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Summary

Bacterial signal transduction systems are responsible for sensing environmental cues and adjusting 

the cellular behavior and/or metabolism in response to these cues. They also monitor the 

intracellular conditions and the status of the cell envelope and the cytoplasmic membrane and 

trigger various stress responses to counteract adverse changes. This surveillance involves several 

classes of sensor proteins: histidine kinases; chemoreceptors; membrane components of the sugar 

phosphotransferase system; adenylate, diadenylate and diguanylate cyclases and certain cAMP, c-

di-AMP and c-di-GMP phosphodiesterases; extracytoplasmic function sigma factors, and 

Ser/Thr/Tyr protein kinases and phosphoprotein phosphatases. We have compiled a detailed listing 

of sensor proteins that are encoded in the genomes of Escherichia coli, Bacillus subtilis, and ten 

widespread pathogens: Chlamydia trachomatis, Haemophilus influenzae, Helicobacter pylori, 
Mycobacterium tuberculosis, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Porphyromonas 
gingivalis, Rickettsia typhi, Streptococcus pyogenes, and Treponema pallidum and checked what, 

if anything, is known about their functions. This listing shows significant gaps in understanding of 

which environmental and intracellular cues are perceived by these bacteria and which cellular 

responses are triggered by the changes in the respective parameters. A better understanding of 

bacterial preferences may suggest new ways to modulate expression of virulence factors and 

therefore decrease the reliance on antibiotics to fight infection.

In a 2000 Hollywood movie, a self-centered male executive gains the ability to hear what 

women are thinking, which causes him to re-evaluate his attitudes and adjust his behavior 

(https://www.wikipedia.org/wiki/What_Women_Want). By studying bacterial signal 

transduction pathways, microbiologists are trying to acquire a somewhat similar skill: to be 

able to figure out what the objects of our attention are looking for and, accordingly, how we 

could make them happy and possibly avoid confrontation.

Similarly to the idea of the ‘bacterial IQ’, introduced several years ago (Galperin, 2005; 

Galperin et al., 2010), this approach may be perceived as misguided anthropomorphism. 

However, despite obvious mechanistic differences, sensory logics of bacteria and humans 

show certain parallels. In bacterial chemotaxis, the sensed compounds are traditionally 

referred to as attractants and repellents (Szurmant and Ordal, 2004; Hazelbauer, 2012). In 

diauxic growth, carbon sources are described as ‘preferred’ and ‘non-preferred’ (Monod, 

1942; Deutscher, 2008; Buffing et al., 2018). Remarkably, chemotactic attractants are not 
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necessarily the best nutrients, the nature of the signaling response is much more complex 

than that. Hence, the question ‘What do bacteria want?’ seems totally legitimate.

Answering this question becomes ever more important as the pool of effective antibiotics 

continues to shrink, limiting our choices to counteract bacterial infections. Although the first 

recipe of using mold extract to cure disease dates back almost 4,000 years (see Galperin and 

Koonin, 1999), the wide use of antibiotics in the past 75 years has led to the emergence of 

multidrug-resistant bacteria. In an amazing combination of Darwinian selection (survival of 

the fittest, i.e. the most resistant, strains) with prokaryotic “altruistic” gene sharing, 

resistance to commonly used antibiotics is spreading like a wildfire (actually, much faster 

than that). The recent proliferation of the colistin resistance gene mcr-1 (Wang et al., 2018) 

offers just the latest example of this phenomenon. The remarkable success in finding 

evolution-proof antibacterials (Ling et al., 2015; Bell and MacLean, 2018) might give us a 

reprieve for the near future. However, another question of using broad-spectrum antibiotics 

remains: how smart is it to try killing most bacteria in one’s body just to get rid of several 

bad actors? Development of new vaccines should help (Rappuoli et al., 2017), but the only 

ready solution to this conundrum is to understand what bacteria really want and how could 

we dissuade them from harming their human (animal) hosts.

