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Efficient Classification of White 
Blood Cell Leukemia with Improved 
Swarm Optimization of Deep 
Features
Ahmed T. Sahlol1,2, Philip Kollmannsberger   2* & Ahmed A. Ewees1

White Blood Cell (WBC) Leukaemia is caused by excessive production of leukocytes in the bone marrow, 
and image-based detection of malignant WBCs is important for its detection. Convolutional Neural 
Networks (CNNs) present the current state-of-the-art for this type of image classification, but their 
computational cost for training and deployment can be high. We here present an improved hybrid 
approach for efficient classification of WBC Leukemia. We first extract features from WBC images using 
VGGNet, a powerful CNN architecture, pre-trained on ImageNet. The extracted features are then 
filtered using a statistically enhanced Salp Swarm Algorithm (SESSA). This bio-inspired optimization 
algorithm selects the most relevant features and removes highly correlated and noisy features. We 
applied the proposed approach to two public WBC Leukemia reference datasets and achieve both high 
accuracy and reduced computational complexity. The SESSA optimization selected only 1 K out of 25 K 
features extracted with VGGNet, while improving accuracy at the same time. The results are among the 
best achieved on these datasets and outperform several convolutional network models. We expect that 
the combination of CNN feature extraction and SESSA feature optimization could be useful for many 
other image classification tasks.

Blood contains mainly three cell types: red blood cells, platelets and white blood cells. Red blood cells are impor-
tant for oxygen transport from the heart to all tissues, and carry away carbon dioxide1. They comprise up to 50% 
of the overall volume of blood. White Blood Cells (WBCs) also have important functions for the immune system, 
as they are the main defense of the body against infections and diseases2. The reliable classification of WBCs is 
therefore important and increasingly demanded. WBCs can be categorized into two types, defined by the appear-
ance of the cytoplasm. The first type are Granulocytes and include Basophils, Eosinophils and Neutrophils. The 
second group, called Agranulocytes, includes Lymphocytes and Monocytes. Millions of people are affected by 
Leukemia, which is considered as a malignant tumor. It starts in the lymphatic system, where blood cells are pro-
duced. Firstly, it begins in the bone marrow and is then distributed in the blood cells of the entire body. Normally, 
WBCs grow based on body needs, but in case of Leukemia, they are created abnormally and become inefficient. 
Although they can often be detected by their dark purple-like appearance, the analysis and further processing 
become very complicated due to variability in shape and texture. The category of Leukocytes includes cells that 
can greatly vary between each other. While they can be distinguished by their shape and size, one challenging 
aspect is that WBCs are surrounded by other blood components like red blood cells and platelets.

As seen in Fig. 1, lymphocytes have a rather regular shape, their nuclei have smooth and regular edges, 
whereas lymphocytes from patients with Acute Lymphocytic Leukemia (ALL), so-called lymphoblasts, have a 
less regular envelope and display small cavities in their cytoplasm, so-called vacuoles, and round particles within 
their nuclei, so-called nucleoli. As the described changes in morphology get more pronounced, the indication of 
the disease becomes more severe.

Deep learning using Convolution Neural Networks (CNN)3,4 is currently the best choice in medical imag-
ing applications such as detection and classification5,6. While CNNs achieve the best results on large data sets, 
they require a lot of data and computational resources to train. In many cases, the dataset is limited and may 
not be sufficient to train a CNN from scratch. In such a scenario, in order to leverage the power of CNNs and 
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at the same time reduce the computational costs, transfer learning can be used7,8. In this approach, the CNN is 
initially pre-trained on a large and diverse generic image data set and then applied to a specific task9. There are 
several pre-trained neural networks that have won international competitions like VGGNet10, Resnet11, Nasnet12, 
Mobilenet13, Inception14 and Xception15. In16 an evaluation of different CNN architectures was performed, and 
transfer learning achieved top-scoring performance on thoraco-abdominal lymph node (LN) as well as intersti-
tial lung disease (ILD) classification. The authors of17 used average pooling classification to distinguish malig-
nant from non-malignant cells after they extracted features from breast cancer images using pre-trained CNN 
architectures fed into a fully connected classification layer. The experimental results showed that the detection 
accuracy of their model outperforms all other CNN approaches in cytological image-based detection and classi-
fication of breast tumors. Other work builds on a combination of multiple deep learning architectures to improve 
the usefulness of transfer learning for cell-based image classification18,19. In17, transfer learning was used to over-
come limitations of previously published models for breast cancer detection in cytology images on standard 
benchmark datasets.

