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Abstract

Developmental processes underlying normal tissue regeneration have been implicated in cancer, 

but the degree of their enactment during tumor progression and under the selective pressures of 

immune surveillance, remain unknown. Here, we show that human primary lung adenocarcinomas 

are characterized by the emergence of regenerative cell types typically seen in response to lung 

injury, and by striking infidelity amongst transcription factors specifying most alveolar and 

bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-

specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional 

programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This 

developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic 

dormancy in a mouse model and exhibits SOX9-dependent resistance to Natural Killer (NK) cells. 

Loss of developmental stage-specific constraint in macrometastases triggered by NK cell depletion 

suggests a dynamic interplay between developmental plasticity and immune-mediated pruning 

during metastasis.

Tissue homeostasis is maintained by stem cells1, whereas damaged tissues are repaired by 

facultative progenitors that are activated upon injury2–5. In the pulmonary epithelium, a 

tissue with relatively low turnover, most epithelial cell types can interconvert in the context 

of growth or injury6,7. There is evidence that such plasticity extends to primary lung cancer, 

in which embryonic pathways that typically control stem and progenitor cell behavior 

become active8,9. Yet, the role of developmental plasticity in tumor progression and 

metastasis remains poorly understood10. In particular, the extent to which tumor cells 

subvert regenerative processes during metastatic progression, and how this is shaped by the 

sustained selective pressures of anti-tumor immunity, is unknown. We used droplet-based 

single-cell RNA sequencing (scRNA-seq)11–13 and graph-based phenotypic analysis14,15 to 

explore tumor cell heterogeneity through the lens of epithelial regeneration in lung cancer 

metastasis16, and to assess parallels between tumor cell plasticity and developmental 

hierarchies17. Using patient tumors as well as a mouse model of lung cancer metastasis, our 

analyses identify regenerative cell types and lineage promiscuity in untreated primary 

tumors and reveal a range of embryonic lung morphogenic states in metastases. We 

demonstrate an unexpected, developmental stage-specific differential sensitivity to NK cells 

that shapes the phenotypic landscape of overt colonization from latent metastasis-initiating 
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cells. Depletion of NK cells allows diverse cancer cell types that were targeted to emerge 

during metastasis. In this context, SOX9 expression in cancer cells confers resistance to NK 

cell-mediated killing, suggesting an intimate relationship between lineage-determining 

transcriptional programs and immune vulnerabilities during lung cancer evolution.

Single-cell transcriptional landscape of primary and metastatic lung 

adenocarcinomas

We profiled the transcriptomes of 40,505 individual cells obtained from 17 freshly resected 

human tissue samples comprising adjacent non-tumor involved lung (n = 4, hereafter 

‘normal lung’), primary lung adenocarcinoma (LUAD, 7 untreated and 1 post neo-adjuvant 

chemotherapy), as well as three LUAD metastases from brain, one from bone, and one from 

adrenal glands (Fig. 1a). These samples spanned various stages of tumor progression 

(Extended Data Fig. 1). All the scRNA-seq data were merged and normalized to create a 

global cell atlas. Clustering15 revealed 20 cell types spanning stromal, lymphoid, myeloid, 

epithelial and endothelial cells, pericytes and fibroblasts, as well as cancer cells (Fig. 1b–c). 

The library size, complexity and viability metrics were of high quality (Extended Data Fig. 

2a–c) and largely consistent across patients (Extended Data Fig. 2d–e). Although their 

abundances varied by sample (Fig. 1b), most major myeloid, lymphoid and stromal cell 

types (annotated in Extended Data Fig. 3–4) were highly reproducible across patients 

(Extended Data Fig. 5a–b), and were detectable in both the merged global atlas and in 

individual patient samples (Extended Data Fig. 5d–e). In contrast, patient-specific cell states 

emerged within cancer cells of the neo-adjuvant-treated primary tumor and metastases, 

suggesting biological selection in later stage disease.