It helps that now we have available the human genome sequence and genome sequences of 

most bacterial pathogens. In contrast to humans, whose cells encode more than 600 protein 

kinases and ca. 800 G-protein coupled receptors (GPCRs), bacteria have far fewer signaling 

proteins, whose functions are gradually being uncovered.

About 20 years ago, Céline Fabret, Victoria Feher and James Hoch published a minireview 

on two-component signal transduction in Bacillus subtilis with a provocative subtitle “How 

one organism sees its world”. Making use of the just-finished complete genome sequence of 

B. subtilis strain 168, they examined 36 histidine kinases (HKs) and 35 response regulators 

(RRs) encoded in this genome and classified them into several groups based on the 

organization of the conserved motifs surrounding phosphoacceptor His residues in HKs and 

Asp residues in RRs (Fabret et al., 1999). The same year, a joint paper from Saier and Stülke 

labs provided a careful analysis of the components of the phosphoenolpyruvate:sugar 

phosphotransferase system (PTS) encoded in B. subtilis (Reizer et al., 1999), while we 

presented an account of the c-di-GMP-related GGDEF, EAL and HD-GYP domains in 

several model genomes (Galperin et al., 1999). These and other papers paved the way to the 

knowledge-based annotation of the signaling machineries in model organisms, such as 

Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Vibrio cholerae, and many 

others. Several groups independently compiled comprehensive lists of the signaling proteins 

encoded in bacteria with completely sequenced genomes (Galperin et al., 2001; Ashby, 

2004; 2006; Galperin, 2004; 2005; 2006; Ulrich and Zhulin, 2010; Letunic et al., 2015; Ortet 

et al., 2015; Finn et al., 2016) and used these data to analyze trends in microbial genome 

evolution (Ulrich et al., 2005; Galperin et al., 2010; Williams and Whitworth, 2010). Since 

then, the list of experimentally characterized signal transduction systems kept growing. It 

currently includes those transmitting signals from a dozen or so types of sensory proteins: 

HKs (two-component systems); methyl-accepting chemotaxis proteins (MCPs); membrane 

components of the PTS; adenylate cyclases and cAMP phosphodiesterases; diguanylate 
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cyclases and c-di-GMP-specific phosphodiesterases; diadenylate cyclases and c-di-AMP-

specific phosphodiesterases; extracytoplasmic function (ECF) sigma factors, and 

Ser/Thr/Tyr protein kinases and phosphoprotein phosphatases (Table 1). This list is probably 

incomplete: there are other signaling systems, e.g. those involving ppGpp (Potrykus and 

Cashel, 2008; Kamarthapu et al., 2016) and cGAMP (Davies et al., 2012; Severin et al., 
2018), which appear to be involved primarily in intracellular surveillance but could also be 

involved in environmental sensing. There is also the most common regulatory mechanism 

that involves LacI-like transcriptional regulators consisting of a sensory (ligand-binding) and 

a DNA-binding domain, but these are typically confined to the cytosol.

Each of these sensor types involves a specific kind of signal transduction machinery:

• Two-component systems involve sensor HKs, which respond to the 

environmental or intracellular cues by autophosphorylation, followed by the 

phosphoryl group transfer to the REC domain in their cognate RRs. Depending 

on the nature of the output domains (if present), RRs may serve as transcriptional 

regulators, control flagellar or twitching motility, or control other signaling 

systems, for example, by synthesizing or hydrolyzing second messengers cAMP 

or c-di-GMP (Galperin, 2006; 2010; Gao et al., 2007; Gao and Stock, 2009; 

Zschiedrich et al., 2016).

• Methyl-accepting chemotaxis sensor proteins (MCPs) respond to their respective 

signals by interacting with the chemotaxis-specific HK CheA, which causes 

phosphorylation of the stand-alone REC domain RR CheY. Interaction of 

CheY~P with the flagellar FliM protein affects the direction of flagellar rotation. 