These approaches have in common that they use a large number of features (up to 100 K) from pre-trained 
CNN models. This is inefficient in terms of time and computational resources since many of these features are 
redundant or contain zeros. Moreover, classifier accuracy can benefit from limiting the number of features. In 
our previous work20,21, detection of white blood cells was performed by extracting different features includ-
ing color, texture, shape, as well as hybrid features using classical image processing, and then applying a social 
spider-inspired optimization to choose the most useful features. The model was tested on ALL-IDB2, the same 
dataset as in this work. The segmentation results were 99.2%, 100% and 97.1% for accuracy, sensitivity and spec-
ificity, respectively, and the model classification accuracy was the best published yet.

In this work, a novel approach is proposed to distinguish between benign and malignant WBCs as shown in 
Fig. 1. The proposed approach combines convolutional neural networks (CNNs) with an improvement of the salp 
swarm algorithm (SSA) based on statistical operators. A variation of CNN called VGGNet previously trained on 
millions of images is used for feature extraction. The last layer of VGGNet can be removed so an image can be 
passed through the rest of the network to obtain its feature vector. This way, the CNN is used to extract a huge 
feature matrix for each image which can then be passed to an external classifier for image classification. The data-
set used in this study has only two classes (benign and malignant), so the model was modified accordingly. The 
feature matrix produced by the CNN needs to be adjusted to be suitable for image classification. For this reason, 
we developed a Statistically Enhanced Salp Swarm Algorithm (SESSA) to improve classification performance by 
excluding correlated and noisy features and selecting only the most relevant features.

The main focus of our manuscript is to present a novel method for image feature selection based on improved 
swarm optimization and to show that it outperforms many existing approaches for classification of WBCs to 
detect leukemia. We focus on this application since it is a challenging problem with high medical relevance, for 
which good benchmark datasets are available. The difficulty in detecting leukemic cells from such images lies 
in the morphological similarity and subject variability, making the definition of suitable image features a very 
challenging task. Deep convolutional networks perform well at this task but are not very efficient due to their 
large (and largely redundant) space of learned features. WBC classification for leukemia detection, therefore, 
provides the ideal test case for swarm-based optimization of feature selection. We do not present a readily usable 
clinical tool for leukemia diagnosis but offer a new, efficient method to optimize deep learning-based methods 
for medical image classification. Such methods will play an increasingly important role in image-based clinical 
diagnosis in the near future.

Material and Methods
Extraction of features using convolutional neural networks.  The main idea of transfer learning with 
very deep CNNs is to use a pre-trained deep network previously fit to a big dataset such as ImageNet (ca. 1.2 
million images with another 50,000 images for validation and 100,000 images for testing, on 1000 different cat-
egories), and adapt it to solve a different image classification problem22. As the network already learned relevant 

Figure 1.  Samples from the ALL-IDB2 dataset2 showing benign (top) and malignant (bottom) lymphocytes.
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image features from a generic training dataset, it has a basis of features that can be used to focus on a particular 
image type to solve a classification task. In this work, we used a popular and reliable CNN architecture called 
VGGNet, shown in Fig. 2, with 16 conv (convolutional) and three FC (fully connected) layers. The number of 
channels (width of the conv layers) is comparably small, from 64 in the initial layer to 512, increasing by a fac-
tor of 2 after each max-pooling operation. The input layer has a fixed size of 224 × 224 pixels. As each image is 
passed through a stack of conv layers, a stride is added to preserve spatial resolution. Pooling is performed by 5 
max-pooling layers over a specific window with stride following some but not all conv layers. A stack of conv lay-
ers with depth varying in different architectures is followed by three FC layers with 4096 channels in the first two, 
while the third performs classification10. In our case, this layer contains only two channels (one for each class). 
The final layer is a soft-max layer. All hidden layers have a rectified non-linearity23. For each image X of study 
type T of the training data, the parameter to be optimized is the weighted binary cross-entropy loss. VGGNet 
specifications are described in Fig. 2.

