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Abstract

The flow of viscoelastic fluids in channels and pipes remains poorly understood, particularly at 

low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels 

using pressure measurements and particle tracking. The flow friction factor fη versus flow rate 

exhibits two regimes: a transitional regime marked by rapid increase in drag, and a turbulentlike 

regime characterized by a sudden decrease in drag and a weak dependence on flow rate. 

Lagrangian trajectories show finite transverse modulations not seen in Newtonian fluids. These 

curvature perturbations far downstream can generate sufficient hoop stresses to sustain the flow 

instabilities in the parallel shear flow.

Fluids containing polymers are found in everyday life (e.g., foods and cosmetics) and in 

technology spanning the oil, pharmaceutical, and chemical industries. A marked 

characteristic of polymeric fluids is that they often exhibit non-Newtonian flow behavior 

such as viscoelasticity [1,2]. Mechanical (elastic) stresses in such fluids are history 

dependent and develop with timescale λ, which is proportional to the time needed for a 

single polymer molecule to relax to its equilibrium state in dilute solutions. These stresses 

grow nonlinearly with shear rate and can dramatically change the flow behavior [1,2]. For 

example, the presence of the polymer in turbulent pipe flows can suppress eddies and leads 

to large reduction in flow friction [3,4]. At low Reynolds numbers (Re), where inertia is 

negligible, elastic stresses can lead to flow instabilities not found in ordinary fluids like 

water [5–12]. They can also exhibit a new type of disordered flow—elastic turbulence—a 

turbulentlike regime existing far below the dissipation scale [13–16].

Recently, there has been mounting evidence that the flow of viscoelastic polymeric solutions 

in pipe and channel flows is nonlinearly unstable and undergoes a subcritical instability at 

sufficiently high flow rates even at low Re [12,17–22]. We note that this nonlinear elastic 

instability is different from the linear instability found in highly shear-thinning fluids [23–

26]; the base flow of the former is stable while the latter is unstable. Each is important in its 

own right. Theoretical investigations using Oldroyd-B-type model and nonlinear 

perturbation analysis show that a subcritical bifurcation can arise from linearly stable base 

states [17,19,20,27], while nonmodal stability analysis predicts transient growth of 

perturbation [28–30]. Subsequent experiments in small pipes found unusually large velocity 
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fluctuations that are activated at many timescales [21], as well as hysteretic behavior [18]. 

More recently, experiments in a long microchannel using a linear array of cylinders as a way 

to perturb the (viscoelastic) flow showed an abrupt transition to irregular flow and that the 

velocity fluctuations are long lived [12,22]. The unstable flow exhibits features of 

Newtonian turbulence such as power-law behavior in velocity spectra, intermittency flow 

statistics, and irregular structures in the streamwise velocity fluctuation [22]. Taken together, 

these results show that polymeric solutions flowing in straight channels can undergo a 

subcritical transition—a sudden onset of sustained velocity fluctuations above a perturbation 

threshold and a critical flow rate. This scenario is akin to the transition from laminar to 

turbulent flow of Newtonian fluids in pipe flows [31,32]. The main distinction is that the 

instability is caused by the nonlinear elastic stresses and not inertia. Unlike the Newtonian 

pipe turbulence, however, little is known about the basic structures organizing the instability 

and the law of resistance (i.e., pressure loss due to friction) as the flow transitions from a 

stable to an unstable state.

In this Letter, we investigate the flow of polymeric solutions in a straight microchannel at 

low Re using pressure measurements and particle tracking methods. Pressure measurements 

show that the flow resistance increases relative to the stable viscoelastic base flow, following 

the transition from a laminar to “turbulentlike” state, cf. Fig. 1(c). This behavior is 

analogous to Newtonian turbulence where the friction factor increases as the flow transitions 

from laminar to turbulent except that here the governing parameter is the Weissenberg 

number (Wi), defined as the product of the fluid relaxation time λ and the flow shear rate γ̇. 

The rise in flow resistance is related to enhanced elastic stresses and suggests flow patterns 

not seen in the (viscoelastic) laminar regime. We find that, far downstream from the initial 

perturbation, tracer particles follow wavy trajectories with spanwise modulation not found in 

the stable unperturbed flow (cf. Fig. 5). We believe that the increase in flow resistance is 

connected to the appearances of these wavy particle motions. A friction factor scaling (i.e., 

flow resistance vs pressure drop) for viscoelastic channel flows is proposed to capture this 

increase in drag.