(Ortega et al., 2017; Salah Ud-Din and Roujeinikova, 2017; Bi and Sourjik, 

2018). Some MCPs serve as inputs for alternative signal transduction pathways 

(Hickman et al., 2005; Willett and Kirby, 2011). A great majority of MCPs have 

extracytoplasmic sensor domains, but some MCPs are intracellular.

• Membrane components of the PTS, EIIC proteins (or domains), serve as 

receptors for a variety of mono- and oligosaccharides. In the absence of their 

sugar substrates, soluble PTS components are maintained in the phosphorylated 

state by a complex phosphorylation cascade that typically includes 

phosphoenolpyruvate, common PTS proteins EI and HPr, and the sugar-specific 

proteins (or domains) EIIA and EIIB. Sugar binding to EIIC’s leads to the 

phosphoryl transfer from the respective EIIB~P to this sugar, which causes 

temporary dephosphorylation of the proteins in that specific cascade. Non-

phosphorylated PTS components can bind to a variety of target proteins, such as 

the gammaproteobacterial (class I) adenylate cyclase, certain membrane 

permeases and transcriptional regulators, typically inhibiting their activity. In 

addition, some of them may serve as chemotactic signals (Deutscher et al., 2006; 

2014; Deutscher, 2008; Västermark and Saier, 2014).

• Adenylate cyclases, enzymes that produce second messenger 3’,5’-cyclic 

adenosine monophosphate (cAMP) are found in several distinct classes, at least 

two of which are involved in bacterial signal transduction. Class I enzymes 

(ACI), found in gammaproteobacteria and several deltaproteobacteria, are 
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regulated by the PTS EIIAGlc and possibly other EIIA’s. Class III enzymes 

(ACIII), found in most bacterial phyla, usually contain N-terminal sensor domain 

and are regulated by the respective environmental and/or intracellular cues. 

cAMP-mediated signal transduction involves interaction of the cAMP with 

specific binding domains, found in the transcriptional regulator CRP and in 

several other proteins. The cAMP-CRP complex serves as a global regulator that 

binds to the chromosomal DNA and activates transcription from a variety of 

bacterial promotors. In P. aeruginosa, a class III adenylate cyclase with 

membrane-embedded MASE2 sensor domain (PA3217) proved to be a key 

regulator of virulence (Smith et al., 2004). Flooding the host cell with cAMP, 

which inhibits phagocytosis and causes cytolysis and apoptosis of macrophages, 

may be a common mechanism of pathogenesis involving both sensory (class I, 

class III) and secreted toxin (class II) adenylate cyclases. Ligands for most 

receptor adenylate cyclases have not yet been identified (Bassler et al., 2018).

• cAMP-hydrolyzing phosphodiesterases (CPDs) usually represent stand-alone 

proteins without any sensor domains. Their regulation by environmental or 

intracellular cues has not yet been demonstrated, but a recent paper described 

involvement of CpdA in regulation of persistence state in E. coli (Nosho et al., 
2018).

• Diguanylate cyclases (DGCs, proteins with the conserved GGDEF domains) 

respond to environmental or intracellular signals by synthesizing the second 

messenger 3’,5’-cyclic dimeric guanosine monophosphate (c-di-GMP). Cyclic 

di-GMP has been shown to regulate a variety of systems, including motility, 

protein and polysaccharide secretion, cell division, and biofilm formation. In 

bacterial pathogens, c-di-GMP is often involved in regulating the expression of 

virulence factors (Cotter and Stibitz, 2007; Hengge, 2009; Römling et al., 2013; 

Jenal et al., 2017). Effects of c-di-GMP are mediated by its binding to a variety 

of receptors that include PilZ and MshEN domains, several types of 

transcriptional regulators, diguanylate cyclases themselves and other binding 

proteins (Chou and Galperin, 2016; Krasteva and Sondermann, 2017).