Cell type assignments were further refined within myeloid, epithelial, and stromal 

compartments (Extended Data Fig. 3) separately from the lymphoid compartment (Extended 

Data Fig. 4), to avoid biases introduced by cell-type-specific capture rates. The frequency of 

these cell types varied significantly (Kruskal-Wallis rank test) between normal lung, primary 

tumors, and metastases (Fig. 1d). For example, NK cells were depleted in primary LUADs 

compared to normal lung (Fig. 1d), consistent with a recent report18. Myeloid cells were 

distinguished by upregulation of inflammation, wound healing and antigen presentation 

genes, whereas stromal cell types were highly proliferative and expressed BMP, FGF and 

WNT cytokines implicated in lung morphogenesis (Extended Data Fig. 5a–b). Epithelial and 

carcinoma subpopulations exhibited distinct expression patterns of transcription factors and 

surface markers characteristic of specialized lung epithelial cell types including an alveolar 

epithelial progenitor (AEP) known to regenerate the alveolar epithelium upon injury5 

(Extended Data Fig. 3b and Extended Data Fig. 7). Of note, the majority of sequenced cells 

were immune, with cancer cell purity ranging from 7–32% per sample. These estimates were 

slightly lower than purity estimates19 of 20–40% per sample from bulk targeted gene 

sequencing20 (Extended Data Fig. 5c, R = 0.58, p = 0.08), likely due to a bias in epithelial 

cell recovery. However, even bulk estimates point to a similarly high level of immune 

infiltrate in our cohort and in other studies of non-small cell lung cancer21.
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Regenerative and mixed lineages in primary tumors

We next focused on the relationship between primary carcinoma cells and adult lung 

epithelial lineages, which are directed to specialize by the expression of transcription factors 

SOX2 and SOX9 during development22 (Fig. 2a). Within the adult normal epithelium, we 

identified four mature cell types including alveolar epithelial cell types 1 and 2 (AEC1 and 

AEC2) of the distal lung, as well as ciliated and club cells of the upper airway (Extended 

Data Fig. 6a–b). Lineage-specific gene sets defined in the developing mouse embryo at 

D18.5 23–25 (Supplementary Table 1) distinguished these four epithelial cell types, which 

showed near-mutual exclusivity in their top differentially expressed genes (DEGs) 

(Extended Data Fig. 6c–d). Canonical markers of the lung epithelium were among the top 

DEGs (Extended Data Fig. 6c) and the majority of cells within the AEC1, AEC2 and ciliated 

clusters highly expressed more than 60% of genes within each lineage-specific gene 

signature (Extended Data Fig. 6e).

Analysis of the combined normal and primary tumor epithelium revealed the emergence of 

regenerative and mixed-lineage states in cancer (Fig. 2, Extended Data Fig. 7a–b). In 

addition to the four mature lineages identified in normal lung, two progenitor cell types 

implicated in the regeneration of severely injured lung were detected in primary tumors (Fig. 

2a–c). These include SOX2-derived KRT5+ basal-like cells3,4 (Phenograph Cluster 13), 

which exhibited increased RAS signaling and mesenchymal gene enrichment associated 

with wound response, and SOX9-expressing AEPs5 (Phenograph Clusters 10–11), which 

were tumor-specific and predominantly derived (80%) from the neoadjuvant-treated primary 

tumor MSK-LX679 (Extended Data Fig. 7a–c). We also found that SOX9-expressing AEP-

like cells are frequently observed in advanced, LUAD metastases (see below). Interestingly, 

cells annotated as AEPs also expressed genes associated with mucin production, supporting 

the notion that cells exhibiting progenitor activity may also retain differentiated programs26 

(Extended Data Fig. 7c). A third patient (MSK-LX680)-specific tumor cluster expressed 

canonical neuroendocrine (NE) markers (Extended Data Fig. 7c), consistent with this 

patient’s diagnosis of LUAD mixed with large cell neuroendocrine carcinoma (Extended 

Data Fig. 1). Nearly all carcinoma-specific cell types showed increased expression of 

transcription factors associated with progenitor cell function (ID2, SOX2 and SOX9, 

Extended Data Fig. 7c). The remaining six clusters, comprising more then 50% of all cancer 

cells, aberrantly expressed signatures related to multiple proximal and distal epithelial cell 

lineages and were therefore annotated as mixed-lineage (grey cells, Fig. 2b–d, Extended 

Data Fig. 7b). Top DEGs within these mixed-lineage clusters include markers for AEC1, 

AEC2, ciliated, AEP and basal-like cells (Fig. 2e, Extended Data Fig. 7a).

To further investigate lineage promiscuity in primary tumors at the level of individual cells, 

we compared the fraction of lineage-specific genes expressed in normal epithelial lineages 

and in mixed-lineage tumor cell clusters based on un-imputed data (Methods). The 

distribution of cells expressing pairwise combinations of lineage markers illustrates this 

promiscuity: densities of AEC1 and AEC2 normal cells overlap with mixed-lineage tumor 

cells (clusters 0 and 1) (Fig. 2f), demonstrating tumor cell promiscuity across these two 

alveolar cell types.
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Quantifying transcription factor promiscuity across multiple epithelial lineages is a 

challenging combinatorial problem given the number of cell types and their dependencies. 