Experiments are conducted using a straight microchannel with equal width and depth (W = 
D = 100 μm), fabricated using standard soft-lithography methods. The device schematic is 

shown in Fig. 1(a). The channel length is much larger than its width L/W = 330 and is 

divided into two regions. The first region consists of a linear array of fifteen cylinders (n = 

15) that extends for 30 W, with the last cylinder located at x = 0. The diameter of the 

cylinder is d = 0.5 W and the center to center separation is l = 2 W. An unperturbed control 

case with no cylinders (n = 0) is used as the linearly stable viscoelastic case. The second 

region follows the array of cylinders and consists of a long parallel shear flow 300 W in 

length. To measure pressure signals, sensors are placed at three locations in the parallel shear 

region, x1 = 1 W, x2 = 50 W, x3 = 290 W [see Fig. 1(a)]. The pressure drop per length p1 (t) 
= (P1 −P2)/(x2 − x1) and p2(t) = (P2 − P3)/(x3 − x2) is recorded at 5 ms resolution for over 2 

hours.

The main polymeric solution is prepared by adding 300 ppm of polyacrylamide (PAA, 18 × 

106 MW) to a viscous Newtonian solvent (90% by mass glycerol aqueous solution); the 

PAA polymer overlap concentration c* is 350 ppm [33] and c/c* = 0.86. This weakly shear-
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thinning polymeric solution has a nearly constant viscosity of around η = 300 mPa s. The 

Newtonian solvent has constant viscosity of 220 mPa s and is also used for comparison. 

Throughout our experiment, the Reynolds number is kept below 0.01, where Re =ρUH/η, U 
is the mean centerline velocity, H is the channel half-width, and ρ is the fluid density. We 

characterize the strength of the elastic stresses compared to viscous stresses by the 

Weissenberg number [7], defined here as Wi(γ̇) = N1(γ̇)/2γ̇η(γ̇), where γ̇ = U /H is the shear 

rate and N1 is the first normal stress difference (see Supplemental Material [34] for fluid 

rheology and residence time).

We begin by investigating the flow patterns formed when a stream of experimental fluid with 

added fluorescent dye is injected at x = 1 W after the last post. The dye spreading and 

patterns are then visualized far downstream in the parallel shear region, 200 W downstream 

from the last post. Figure 1 shows the spatiotemporal profile of the dye intensity along the 

device’s cross section (y) for a channel containing 15 posts (n = 15) for Newtonian [Fig. 

1(b)] and viscoelastic [Fig. 1(c)] fluids. For the Newtonian case, the profile shows typical 

laminar dye layer with minimal dye penetration into the undyed stream, except for diffusion. 

(Similar behavior is observed with viscoelastic fluids for the n = 0 case.) A different dye 

pattern is observed when the Newtonian fluid is replaced by the polymeric solution under 

the same conditions. The viscoelastic case, shown in Fig. 1(c) at Wi ≈ 20, shows irregular 

flow patterns with spikes of dye penetration into the undyed fluid stream. The flow structure 

of streamwise velocity showed similar development downstream (Supplemental Material 

[34]). These fluctuations in time suggest flow modulations normal to the mean flow. In fact, 

we show later that particle trajectories exhibit wavy coherent motions in the parallel shear 

region.

As mentioned before, little is known about elastic turbulence in channel flows. Importantly, 

there is no known law of resistance for such flows. Here, we observe a new friction factor 

scaling for long chain polymeric solutions with weak shear thinning in straight channel 

flows. Figure 2 shows the mean pressure drop per length signals p1, p2 for viscoelastic fluids 

for n = 0 and 15 cases as a function of flow rate Q and Wi. We note that the statistical mean 

of the reported signals measures the aggregate flow resistance encountered to sustain a 

constant mass flow rate. As expected, the pressure drop or flow resistance increases with 

flow rate and Wi. The pressure drop for the n = 0 case slightly deviates from the Newtonian 

case (i.e., ΔP ~ Q) due to mild shear thinning in fluid viscosity. These effects can be 

accounted for by estimating the pressure drop using wall shear rate and corresponding 

viscosity η(γ̇) measured using a cone-and-plate rheometer, as shown by the solid line in Fig. 

2. No significant difference is found between p1 and p2for the n = 0 case as expected, since 

entrance effects are minimized by using a tapered inlet that generates minor disturbance 

relative to that of the cylinder array. For n = 15, we find a clear increase in pressure drop 

relative to the n = 0 case; the two pressure segments p1 and p2 show little to no difference. 

This increase in flow resistance cannot be explained by solely shear-thinning effects and is 

related to the development of additional elastic stresses in the flow as the Wi is increased. It 

also indicates that more energy is necessary to keep the same flow rate compared to a stable 

viscoelastic channel flow.
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The increase in flow resistance is closely associated with the onset of pressure fluctuations 

(Fig. 3). Figure 3(a) shows sample time records of pressure fluctuations p’1 (t) for 

viscoelastic fluids at Wi = 18 in devices with n = 0 (black) and 15 (blue). We observe a clear 

increase in the pressure fluctuations far downstream the cylinders once they are introduced 

in the flow. Figures3(a) and 3(b) show rms values of the pressure fluctuations of the p’1 and 

p’2 segments, respectively, as a function of Wi for the n = 15 and n = 0 cases. For the n = 0 

case, pressure fluctuations remain relatively small and nearly independent of Wi; the small 

increase in pressure fluctuation at the higher values of Wi may be due to entrance effects. 