• C-di-GMP-specific phosphodiesterases (PDEs, containing either EAL or HD-

GYP domains) hydrolyze c-di-GMP to linear pGpG to reverse the effects of the 

DGCs and affect a variety of c-di-GMP-regulated systems. Many PDEs have 

extracytoplasmic or intracellular sensor domains, which allow them to regulate c-

di-GMP levels independently of the respective DGCs. Escherichia coli, for one, 

encodes five different PDEs with closely related CSS sensor domains that 

apparently monitor the redox status in the periplasm (Herbst et al., 2018). Some 

inactivated EAL and HD-GYP domains function as c-di-GMP-binding proteins 

(Chou and Galperin, 2016; Jenal et al., 2017).

• Diadenylate cyclases (DACs, containing the conserved the DisA_N domain) 

produce second messenger 3’,5’-cyclic dimeric adenosine monophosphate (c-di-

AMP). Cyclic di-AMP has been shown to mediate signaling related to K+ ion 

transport, osmotic pressure inside the cell, and cell wall stress (Corrigan and 
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Gründling, 2013; Gründling and Lee, 2016; Commichau et al., 2015; 2018). In 

B. subtilis, one of its three DACs monitors the integrity of chromosomal DNA 

and serves as a checkpoint for the cells entering the sporulation process.

• C-di-AMP-specific phosphodiesterases (CDAs, containing either GGDEF-

DHHA-DHHA1 or HD-type domains) hydrolyze c-di-AMP. Most, albeit not all 

of them do not contain any sensor domains and apparently simply reverse the 

effects of DACs.

• Extracytoplasmic function (ECF) sigma factors comprise a vast signal 

transduction machinery that regulates transcription primarily in response to 

intracellular cues but can also respond to environmental factors, such as envelope 

stress (Helmann, 2016; Asai, 2018), blue light (Gaidenko et al., 2006), or 

extracellular polysaccharides (Kahel-Raifer et al., 2010; Yaniv et al., 2014), see 

(Mascher, 2013; Paget, 2015; Sineva et al., 2017) for reviews.

• Signal transduction from Ser/Thr/Tyr protein kinases (STYKs) involves direct or 

indirect phosphorylation of various (mostly unknown) targets. The few 

experimentally characterized targets of Ser/Thr/Tyr protein phosphorylation 

include metabolic (e.g. glycolytic) enzymes and transcriptional regulators. 

However, Ser/Thr/Tyr phosphorylation affects hundreds of diverse proteins 

(Macek et al., 2007; 2008) and the full scope of its effects on the cell behavior 

remains obscure (Kennelly, 2002; Grangeasse et al., 2012; Hansen et al., 2013; 

Wright and Ulijasz, 2014).

• Ser/Thr/Tyr phosphoprotein phosphatases (PP2Cs) dephosphorylate Ser, Thr, 

and/or Tyr residues, both in STYK protein kinases and in their targets and 

reverse the effects of Ser/Thr/Tyr phosphorylation (Wright and Ulijasz, 2014).

A tally of these types of proteins in two model organisms, E. coli and B. subtilis, and in 

several widespread pathogens is presented in Table 1 with detail listings provided in 

Supplementary Tables S1–S3. Similar lists for many other organisms are available at https://

www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html as well as at several other 

web sites (Ulrich and Zhulin, 2010; Ortet et al., 2015).

This analysis showed that the range of compounds sensed by E. coli provides a reasonable 

coverage of the entire metabolic map (Galperin, 2009a; 2009b). Indeed, although each 

sensory system displays certain bias (the PTS only senses sugars, MCPs sense only a small 

number of compounds), taken in its totality, the signal transduction machinery of E. coli 
pretty much covers the key physicochemical parameters (to, pH, oxygen levels) and nutrients 

(amino acids, peptides, mono- and disaccharides, nucleobases) that this bacterium 

encounters in its environment. In B. subtilis, many receptors still remain uncharacterized 

(Table S2) but the list of sensed compounds again appears to cover most, if not all, bases. A 

remarkable number of HKs, DGCs, PDEs, and DACc in both organisms are sensing general 

parameters of cellular well-being, such as envelope and osmotic stress, the redox state of the 

cell, and the availability of terminal electron acceptors. Obviously, these parameters greatly 

influence the lifestyle choices (growth vs. persistence, motility vs. sessility, planktonic vs. 