Since the shape of the input image is (224, 224, 3), the last layer produced from VGGNet has the shape (7, 7, 
512). This means that VGGNet returns a feature vector of 7 × 7 × 512 = 25088 features. In order to perform trans-
fer learning with VGGNet, we first saved the extracted features (bottleneck features) from the pre-trained model, 
then trained a model (top model) to classify our data using these features, and finally combined our training data 
and the VGGNet model with the top model to make predictions4.

Salp swarm algorithm.  SSA is an optimization method24 that imitates the foraging behavior of Salpidae, 
planktonic marine invertebrates. Salps are moving and foraging by a behavior called salp chain, which is an exam-
ple of swarming behavior. SSA starts by splitting the population into two categories: the front salps, called leaders, 
and the others, called followers. These salps change their position in order to search for a target (food sources). To 
perform this movement, Eq. 1 is used to update the position of the leading salps:
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where xj
i denotes the position of the i-th follower and i > 1. The main steps of the SSA algorithm are listed in 

Algorithm 1, adapted from24

Figure 2.  Overview of the VGGNet layer structure (left) and corresponding parameters (right).
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Feature selection based on SESSA.  After feature extraction using a CNN as described above, we applied 
feature selection to use only those features for classification that contribute most. Mainly, there are three benefits 
of performing feature selection - reduced training time (fewer features means that the algorithm trains faster), 
improved accuracy (less misleading data makes the model more efficient), and reduced over-fitting (higher prob-
ability for successful classification). Our new enhanced feature selection method improves the basic SSA by apply-
ing statistical operations to exclude irrelevant and noisy features, and by making it more computationally efficient 
and stable. The overall structure of SESSA is shown in Fig. 3.

The additional operations are as follows:

Removing correlated features.  Chi-square is used to eliminate correlated features by measuring the dependence 
between features. Chi-square is computed between each feature for all classes based on (4):
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Figure 3.  Flow chart of our proposed approach.

Algorithm 1.  Salp Swarm Algorithm (SSA).
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where Ok = the observed feature value and Ek = the expected feature value. The top k performing ones are then 
selected as the most relevant features. Subsequently, only the features with the highest score are kept. In this work, 
several approaches were tested to choose the best k value, which indicates the number of selected features. The 
higher the number assigned, the larger the proposed model will be. It is not necessarily the case that a higher 
number of features would improve the model’s performance.

Recursive feature elimination.  This is a greedy optimization approach to find the most efficient subset of 
features based on a regression model. It chooses the best feature based on coefficients, then sets the feature aside 
and repeats the process with another set of features. This process is applied until all features in the dataset are 
exhausted. Finally, features are ranked based on when they were eliminated. The algorithm begins with the full 
regression model containing all P features and then removes the least useful predictor in each iteration. 
Elimination of features follows these steps: ( f̂

P
 denotes a model with P features)

•	 For each = − …k P P, 1, , 1 remove a feature with the lowest standardized regression coefficient.
•	 Fit a new model 

−
f̂

P 1
 and calculate a cross-validated accuracy for classification problem. For regression prob-

lems, AIC, BIC and cross-validated R2 can be used instead.
•	 Finally, select the best model from …

−ˆ ˆ ˆf f f, , ,
P P 1 0

 based on the calculated score values. RFE algorithms 
selected the best Logistic Regression fit with K-number of manually selected features.

Tree-based classifier for feature importance.  Tree-based methods are very popular for classification, due to their 
high level of accuracy and ease of use, as well as robustness. On top of that, they offer two direct methods for 
selecting features. As known, every individual node in a decision trees is a condition on one feature and splits the 
set of data into two. This way, similar responses should end up in the same set. The measure to chose the locally 
optimal condition is termed impurity. During the training of a tree, one can calculate how much each feature 
reduces the weighted impurity of the tree. Therefore, the impurity decrease can then be averaged per feature, and 
the features sorted according to their impurity decrease. There is one drawback of this method: when a dataset 
contains two or more correlated features, there is no preference of one over the other, and any of these features can 
be used as the predictor. As soon as one of them is selected, however, the importance of the others is immediately 
reduced, as the impurity they could remove has already been removed by the first feature. This was solved by 
removing any correlated features from step 1 (removing correlated features).

