Table 1.
Reference Data | S | R | S | R | S | S | R | S | S | R | R | Model Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | S | R | S | R | S | S | R | R | S | R | R | 0.89 |
NSC | S | R | S | R | S | S | R | S | S | R | R | 0.96 |
PLDA | S | R | S | R | S | S | R | S | S | R | R | 0.93 |
PLDA2 | S | R | S | R | S | S | R | S | S | R | R | 0.96 |
VoomDLDA | S | R | S | R | S | S | R | S | S | R | R | 0.95 |
VoomNSC | S | R | S | R | S | S | R | S | S | R | R | 0.96 |
VoomNBLDA | S | R | S | R | S | S | R | S | S | R | R | 0.95 |
SVM = Support Vector Machine; NSC = Supervised Normalized Cut; PLDA = Parallel Latent Dirichlet Allocation; Voom = Variance modeling at the observational level; DLDA and NBLDA are diagonal discriminant classifiers.