biofilm state) in both E. coli and B. subtilis.
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Table 1 shows that bacterial pathogens typically encode fewer environmental sensors and 

have a biased distribution of those that they do encode. Mycobacterium tuberculosis, whose 

genome is similar in size to those of E. coli and B. subtilis, does not have any chemotaxis or 

PTS sensors, codes for fewer HKs and c-di-GMP turnover proteins, but has dramatically 

expanded sets of adenylate cyclases and Ser/Thr/Tyr kinases. Streptococcus pyogenes 
encodes 12 HKs and 14 EIIC components of the PTS but few, if any, other receptors.

Table S3 presents the lists of sensory proteins encoded in the genomes of ten widespread 

bacterial pathogens ranging in size from 816 kb in Mycoplasma pneumoniae to 4,412 kb in 

M. tuberculosis. Each such sensor protein is characterized with respect to (i) which signal 

(ligand) it is sensing, and (ii) which genes and/or systems it regulates; there are also 

hyperlinks to the respective entries in UniProt and PubMed (The UniProt Consortium, 

2017). This listing clearly shows that, although signal transduction pathways in pathogenic 

bacteria are streamlined compared to those in free-living E. coli and B. subtilis (not to 

mention the highly sophisticated signaling machineries of P. aeruginosa or V. cholerae), only 

few of them have been studied in sufficient detail. There is not a single organism for which 

all sensed signals have been characterized and all genes or pathways regulated by these 

signals have been identified. Haemophilus influenzae and Mycoplasma pneumoniae, the first 

bacteria with completely sequenced genomes, fare somewhat better than the others, owing to 

the long history of research and relatively small sets of sensor molecules.

The importance of tuberculosis as health hazard in many countries and the relative resilience 

of M. tuberculosis to most standard treatments made this organism the subject of several 

research projects aimed at better understanding its signaling systems and their roles in 

virulence (Shenoy et al., 2004; Bretl et al., 2011; Parish, 2014; Prisic and Husson, 2014). It 

is also one of very few bacteria for which the researchers were prepared to get away from 

wide-spectrum antibiotics and consider organism-specific treatments and drugs. Indeed, 

several HKs (Parish et al., 2003; Rybniker et al., 2014), adenylate cyclases (Agarwal et al., 
2009; Shleeva et al., 2017), and Ser/Thr/Tyr protein kinases and phosphatases (Wong et al., 
2013; Sherman and Grundner, 2014) have been experimentally characterized and shown to 

contribute to virulence. As a result, targeting these systems has been proposed as a viable 

method of controlling M. tuberculosis infection (Bai et al., 2011; Prisic and Husson, 2014; 

Dey et al., 2015).

The chemotaxis machinery of Helicobacter pylori has been comprehensively studied due to 

the early recognition that H. pylori relies on chemotaxis for colonization of gastric mucosa 

(Foynes et al., 2000; Andermann et al., 2002), which leads to the stomach infection and 

inflammation of the gastric epithelial tissue (Croxen et al., 2006; Williams et al., 2007; Rolig 

et al., 2012; Huang et al., 2015). Although all four MCPs (TlpA-TlpD) of H. pylori have 

been experimentally characterized (see Table S3), this bacterium exhibits chemotactic 

responses to various amino acids and bile acids, which have not yet been assigned to any of 

these chemoreceptors (Machuca et al., 2017). There is also some understanding of the 

functions of the H. pylori’s HKs (Waidner et al., 2005; Joseph and Beier, 2007; Marcus et 
al., 2012; Tsang et al., 2015) but not of its Ser/Thr/Tyr protein kinase and phosphatase.
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For most other organisms, understanding of signaling mechanisms is very limited (Table 

S3). We do not know which environmental parameters these organisms sense, let alone why 

they choose these parameters and not others. The cases of Chlamydia trachomatis, the 

causative agent of trachoma, venereal lymphogranuloma and other diseases, and Treponema 
pallidum, the causative agent of syphilis, are particularly frustrating. The first of them 

encodes just a single HK, three Ser/Thr/Tyr kinases and three phosphoprotein phosphatases. 

