the interstitium'” (Fig. 2). An epidemiological study
showed that the incidence of AKI-CKD transition occurs in
~15-20% of 1.5 million AKI survivors per year.'*® Therefore, the
molecular mechanisms underlying the AKI-CKD transition attract
much attention. Possible mechanisms contributing to AKI-CKD
progression include unresolved renal inflammation, tubular
epithelial cell G2/M phase cell cycle arrest, hypoxia, microvascular
rarefaction, transdifferentiation, and senescence of resident renal
cells, myofibroblast activation, and interstitial fibrosis.'*

Growth factors in the AKI-CKD transition

Emerging evidence shows that growth factors are highly involved
in the progression of AKI to CKD.'>'® EGFR signaling is closely
correlated with CKD progression. In a vancomycin-induced AKI
mouse model, mutations in EGFR or inactivation of EGFR with
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Table 2. Diagnosis and treatment in patient with AKI.

Biomarkers/novel therapy  Patients

Diagnosis [TIMP-2]+[IGFBP7] <0.3 Low Postoperative cardiovascular

risk of AKI; >0.3 >92% of surgery
stage2/3 AKI; Shock/hemodynamically
(FDA approved)'*® unstable

Sepsis

Postoperative major non-
cardiovascular surgery
Cardiac arrest

Oliguria after acute
resuscitation

FGF-23 (Clinical trial) Severe sepsis/septic shock

IGF-1%° In the intensive care unit
VEGF Cardiac surgery
VEGFR-1'®

Treatment HGF mimetic
(ANG-3777, clinical trial)

Kidney transplantation
Cardiac surgery

gefitinib prevents the AKI-CKD transition via the STAT3/home-
odomain interacting protein kinase 2 (HIPK2) axis.'*' TGF-B is
another key mediator that links AKI to CKD, although it has anti-
inflammatory effects in certain conditions. TGF-f has multiple
effects on renal cells in the AKI stage. For instance, TGF-$ induces
macrophage chemotaxis to accelerate inflammation and increase
apoptosis of tubular epithelial and endothelial cells by promoting
cell cycle arrest in renal tubular epithelial cells, which leads to
abnormal repair, activation of myofibroblasts, and production of
extracellular matrix. In addition, TGF-B signaling promotes
endothelial injury and myofibroblast differentiation after AKI.
TGF-B, PDGF-B, and CTGF mediate fibroblast/bone marrow
transformation and reinforce the endothelial-fibroblast interface
that is involved in fibroblast proliferation and capillary rarefaction
in the pathological process of CKD. Furthermore, TGF-f3 and PDGF-
B are secreted by epithelial cells that fail to recover after AKI,
which accelerates fibrogenesis.'® Future studies on the inhibition
of TGF-B signaling after cessation of AKI are needed to better
define the role of TGF-f in the progression of acute to chronic
renal injury.'®"%2 As previously mentioned, dysregulation of VEGF
signaling is a key factor in promoting renal injury in CKD, since
endothelial dysfunction and failure to maintain endothelial
integrity lead to renal fibrosis."*>'** Furthermore, many growth
factors, including TGF-B, BMP-7, VEGF, and HGF, are highly
involved in the course of the AKI-CKD transition through
regulating inflammation and immune reactions. In this setting,
targeting abnormal activation of these signals may prevent AKI
progression to CKD.