Therefore, we applied a phenotypic volume metric13 (Methods) to capture complexity 

within the lineage-specific gene-gene covariance structure of tumor and normal cells. The 

expansion of lineage phenotypic volume in primary tumor cells compared to normal lung 

quantifies the greater heterogeneity in primary tumors due to aberrant lineage marker 

combinations (Fig. 2e–g).

This increased lineage plasticity in tumor cell states was nevertheless structured and 

bounded by predominantly normal, lung epithelial cell types (AEC1, AEC2 and club cells, 

Extended Data Fig. 7d–f). Specifically, the mixed-lineage clusters occupied intermediate 

states between boundary states identified as the extrema of the first three diffusion 

components13,14,27,28. While the extrema of diffusion components 1 and 3 were associated 

with the specification of mature AEC1, AEC2 and club cell types, diffusion component 2 

more generally reflected proximal-distal patterning in the lung and showed enrichment of 

embryonic stem cell programs in proximal cell types (Extended Data Fig. 7d). The latter 

likely reflects the dual role of SOX2 in lung endoderm specification and proximal 

patterning29. Importantly, tumor cells were similar to normal lung epithelium but also 

distinguished by the expression of an adenocarcinoma signature that is absent in non-

cancerous lung epithelium30 (Extended Data Fig. 7g), supporting their aberrant nature.

Our analysis thus shows that primary tumors exhibit lineage diversity and that tumor cell 

transcriptional profiles can resemble heterogeneous mixed lineage and regenerative cell 

types that expand in response to lung injury.

Developmental continuum in human metastases

Phenograph clustering of the combined normal, primary tumor and metastatic epithelium 

revealed 21 distinct phenotypic states based on genome-wide expression patterns, 11 of 

which were appreciably detected in metastases (Extended Data Fig. 8a–d). The metastatic 

clusters were distinguished by upregulation of pathways related to embryonic stem cells, 

wound healing and morphogenesis, as well as gene sets defining the conserved alveolar 

epithelial progenitor (Extended Data Fig. 8a). Therefore, we ranked the 11 metastatic 

clusters based on the average expression of a specific lung epithelial development signature 

(Fig. 3a, GO:0060428 listed in Supplementary Table 2) and explored their association with 

early lung specification and development programs (Fig. 3b). Based on the expression of 

multiple gene signatures, we highlight three metastatic states along this developmental 

progression (type I-III). The ordering of metastatic clusters by lung development negatively 

correlated with the expression of a recently described, adult stem cell signature linked to 

aggressive epithelial cancers31 (Fig. 3a). Clusters with elevated adult stem cell signatures 

(type I and II) also exhibited higher expression of cell migration genes, and intermediate 

type II cells were enriched for morphogenesis and respiratory endoderm specification 

pathways. In contrast, cells from type III clusters exhibited the highest levels of AEP 

programs (Fig. 3a).
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Next, we used the same lung epithelium signature to rank individual tumor cells. We found 

that the expression of key endoderm and lung-specifying transcription factors32 likewise 

supports a phenotypic progression from foregut endoderm development (type I, SOX17 and 

HHEX33,34), to lung and trachea morphogenesis (type II, SOX2, NKX2–1 and FOXA2), to 

the WNT-responsive alveolar progenitors that give rise to all proximal and distal cell types 

(type III, SOX9 and WNT7B) (Fig. 3c). To specifically explore developmental gene 

expression as an important source of variation, we used the single-cell imputed expression 

matrix of these genes exclusively (instead of the full transcriptome) to cluster tumor cells 

and identified four developmental stages: a proliferating (type I-P) and quiescent (type I-Q) 

adult stem-like state, a SOX2high regenerative state (type II) and a SOX9high alveolar 

epithelial progenitor state (type III).

Lung development is largely specified by SOX2 and SOX929, and SOX2 additionally directs 

embryonic development and foregut endoderm specification (Fig. 3b). Few cells in the late 

embryonic and postnatal stages retain expression of these transcription factors outside of an 

injury response35,36. We used immunofluorescence to analyze these critical factors in four 

matched primary-metastasis pairs, and observed strong nuclear SOX2 and SOX9 expression 

in metastatic epithelium that was undetectable in primary tumors, thereby corroborating 

single-cell transcriptional data showing increased expression of stem and regenerative 

programs in metastases (Fig. 3d and Extended Data Fig. 8c).