We find that for both segments, p’1 and p’2, the rms values show significant departure from 

the stable n = 0 case and a marked increased with increasing Wi. The values of the rms(p’1) 

and rms(p’2) start to depart from the n = 0 trend at Wi ≈ 5 and grow weakly until Wi ≈ 9. 

This is followed by a much steeper growth for Wi ≳ 9. This trend in pressure fluctuation 

measurements agrees relatively well with measurements of velocity fluctuations, for the n = 

15 case, which established that the linear instability associated with the flow around the 

upstream cylinders occurs at Wi ≈ 4 and the onset of subcritical instability occurs at Wi ≈ 9 

[12,22].

Since pressure data are now available, one can investigate the law of flow resistance for 

viscoelastic channel flows as a function of Wi. This is analogous to measuring the Darcy 

friction factor for Newtonian pipe flows as a function of Re [37], traditionally defined as 

(ΔP/ΔL)/(ρU2/2W). For small geometry variations (e.g., smooth pipes), the friction factor f 
is solely a function of Re. In what follows, we propose that there is an analogous law of 

resistance for viscoelastic channel flows controlled by Wi. Since fluid inertia in our 

experiments is negligible (Re ≲ 10−3), we propose to scale the pressure drop by the viscous 

stresses across the channel and define a viscous friction factor fη as (ΔP/ΔL)/ cηwγ̇w/W , 

where γ̇w is the wall shear rate, ηw is the corresponding viscosity, and geometry factor c ≈ 4 

for square duct (Supplemental Material [34]).

Figure 4 shows the friction factor fη versus Wi for the main polymeric fluid, as well as two 

other fluids with different polymer concentrations and solvent viscosity (see [34]) in 

channels with n = 0 and 15. For n = 0, the friction factor is independent of Wi, indicating 

that the flow resistance is purely governed by viscous drag well accounted for by the 

normalization. For n = 15, however, we observe an increase in flow resistance with fη ~ 
Wi1/3 up to Wi ≈ 9. Surprisingly, we find a second plateaulike regime for Wi ≳ 9 in which a 

sudden decrease in fη is observed followed by a weak dependence on Wi, valid before 

polymer finite extensibility occurs at Wi ≳ 16. This relative decrease in drag seems to 

suggest the emergence of a new flow state. The data in Fig. 4 suggest that the initial fη ~ 

Wi1/3 regime is likely a transitional state leading to a fully turbulentlike state. Similar to 

Newtonian pipe flows, a sharp increase in drag occurs during the transition regime before 

the flow becomes fully turbulent. We note the Wi1/3 scaling observed here is lower than the 

Wi1/2 scaling of injected power in the elastic turbulence of a swirling parallel plate system 

where the base flow is curved and linearly unstable [38].

Next, we investigate the structure of the viscoelastic flow for n = 15 and Wi = 18; this is the 

regime in which we expect highly irregular flow but quantifying the presence of flow 
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structures has been difficult due to the weak spanwise velocity component relative to the 

mean shear [22]. To interrogate the flow with enough spatial and temporal resolution, we use 

a novel three-dimensional holographic particle tracking method [39,40]. The flow is seeded 

with tracers (1 μm diam at 0.001%) imaged under microscope and high speed camera (5000 

fps). Using a coherent light source, particle positions are reconstructed from the light 

scattering field on the imaging plane (see [34]). The uncertainty in particle centroid is 30 nm 

for in-plane x, y components. The measurement window is located at x = 200 W in the 

parallel shear region and extends for 2.5 W streamwise and 0.9 W spanwise.

Figure 5(a) shows sample particle trajectories for the Newtonian (grey) and viscoelastic 

(blue) fluids for the n = 15 and Wi = 18. While the particle trajectory in the Newtonian case 

follows the mean flow with little lateral motion, particle trajectories in the viscoelastic fluid 

case display a relatively pronounced waviness and lateral movement. This is not isolated to a 

few particles and Fig. 5(b) shows the full extent of the spanwise spread for 2000 such 

Lagrangian trajectories sampled uniformly in the channel. Such wavy structures underlie the 

irregular dye transport patterns seen in Fig. 1(c). We quantify these deviations from the base 

flow by calculating the normalized distribution (pdf*) of the ratio between transverse to 

streamwise cumulative displacements [Fig. 5(c)] defined as δy/δx = Σ|dyi|/Σ|dxi|, where dyi 

and dxi are particle displacements between frames. The Newtonian data (black) show 

minimal transverse component and set the measurement noise level. Particles in the 

viscoelastic fluid, however, exhibit small but finite values of transverse velocity and a 

broader distribution of individual particle end-to-end displacement. These results indicate 

the presence of spanwise structures in viscoelastic fluids in parallel shear flows. While these 

deviations from the base flow are small in absolute terms (2% of the streamwise 

component), even small deviations in the velocity fields in viscoelastic fluids can represent 

significant increase in elastic stresses due to the nonlinear relationship between stress and 

velocity [41,42].