GROWTH FACTORS MAY SERVE AS BIOMARKERS

To date, a series of studies have evaluated growth factors and
correlated molecules as biomarkers for the early diagnosis and
prediction of renal recovery from AKI. AKI diagnosis is currently
dependent on increased serum creatinine (sCr) or other biomar-
kers. Considering that these factors are indirect biomarkers of
kidney function, direct markers of tissue damage may be better
candidates for predicting AKI (Table 2). As critical cell arrest
modulators, the urine biomarkers IGFBP-7 and TIMP-2 are involved
in the early phase of cellular stress and are used to predict AKI,
especially moderate and severe AKL?>'* In 2019, Kellum et al.
published a guide for the clinical use of the [TIMP-2]* [IGFBP-7]
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biomarker to assess the risk of AKI in critical care.* Recent
evidence shows that these biomarkers may also predict adverse
outcomes of AKl patients in the ICU."**' There are other
potential biomarkers for AKI. The Translational Research Investi-
gating Biomarker Endpoints for Acute Kidney Injury (TRIBE-AKI)
cohort study on adults undergoing cardiac surgery found that
proangiogenic markers, such as VEGF, correlated with a reduced
risk of AKl and mortality, but antiangiogenic VEGFR-1 was
associated with an increased risk of AKI and mortality.*®
Moreover, VEGF-C and VEGF-D, which are the main ligands for
lymphangiogenesis, are abundantly expressed in tubules and
increased in the serum and urine after injury. They are involved in
renal inflammation and possibly serve as novel urinary biomarkers
for AKI and the progression of kidney disease." In addition,
increased urine or plasma FGF-23 levels may be promising novel
biomarkers for AKI and other adverse outcomes in critically ill
patients.'*®1°%7132 A previous study also showed that low IGF-1
Ievezlss9 might serve as mortality predictors in AKI patients in the
ICU.

GROWTH FACTORS AND STEM CELL-BASED AKI THERAPY
The therapeutic effect of stem cells, especially MSCs, in AKI has
been widely investigated in the last decade. MSCs can be isolated
from bone marrow, umbilical cord, placenta, or adipose tissue, and
they show potent anti-inflammatory and immunosuppressive
properties.'>> Previous studies found that MSC transplantation
prolonged mouse survival and promoted renal repair in AKI
models induced by toxic drugs and ischemic/reperfusion.'>*
Several mechanisms have been proposed regarding the effect of
stem cells on renal repair, including paracrine growth factors or
extracellular vesicles."”> Stem cells accelerate renal repair by
paracrine signaling through multiple types of growth factors, such
as VEGF, FGF-2, IGF, and HGF."*%">” However, recent studies have
indicated that extracellular vesicles (EVs), particularly microvesicles
and exosomes, are responsible for the therapeutic effect of MSCs
in many types of disease.’”® A previous study on the biodistribu-
tion of MSC-derived extracellular vesicles in an AKI model showed
that exosomes appear to be able to move to the injury site.'>*'6°
Further evidence also indicated that horizontal transfer of IGF-1
receptor mRNA to tubular cells through MSC-derived exosomes
accelerates renal repair post AKL'®' In addition, MSC-derived
extracellular vesicles directly secrete bFGF, VEGF, IGF-1, and
other proangiogenic factors,'®? which have therapeutic effects
on AKL'?

Moreover, growth factor-modified stem cells show more
therapeutic potential than untreated controls. For example, IGF-
1-incubated umbilical cord-derived MSCs had an enhanced
renoprotective effect in the treatment of gentamicin-induced
AKL'%® Consistently, a compound containing the C domain
peptide of IGF-1 and chitosan hydrogel imitated the microenvir-
onment of adipose-derived MSCs and had therapeutic effects on
AKL'®* In addition, the VEGF165 gene conferred MSCs with
protection against cisplatin-induced AKI by exerting beneficial
effects on cell apoptosis, proliferation, and peritubular capil-
laries.'® In contrast, knockdown of VEGF in MSCs largely reduced
the therapeutic potential of these cells and decreased the
microvessel density in an AKI model.'®® Consistently, a recent
study identified that VEGF overexpression in amniotic fluid stem
cells attenuated renal ischemia-reperfusion injury via mitogenic,
anti-inflammatory, and angiogenic mechanisms.'”” As a key
immunomodulatory growth factor, TGF-B1-modified MSCs pro-
duce a local immunosuppressive effect and prevent IRI.'®
Additionally, other studies indicated that HGF gene therapy or
HGF-modified MSCs play a more effective role in AKI via
antiapoptotic and anti-inflammatory mechanisms.%® A brief
summary of stem cell-based AKI therapy is provided in Fig. 3.
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Fig. 3 Growth factors and stem cell-based AKI therapy. Extracellular vesicle (EV)-delivered and paracrine factors such as HGF, IGF-1, VEGF,
and FGF-2 from mesenchymal stem cells contribute to repair after renal injury. More importantly, stem cells modified by growth factors,
including VEGF, TGF-B1, and IGF-1, efficiently protect against AKI by decreasing apoptosis and the inflammatory response and promoting
tubular epithelial and endothelial cell proliferation. VEGF-modified stem cells change capillary density via angiogenic mechanisms to