We asked whether these metastatic subpopulations can also be found in primary LUADs, 

and observed that cells corresponding to stem and regenerative (type I/II) metastatic stages 

exist to varying extents in nearly all primary tumors (Fig. 3e). Moreover, the abundance of 

type I cells was associated with reduced overall survival in LUAD patients37 (Fig. 3f). This 

finding agrees with previous reports that stem cell transcriptional programs are associated 

with inferior outcomes across cancer types31. Conversely, SOX9-expressing AEP clusters 

showed additional patient-specific features, predominantly after neo-adjuvant chemotherapy 

(Extended Data Fig. 8a,e).

Collectively, these data suggest that metastases recapitulate key stages of endoderm and lung 

morphogenesis, which, when mapped to normal development (Fig. 3b), lie upstream of 

mature proximal and distal airway lineages that demarcate the phenotypic landscape of 

primary tumors.

Developmental continuum in mouse model of metastasis

While phenotypic states spanning key stages of endoderm and lung development are 

detected in patient metastasis, they are variably abundant and sampled at the endpoint of a 

dynamic, evolutionary process with multiple bottlenecks10. Therefore, we sought to 

recapitulate these findings in a transplantable mouse model of lung cancer metastasis 

derived from an early stage RAS-mutant human LUAD (H2087-LCC)16, which may be 

interrogated over time. We previously showed that upon inoculation into the arterial 

circulation of athymic mice, H2087-LCC cells infiltrate multiple organs, persist as latent 

disseminated tumor cells (DTCs), express stem-like transcriptional signatures, including 

SOX2 and SOX9, and retain metastasis-initiating potential16. They remain quiescent for 
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extended periods of time, infrequently leading to spontaneous macrometastatic outbreaks, 

which can be monitored using a bioluminescence (BLI) reporter. Treatment with antibodies 

that eliminate NK cells leads to extensive multi-organ metastasis in these mice16. We 

isolated lung cancer cells from two BLI-negative kidneys that showed no signs of metastasis, 

yet contained DTCs. We also isolated cancer cells from one case of incipient lung 

metastasis, and from three individual lung macrometastases that evolved spontaneously (Fig. 

4a–b). Cells were uniformly isolated through antibiotic selection for one passage in culture 

and then subjected to scRNA-seq. This selection step, which was essential because DTCs are 

extremely rare, likely has some effect on gene expression and is a limitation of our model. 

Clustering15 identified 18 mouse metastatic populations (Fig. 4c–d) that show distinct 

patterns of SOX2 and SOX9 expression (Fig. 4e). We then correlated the mean expression of 

each mouse metastatic cluster with means of the four developmental stages observed in 

patient-derived tumor cells (type I-P, I-Q, II and III annotated in Fig. 3c; Methods), and 

visualized these correlations using a bipartite graph (Fig. 4f).

The successive stages of metastatic outbreak in this transplantable mouse model mirrored 

the developmental progression observed in patient metastatic clusters. H2087-LCC cells 

isolated as DTCs showed a mixture of SOX2low-int expressing cells and cells negative for 

both SOX2 and SOX9 (Fig. 4e). DTC clusters all specifically correlated with the 

transcriptional state of quiescent, adult stem-like cells (type I-Q), except for a single 

subpopulation that correlated with the proliferating stem-like state (type I-P). Moreover, the 

incipient colonies and the macrometastases all harbored a minority of quiescent stem-like 

cells (type I-Q), suggesting that transit through this state may be required to form 

macrometastases. The incipient metastatic colonies also showed enrichment for SOX2high 

cells and strong correlation with both the regenerative state (type II) and proliferating stem-

like cells (type I-P) whose key transcription factors are partially reactivated during 

regeneration (Fig. 3c). Conversely, clusters predominantly derived from spontaneous 

macrometastases showed enrichment of SOX9, were correlated with these regenerative and 

proliferating stem-like states (type II and I-P respectively), and gained transcriptional 

concordance with the AEP state (type III) (Fig. 4f).