The fitness function that we used in this study is the root mean square error (RMSE) as in Eq. (5). RMSE is 
applied to calculate the difference (square error) between the output results and the target for each subset of fea-
tures. Therefore, a smaller value of RMSE is an indicator of better output results and thus a better feature subset.
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where, n indicates the total number of the set items, y and x indicate the target data and output data, and y  indi-
cates the mean of y. The number of iterations was set to 100.

Dataset description.  We used two different datasets for this study. The first dataset used in this paper was 
provided by Department of Information Technology - Universitá degli Studi di Milano2. Images were captured 
with an optical microscope that was coupled to a Canon PowerShot G5 digital camera. The images are provided 
in JPG format with a color depth of 24 bit. The magnification of the microscope varied between 300 to 500. The 
ALL-IDB database contains two different datasets, IDB1 and IDB2. We tested our algorithm on the ALL-IDB2 
dataset, as it was designed to test the performance of classification systems. This dataset consists of cropped areas 
of interest of benign and malignant cells from the ALL-IDB1 dataset. These cropped images have similar intensity 
levels as those in ALL-IDB1, but different image dimensions. This dataset has been used for detection25,26, seg-
mentation27,28 and classification29.

This dataset contains 260 images, 50% benign and 50% malignant. The proposed approach is built for a binary 
classification problem ∈y 0,1 because the dataset contains two classes (benign or malignant cell). Figure 1 shows 
some examples for each class, benign and malignant. It illustrates the variation in cell morphology, structure, 
shape, and zoom level within the same class on the one hand, and the similarity between images from two differ-
ent classes on the other hand. Moreover, all images contain other types of blood cells interfering with the white 
blood cell, whereas some samples contain multiple white blood cells. All these mentioned properties together 
make the classification task quite challenging.

To overcome the limitation of using a single dataset and to broaden the scope of our work, we extended our 
study to a second, independent and more recent dataset, C-NMC30–32. This dataset was used for the B-ALL nor-
mal versus malignant cell classification challenge at IEEE ISBI-2019 and consists of a large number of labeled 
images of normal and malignant cells. The cell images were extracted from blood smear microscopy images after 
normalizing the stain, as described in30–32. The total size of the training dataset is 10,661 images from 76 subjects. 
Out of these 7,272 images are from 47 ALL patients, and 3,389 are from 29 normal subjects with healthy cells.

Validation criteria.  To test the performance of the proposed approach, we used accuracy, sensitivity, speci-
ficity, precision, F-measure (F1), root mean square error (RMSE), and coefficient of determination (R2), as well as 
computational time for selecting features. The definitions of these measures are as follows:
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where “TP” (true positives) refers to the malignant samples that were correctly labeled by the classifier, while 
“TN” (true negatives) are the benign samples that were correctly labeled by the classifier. “FP” (false positives) are 
the malignant cells that were incorrectly labeled as benign, while “FN” (false negatives) are the benign samples 
that were mislabeled as malignant.
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where ŷi denotes the output value, yi is the target value, and n is the samples’ number. yi  is the average of the output 
values. The datasets were divided into training set and test sets as follows: 80% for training (further split into 80% 
for training and 20% for internal validation during 5-fold cross-validation) and 20% for testing (external valida-
tion). There is no overlap between any of the two sets. For the ALL-IDB2 dataset, these percentages correspond to 
208 and 52 images, while for the C-NMC dataset this amounts to 8529 and 2132 images, respectively. Throughout 
the paper, 5-fold internal cross-validation was applied to all experiments. The number of populations was set to 

Figure 4.  Performance of the proposed hybrid VGGNet and SESSA approach on the ALL-IDB dataset; (a) 
average performance over 10 runs, (b) accuracy for 10 best and worst runs.

Dataset 1 Features Percentage Accuracy Specificity Sensitivity

VGG 19 25088 100% 94.23 100 88

Proposed approach 1087 4% 96.11 95 93

Dataset 2

VGG 19 25088 100% 80.9 80.9 80.9

Proposed approach 1115 4.4% 83.3 67.3 91.1

Table 1.  Comparison of feature number and performance for both datasets.
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10, and the maximum number of iterations was set to 100 for each external validation. This strategy was repeated 
for 30 runs to be able to get an average for our statistical approach. All results are reported on the external test set.