attenuate renal ischemia-reperfusion injury.

ANTI-AKI THERAPY TARGETING GROWTH FACTORS

Potential growth factor-targeted therapy for AKI

As previously mentioned, therapeutic strategies targeting growth
factors and downstream effectors have been tested in animal
models of AKI. BMP-7 seems to be a potential therapeutic target,
since treatment with recombinant BMP-7 preserved kidney
function and increased the survival rate post ischemic AKI,'” and
restoration of BMP-7 by Dex or TSA attenuated renal injury by
inhibiting HDAC5 or HDAC2-mediated suppression of BMP-7,
respectively.?* In addition, members of the FGF family, such as
FGF-10 and FGF-21, protect against AKI induced by cisplatin and
IRI>”*® HGF and c-met are also ideal targets because activation of
HGF/c-met signaling attenuates tubular injury and renal inflam-
mation in murine models of multiple types of AKL’* Moreover,
TGF-B/Smad signaling may also be a good target in the treatment
of AKI because recent studies showed that the restoration of
Smad7 or knockdown of Smad3 prevents both AKI and CKD
progression.'’® Although administration of VEGF effectively
alleviated renal injury, we should be cautious because over-
activation of VEGF in the late stage of AKI may promote the AKI-
CKD transition.'*® These strategies should be further evaluated in
more animal model studies before clinical trials.

Clinical trials of growth factors for treating AKI

Effective and specific therapies for AKI in the clinic are still
unavailable, and only a small number of agents targeting growth
factors have been tested in clinical trials (Table 2). A small
molecule hepatocyte growth factor/scatter factor (HGF/SF)
mimetic, termed ANG-3777 or BBs, is undergoing clinical trial in
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patients who are susceptible to kidney injury.'®® Investigators
from Angion Biomedica Corp have demonstrated that ANG-3777
improves renal function in patients after kidney transplantation.'”®
Furthermore, research by this company is assessing whether ANG-
3777 can reduce the severity of delayed graft function in
recipients of a deceased donor kidney.'”" Other similar clinical
trials are underway. A phase 2 study to assess the safety and
efficacy of ANG-3777 in patients who develop AKI after cardiac
surgery is ongoing.'’? Unfortunately, some clinical trials have
already failed; for example, exogenous IGF-1 is beneficial in the
recovery after kidney injury in mouse models, but a therapeutic
trial in patients with acute renal failure (ARF) failed to demonstrate
the efficacy of IGF-1 in humans because it induced a fibrotic
response in mesangial cells and extensive neutrophil infiltration
that reduced patient survival.>® This may be due to different renal
lesions in ARF. Patients with ARF always have other severe
ilinesses, unlike experimental models with isolated disorders.
Taken together, more precise dosing and targeted drug delivery
systems need to be used and further studied.

CONCLUDING REMARKS

In conclusion, growth factors function in the entire process of AKI,
including initiation, renal repair, and the AKI-CKD transition.
Considering the multiple roles of growth factors in kidney injury,
directly targeting them may result in unexpected side effects such
as renal fibrosis, which may impede their clinical application.
Therefore, their downstream effectors should be characterized
and evaluated as new targets in future studies. In addition, growth
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factors and correlated proteins, such as IGFBP-7, could serve as
biomarkers for the prediction of AKI. MSCs modified by certain
growth factors have great merit and may contribute to AKI
treatment in the future.
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