Developmental stage-specific differential immune sensitivity

We observed elevated expression of immune and inflammation response genes in type I 

stem-like cells, which decays exponentially with progressive lung epithelial development 

(and concordantly, higher SOX9 expression) (Fig. 5a) and is significantly depleted in type 

III (SOX9high) AEP metastatic clusters (Extended Data Fig. 8a, U = 352574, p = 2e-39). We 

have previously shown that metastatic outbreaks are determined, in part, by evasion of NK-

cell-mediated surveillance16 and that antibody-mediated depletion of NK cells increases 

metastatic outbreak from DTCs in our mouse model of lung cancer metastasis16. This 

suggests that along the developmental progression, metastatic cells might exhibit differential 

vulnerabilities to the innate immune system. As further evidence of this, we observed that 

patient primary SOX9high tumors are associated with more NK cell infiltrate, as measured by 

average NK-cell-specific gene signature expression across 510 TCGA lung adenocarcinoma 

patients38. Conversely, stratification of the same patients by SOX2 expression reveals 
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reduced NK cell abundance in SOX2high tumors, consistent with stage-specific sensitivities 

(Extended Data Fig. 9a).

To directly test whether developmental transcriptional programs influence sensitivity to NK 

cell cytolysis, we co-cultured H2087-LCC metastasis-initiating cells with interleukin 2 

(IL2)-activated mouse NK cells (Fig. 5b). Imaging and segmentation of thousands of cells 

enabled unbiased quantitation of endogenous nuclear SOX2 and SOX9 protein expression as 

detected by immunofluorescence before and after NK cell co-culture. The presence of NK 

cells selected for cancer cells expressing SOX9 over cells expressing SOX2 (Fig. 5c). In line 

with this observation, SOX9 overexpression led to a reduction in NK cell-mediated 

cytolysis, as measured by annexin V/7-AAD accumulation, whereas SOX2 overexpression 

had no effect on NK cell-mediated killing (Fig. 5d and Extended Data Fig. 9b). To exclude 

potential bias related to interspecies target-to-effector cell reactivity, we repeated NK co-

culture with cell lines derived from mouse KrasG12D;p53–/– LUAD tumors39. In general, 

SOX9 expression was enriched in highly metastatic derivatives as compared to non-

metastatic derivatives (Extended Data Fig. 9c). The metastatic derivative KP482T1 was 

extremely resistant to NK cytolysis in vitro and in vivo16 and showed dramatic enrichment 

of endogenous SOX9 nuclear protein levels upon NK cell co-culture (Fig. 5e and Extended 

Data Fig. 9d). While the non-metastatic derivative KP368T1 was more sensitive to NK 

cytolysis, SOX9 over-expression alone was not sufficient to render it more resistant to NK 

cytolysis (data not shown). Collectively, these findings suggest stage-specific differential 

sensitivity to NK cells, with SOX9high metastasis-initiating stages being more resistant.

To better understand the link between SOX9 expression and resistance to NK cytolysis, we 

queried the gene expression of stress ligands recognized by NK cells40 as well as MHC 

Class I inhibitory ligands across patient-derived tumor cells assigned to the quiescent stem-

like state (type I-Q, associated with latent DTCs), the SOX2high regenerative state (type II, 

associated with incipient metastasis) and the SOX9high alveolar epithelial progenitor state 

(type III, associated with macrometastases). NK activating ligands correlated with 

proliferation (Spearman R = 0.70, p < 0.001) and did not segregate by SOX2 or SOX9 

expression (Fig. 5f). However, MHC Class I transcripts were dramatically upregulated in 

both the quiescent stem-like cells (type I-Q) that persist long term in vivo and in the 

SOX9high AEPs (type III) that predominate in macrometastases and exhibit NK-resistance in 
vitro. Along this progression, we observed cells that exit the quiescent state while invoking a 

SOX2high regenerative program, downregulating MHC Class I markers of self and 

upregulating NK activating ligands, rendering them potently susceptible to NK cell 

clearance (Fig. 5f). Indeed, SOX9 overexpression in metastasis-initiating H2087-LCCs 

increased the relative expression of canonical HLA genes, especially HLA-B (Fig. 5g), 

which we validated at the protein level (Fig. 5h). Although the NK activating ligand 

RAET1L increased with SOX9 expression in patient data and within our H2087-LCC 

overexpression system (Fig. 5f and Extended Data Fig. 9e), there is strong evidence that NK 

cell responses are tilted towards inhibition when both activating and inhibitory ligands are 

engaged41. Likewise, the E8.5 mouse embryo shows distinct spatial patterning between 

SOX2 and SOX9 stages (inferred from single-cell expression data; see Methods); here we 

also observed nearly exclusive expression of MHC Class I markers in SOX9-expressing cells 

(Fig. 5i). Finally, the TCGA cohort of 510 LUAD patients exhibited a significant positive 
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correlation between MHC Class I and SOX9 target gene expression (Fig. 5j). Together, our 

analyses suggest that SOX9high cells evade NK cell-mediated clearance by inducing MHC 

Class I markers of self and that proliferative, SOX2high cells are actively constrained by NK 

cell-mediated surveillance.