Implementation environment.  The proposed system was implemented in Python 3 on Windows 10 64 bit 
using a Core i5 CPU and 8 GB RAM. The training was performed on Nvidia Tesla P100 GPU nodes (16 GB GPU 
memory, 180 GB RAM, 16 vCPUs, Ubuntu Linux 16.04) of the high performance computing cloud Julia at the 
University of Würzburg.

Results
Efficiency of the proposed approach.  To evaluate the efficiency of the proposed approach, SESSA was 
performed in 10 independent runs to produce 10 different feature sets. These sets were evaluated using six classi-
fiers algorithms (Linear SVM, KNN, Decision Trees, Naive Bayes, Adaboost and Multi-Layer Perceptron) which 
had proven advantageous in our previous works33–36. As validation criteria, the mean of the five values (from 
each fold) was used. Figure 4 shows an average of the 10 feature sets’ performance that was produced by SESSA 
using accuracy (Acc.), F1, specificity (Spec.) and sensitivity (Sens.) metrics. The results vary between runs due to 
the nature of the optimization mechanism, which depends on exploring the problem space to search for the best 
solution.

To demonstrate our method’s reliability, we applied cross-validation for each run produced from SESSA for 
each classifier and then calculated the average accuracy of the five folds. In Fig. 4, the best and worst classification 
accuracy were calculated for each of five folds, and the average of all classifiers are reported for each run. Even 
the worst fold’s accuracy doesn’t go below 80% of classification accuracy, except for the Random Forest classifier, 
while most of them were close to 90% of classification accuracy.

In Table 1, the extracted features from VGGNet and those extracted from our approach are compared. Only 
four percent from the extracted features of VGGNet were selected by SESSA. It turns out that the proposed 
approach which has only about 1 K features achieves better results in most classification criteria than the basic 
VGGNet feature set which has about 25 K features.

Efficiency of SESSA feature selection.  In this section, four other optimization algorithms are com-
pared to SESSA, namely Statistically Enhanced Multi-verse Optimization (SEMVO), Statistically Enhanced Grey 
Wolf Optimization (SEGWO), Statistically Enhanced Particle Swarm Optimization (SEPSO) and Statistically 
Enhanced Genetic Algorithm (SEGA). For a fair comparison, all these algorithms were combined with the same 
statistical operations to check the effectiveness of both operations and algorithms. Six performance measures are 
used to evaluate the quality of the produced sub-features, namely RMSE, accuracy, sensitivity, specificity, preci-
sion, and R2. The results of this comparison are shown in Table 2.

On the first dataset (ALL-IDB2), SESSA has the lowest classification error based on the results of RMSE, and 
SEMVO is on the second place. In addition, SESSA also achieved the highest accuracy, sensitivity, specificity, and 
precision which indicates that SESSA is able to select higher-quality features than other algorithms. The results 

Alg. F. no.

Internal validation Testing (external validation)

RMSE Acc. Sens. Spec. Prec. F1 RMSE Acc. Sens. Spec. Prec. F1

Dataset 1 SESSA 1087 0.108 0.985 1.00 0.969 0.971 0.985 0.1853 0.9611 0.9955 0.9292 0.9343 0.9622

(ALL-IDB2) SEMVO 1121 0.122 0.981 1.00 0.961 0.963 0.981 0.1902 0.9610 0.9947 0.9268 0.9304 0.9617

SEGWO 1101 0.170 0.968 0.999 0.938 0.939 0.967 0.1941 0.9576 0.9942 0.9199 0.9258 0.9587

SEPSO 1163 0.132 0.979 1.00 0.957 0.96 0.979 0.1944 0.9609 0.9929 0.9263 0.9298 0.9615

SEGA 1158 0.175 0.965 0.997 0.933 0.937 0.966 0.204 0.9547 0.9918 0.9184 0.9247 0.9561

Dataset 2 SESSA 1115 0.382 0.854 0.923 0.700 0.872 0.897 0.409 0.833 0.911 0.673 0.85 0.879

(C-NMC) SEMVO 1168 0.419 0.825 0.902 0.662 0.848 0.874 0.447 0.800 0.871 0.645 0.843 0.857

SEGWO 766 0.407 0.834 0.906 0.676 0.861 0.883 0.427 0.818 0.906 0.634 0.837 0.870

SEPSO 1196 0.399 0.841 0.916 0.673 0.862 0.888 0.418 0.825 0.897 0.676 0.852 0.874

SEGA 1102 0.42 0.824 0.901 0.662 0.848 0.874 0.443 0.804 0.878 0.642 0.842 0.860

Table 2.  Results of the feature selection compared to other swarm based optimization algorithms for both 
datasets.