The second one encodes just four chemoreceptors and a single chemotactic HK, CheA, 

single copies of an adenylate cyclase, diadenylate cyclase and diguanylate cyclase, and 

several phosphodiesterases (Table S3). Chlamydia is an obligate intracellular pathogen, 

while T. pallidum only grows properly in animal tissues, so investigating their signaling 

capacities in vivo is very challenging. Further, bioinformatics studies, including now-popular 

“Big Data” approaches, are of limited value: an alignment of Chlamydia-specific sensor 

domains of Ser/Thr/Tyr kinases and phosphatases would not help when none of the 

respective proteins has been experimentally characterized. Even when these sensor domains 

belong to known protein families (e.g. GAF, dCache, 7TMR_HDED, as is the case with 

several T. pallidum proteins), these assignments are not specific enough to pinpoint the exact 

ligand. This means that identification of these signals (ligands) will have to be done 

experimentally, by cloning and heterogenous expression of sensor domains from these 

organisms. The fact that this has rarely been undertaken for any common pathogens 

demonstrates the prevailing attitude towards bacterial signaling systems as something only 

marginally relevant to pathogenesis.

Despite this general attitude, there has been certain progress in harnessing bacterial signaling 

systems to elicit favorable responses. The natural inclination is to search for compounds 

(waldiomycin, signermycin B) that target the essential genes involved in signal transduction, 

e.g. (in Gram-positive bacteria) histidine kinase WalK (YycG), and to measure success by 

the efficiency of killing B. subtilis, Staphylococcus aureus and Streptococcus mutans 
(Watanabe et al., 2012; Fakhruzzaman et al., 2015). However, managing – or even 

preventing – disease does not necessarily require eradication of the bacteria. For example, an 

HK inhibitor walkmycin C showed the ability to suppress biofilm formation at sub-MIC 

levels, without killing the bacteria (Eguchi et al., 2011). There is a long list of potential HK 

inhibitors (Bem et al., 2015); it might make sense to examine them for the ability to decrease 

virulence at sub-MIC levels. Biofilm formation could also be repressed by modulating c-di-

GMP polls with spermine and spermidine (Sobe et al., 2017). Further, relatively low levels 

of nitric oxide trigger biofilm dispersal in multiple bacteria (Barraud et al., 2009; Cutruzzola 

and Frankenberg-Dinkel, 2016), apparently also acting through c-di-GMP signaling. Future 

studies of the bacterial signaling pathways will likely uncover more simple and non-toxic 

compounds that could be used for taming the infection and preventing secretion of virulence 

factors.

While ‘fooling’ bacterial pathogens offers a number of advantages over killing them, there is 

obviously no guarantee that it will always work, not only because we do not have the 

required depth of knowledge. Single-approach tricks, such as anti-biofilm treatment alone, 

may not work simply because bacteria readily adapt to changes that do not involve essential 

processes (and mutate if the affected process is essential). That is why one may have to 

utilize multi-target approaches, simultaneously ‘tricking’ all bacterial senses,
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Summing up, what do bacteria want? Obviously, they like their amino acids, peptides, 

mono- and disaccharides, nucleobases and vitamins and get stressed when nutrients become 

scarce. They usually like ambient pH and often perceive membrane-penetrating acids as 

repellents. They differ in their preferred redox environments but tightly monitor the redox 

conditions around them and inside the cell. They really care about the integrity of their 

domicile and possess multiple systems to detect envelope stress. In general, bacteria seem to 

be able to adjust to a variety of conditions but do not like abrupt changes; this may provoke 

them to respond by secreting virulence factors. A better understanding of their preferences 

could go a long way towards allowing a more amicable co-existence with our bacterial 

neighbors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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