Can these curved particle trajectories drive or maintain flow instabilities far downstream 

(200 W)? Figure 5(d) shows the distribution of particle path line curvatures at 200 W for Wi 

= 18, n = 15. The trajectories have a mean curvature of R−1 ≈.023 μm−1, which is an order 

of magnitude larger than the Newtonian counterpart. Using N1 data (see [34]), we compute 

the Pakdel-McKinley condition [(λU/R)Wi]1/2 [43]. We find a value of approximately 7, 

which is sufficiently large to trigger flow instabilities. Similarly, we find that hoop stresses 

N1/R = 8 Pa/μm are of the same order (or higher) than the viscous drag ΔP/ΔL|n=0 = 2 Pa/

μm. Hence additional pressure head is lost to overcome elastic stresses induced by the 

chaotic flow. These results suggest that weak but nontrivial streamline curvatures generate 

sufficient elastic stress fluctuations in the secondary flow direction to sustain flow 

instabilities far downstream.

In summary, we investigated the flow of viscoelastic fluids in a long, straight microchannel 

at low Re. This flow becomes unstable via a nonlinear subcritical instability at a critical Wi 

for finite amplitude perturbations [12]. Pressure measurements are used to establish the 

friction factor scaling for this flow (Fig. 4). We find two regimes: (i) a transitional regime 5 

≲ Wi ≲ 9 in which the (viscous) friction factor fη ~ Wi1/3, and (ii) a turbulentlike regime Wi 

≲ 9 in which a sudden reduction of fη is observed followed by a weaker dependence on flow 
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rate. The increase in drag (30%, cf. laminar flow) is accompanied by an increase in pressure 

fluctuation and development of elastic hoop stresses due to finite spanwise curvature 

perturbations, which we quantify using high-resolution holographic particle tracking. Unlike 

the Reynolds stress in classical turbulence, the extra flow resistance here stems from elastic 

hoop stresses induced by curvature perturbations. Furthermore, the various levels of 

increased resistance for different polymeric fluid may be controlled by the distribution of 

such curvatures. At intermediate Re, recent studies on elastoinertial turbulence (EIT) 

proposed a direct path to the classic drag reduction asymptote, bypassing Newtonian 

turbulence [44,45]. Whether a common instability underlies these two states, elastic 

turbulence and EIT, remains an open question. Finally, our results provide strong evidence 

for the “instability upon an instability” mechanism proposed for the finite amplitude 

transition of viscoelastic fluids in parallel flows [19] and develop new insights into the flow 

of polymeric solutions in channels and pipes. Even small perturbations in the velocity field 

can lead to large changes in elastic stress and flow drag.
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FIG. 1. 
(a) Schematic of the microchannel, showing location of pressure sensors and the dye 

injection scheme. [(b) and (c)] Spacetime dye patterns for n = 15 and x = 200 W in the 

parallel shear region, (c) viscoelastic fluid at Wi = 20, and (b) the Newtonian case at 

identical flow rate.
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FIG. 2. 
Pressure drop per unit length as a function of flow rate Q and Wi for n = 15 and n = 0 cases. 

The solid line represents estimation using wall shear rates and viscosity from rheology 

measurements. Error bars are less than marker size and not shown here.
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FIG. 3. 
(a) Pressure gradient signal p’1(t) for the n = 15 case, compared with the unperturbed n = 0 

case, Wi = 18. [(b) and (c)] Root-mean-square (rms) fluctuations versus Wi for n = 0 and 15, 

(b) p’1, and (c) p’2. The dashed line is the average level for Newtonian fluid, experimentally 

found to be constant for increasing Q.
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FIG. 4. 
Viscous friction factor fη as a function of Wi for n = 0 and 15 with four cases and types of 

polymeric fluids. Case I: 300 ppm PAA 90% glycerol, 0–50 W, II: 50–290 W, III: 250 ppm 

PAA 90% glycerol, 0–290 W, IV: 100 ppm PAA 93% glycerol, 0–290 W.
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FIG. 5. 
(a) Particle trajectories in the streamwise (x) and spanwise (y) direction; blue lines represent 

the n = 15 viscoelastic case at Wi = 18 and the gray line is Newtonian at identical conditions. 

(b) Collection of trajectories colored by speed. Distributions of (c) cumulative transverse to 

streamwise displacements and (d) trajectory curvatures, where the dashed line represents 

population mean.
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