Algorithm Parameters values

SESSA C2 ∈ [0, 1], C3 ∈ [0, 1]

SEMVO = .WEP 0 2min , =WEP 1max

SEGWO ∈a [2,0]

SEPSO = = . = =w wDamp C C1, 0 99, 1 1, 2 2

SEGA = . = . = . = . =pc gamma pm mu beta0 8, 0 2, 0 3, 0 02, 8

Table 3.  Parameters setting of all optimization algorithms.
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of R2, as a statistical measure, indicate as well that SESSA is the most suitable algorithm and its sub-features are 
better than the others, followed by SEMVO. In addition, Table 2 shows the computation time along with the best 
sub-features obtained and the reduction ratio of all algorithms. According to this table, SESSA produces the 
smallest number of sub-features equal to 1087 with the highest reduction ratio (i.e, 48% of all features) whereas 
the computational time of SESSA is ranked third after SEGWO and SEGA. Although SESSA is not the fastest 
algorithm, it produced the highest quality sub-features and was able to reduce the size of the problem to the 
smallest ratio. Table 3 shows the parameter settings of all algorithms that were applied in all experiments. These 
settings were taken from the original reference of each algorithm.

On the second, much larger dataset (C-NMC), SESSA still outperforms most of the other feature selection methods, 
with the only exception of SEPSO showing marginally better specificity and precision. Overall, the performance in all 
cases is much lower on the new dataset compared to ALL-IDB2. Upon closer investigation, we found that for some 
subjects (ID H36, H29, H35, H50, H34, H25 and H33) the accuracy is below 0.6, and in particular for H25 (which 
contains only 19 samples) it is only 0.2. Most of these subjects are ALL patients, same as the accuracy in the class level37.

The convergence behaviour of SESSA was evaluated over ten independent runs, and the convergence curves 
are shown in Fig. 5a. In this figure, the x-axis represents the iterations while the y-axis represents the fitness value. 
In addition, the convergence curves of SESSA along with the curves obtained by the compared algorithms are 
illustrated in Fig. 5b, showing that SESSA exhibits a faster convergence than the other optimization algorithms 
and obtained the best fitness value after only 34 iterations.

Comparison with other CNN architectures and related works.  In this subsection, the performance 
of the proposed approach is compared to other convolutional neural networks in terms of classification accuracy 
and time consumption. It should be noted that all compared deep neural networks are more complex than the 
proposed approach in terms of structure and consequently, the feature set produced. For example, Nasnet12 pro-
duces 487 K features, Resnet11 and Xception15 produce 100 K features, Inception14 produces 51 K features, while 
Mobilenet13 produces 50 K features, compared to VGGNet which produces 25 K features.

Figure 5.  Convergence curves of the proposed approach and of other optimization approaches, (a) for 10 
independent runs of SESSA, and (b) compared to other algorithms.

Figure 6.  Feature extraction time and accuracy on the ALL-IDB2 dataset (a) and on the C-NMC dataset (b) 
compared to other CNN models.
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From Fig. 6 (left), it can be seen that on the ALL-IDB2 dataset, our proposed approach outperforms other 
deep convolutional neural network models like Resnet, Xception, Mobilenet, Nasnet, with a slight advantage 
over VGGNet. It also shows that the proposed method can extract the least number of features, which means 
better performance with less resource consumption and efficient use of storage capacity. While feature extraction 
time was among the smallest in our hybrid model, it was larger than for some of the other deep networks. This is 
because VGGNet is more complex, as there are more weight parameters (550 MB weight size) resulting in longer 
inference time. For the much larger and more challenging C-NMC dataset (Fig. 6, right), our model still shows an 
overall accuracy of 83.2%, putting it third after MobileNet (84.9%) and Inception (84.2%).

In Table 4, a comparison with related feature extraction work on both datasets is shown. Although the classi-
fication accuracy we previously reported in21 on the ALL-IDB2 dataset reached 95.67% with a spider optimiza-
tion algorithm for feature selection, it required complex preprocessing operations on the raw images, including 
noise removal and several segmentation steps. We also had used hand-crafted features which is tedious and time 
consuming. Instead, our new hybrid approach proposed here works fully automated on the raw images, with no 
preprocessing or manual steps required. Other previous work also used hand-crafted features, which take a long 
time to generate - not to mention potential problems with compatibility of features with each other, such as fea-
tures with different dimensions or features that require a specific image type.

Discussion
The hybrid approach we present here successfully combines two important targets of machine learning: high 
accuracy and small feature number. This also implies faster computation time and lower resource consumption, 
which both become increasingly relevant. We believe that reducing the size of the feature vector from 25 K as 
extracted from VGGNet to about 1 K after SESSA optimization while improving performance at the same time 
can be considered a successful improvement of a machine learning approach. Our results agree with other related 
work38 where the top-performing models for image classification were ResNet and VGGNet rather than other 
convolutional neural network architectures. The best pre-trained visual feature extractor in several experiments 
so far was reported by Kornblith et al.39.

Using only 208 (80%) samples for training VGGNet while retaining the other 52 samples (20%) for testing 
the model’s performance proved to be challenging because deep learning models need large amounts of data to 
generate precise weights, and consequently, to work efficiently. Enhancing the SSA algorithm by adding statistical 
operations positively affected the performance because it reduces the selected features set by selecting only the 
best features. The statistical operations applied to SSA evaluate each feature and keep only the most relevant ones. 
These steps led to preserving only 10% of the original features, which consequently reduces the running time. In 
addition, the higher accuracy obtained by the proposed algorithm compared to other algorithms can be due to 
several advantages of SESSA for optimization tasks such as fast convergence, the ability to balance between explo-
ration and exploitation phases, and the ability to escape from local optima. On top of that, it is easy to implement 
and has only few parameters.

Using optimization algorithms for feature selection shows great potential for complex classification tasks, 
which might otherwise require days to train a model. This approach can save power and resource consumption 
while at the same time boosting performance. Moreover, it is not necessarily the case that deeper models perform 
better, as evident from our comparison with highly complex models such as NasNet and Mobilenet. Instead, 
choosing the model architecture that best fits the problem can positively affect performance.

Conclusion
In this work, a hybrid classification approach for White Blood Cell Leukaemia image classification was proposed. 
It is based on using a deep convolutional neural network (VGGNet) for extracting features from WBC images and 
then filtering the resulting features using a statistically enhanced Salp Swarm Algorithm (SESSA) to extract only 
relevant and eliminate unnecessary features. The proposed hybrid approach performed very well in both accuracy 
and complexity reduction, which positively affects computation time and resource consumption. The SESSA opti-
mization was successful in narrowing down the features number from 25 K to 1 K while improving performance at 
the same time. The results are the highest among all known published works on the same dataset, even compared to 
other convolutional network models. The combination of CNN feature extraction and SESSA feature optimization 
can be useful for solving other image classification tasks and machine learning optimization problems.

Dataset 1 Features Classifier Feature extraction Accuracy %

Singhal et al.40 Texture SVM Manual 89.72

Singhal et al.41 Texture KNN Manual 93.84

Bhattacharjee et al.42 Shape KNN Manual 95.23

Sahlol et al.21 Shape, color, texture KNN Manual 95.67

Proposed approach Deep features (VGG19) SVM Autom. 96.11

Dataset 2 Features Classifier Feature extraction F1%

Marzahl et al.43 Deep features (ResNet 18) CNN Autom. 86.9

Ding et al.37 Deep features (various) CNN Autom. 86.7

Kulhalli et al.44 Deep features (ResNeXt) CNN Autom. 85.7

Proposed approach Deep features (VGG19) SVM Autom. 87.9

Table 4.  Comparison with related works on ALL-IDB2 (top) and C-NMC (bottom).
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Data availability
All code and data required to reproduce the results are available  at https://go.uniwue.de/all-sessa.
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