To test this hypothesis in vivo, we intracardially injected H2087-LCCs into the arterial 

circulation of athymic mice. Thirty days later, we administrated anti-GM1 antibody to 

trigger NK cell depletion (Fig. 6a), which facilitates the robust outbreak of macrometastases 

as evidenced by BLI signal (Extended Data Fig. 10a) and histological analysis16,42. To 

distinguish whether the continuum of developmental states observed in each macro-

metastasis was derived from a single disseminated cell (evidence of tumor cell plasticity) or 

from polyclonal seeding, we adapted a lineage-tracing rainbow system that relies on 

stochastic expression of trichromic reporters (Cerulean, Venus, and mCherry) in single 

cells43. The ratio between the reporters endows each cell and its clonally derived population 

with a unique spectral property that remains stable after multiple passages. Using both high-

resolution fluorescence imaging as well as fluorescence-activated cell sorting (FACS) with 

this system, we found that metastatic lesions formed after NK cell depletion were largely 

monoclonal (Extended Data Fig. 10b–c).

Despite their monoclonal origin, analysis of NK cell-depleted macrometastases by scRNA-

seq showed that SOX2+ and double-negative cell types escape more often than in 

spontaneously arising metastases (Fig. 6b). Clustering of NK cell-depleted metastases15 

(Extended Data Fig. 10d–e) identified 18 populations that correlated with the four 

developmental stages observed in patient-derived tumor cells (Methods); most NK cell-

depleted clusters showed correlation with the type I (P/Q) and type II states (Extended Data 

Fig. 10f). Each NK cell-depleted metastasis was rich in type I and II cells, whose growth 

was otherwise restricted in metastases spontaneously arising in the presence of surveilling 

NK cells (Fig. 6c). The highest SOX2-expressing cluster differentially upregulated the EMT 

marker vimentin (VIM) and DKK1, an autocrine WNT inhibitor associated with metastatic 

latency16, and downregulated E-cadherin (CDH1) (Fig. 6d). Furthermore, this cluster 

showed reduced expression of multiple MHC Class I molecules, which would render this 

subpopulation susceptible to killing by NK cells (Fig. 6d). Finally, we adapted a deep 

learning segmentation method to enumerate the nuclear distribution of SOX2 and SOX9 

protein expression in NK cell-depleted versus spontaneous macrometastases evaluated by 

immunofluorescence in fixed tissues in situ. SOX9high cells were enriched only in 

spontaneous macrometastases that evolve in the presence of NK cells compared to 

metastases arising after NK depletion (Fig. 6e–f).

DISCUSSION

Understanding tumor cell heterogeneity within a developmental framework is a powerful 

strategy for identifying functional commonalities across seemingly disparate tumor states, 

especially in the context of metastasis—a process that must surpass multiple bottlenecks 

with diverse requirements10. Our work demonstrates convergence on common 

developmental and regenerative processes during cancer progression and presents evidence 

for developmental stage-specific immune-mediated pruning during metastatic outbreak, 
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paving the way for future mechanistic dissection and therapeutic targeting of metastatic 

cancer.

We show that primary LUAD tumors emulate lung epithelial cell stages involved in normal 

regeneration after lung injury and display stark lineage promiscuity across nearly all cell 

types of the regenerating alveolar and bronchial lineages. Conversely, human metastases 

show reduced lineage differentiation and greater stem-like character. Through deeper 

characterization of tumor subpopulations comprising metastatic lesions, we provide 

evidence for a developmental continuum spanning the adult stem cell state, intermediate 

SOX2high regenerative subpopulations, as well as proliferative SOX9high epithelial lung 

progenitors. Importantly, we find that these distinct developmental stages exhibit differential 

sensitivities to NK cell surveillance in patient and mouse models, suggesting that 

developmental plasticity during metastatic progression is actively sculpted by the immune 

system. To better understand this stage-specific pruning, it will be important to define the 

specific target genes of these key SOX transcription factors.

By recapitulating these findings in a mouse model of metastatic latency and outbreak, we 

show that the developmental progression seen in patient samples mirrors the various stages 

of metastatic outbreak, from the singly disseminated metastasis-initiating cells, to SOX2high 

incipient metastases, and ultimately, to large macrometastases with a preponderance of 

SOX9high cells. Stage-specific pruning in this model is alleviated upon NK cell depletion, 

which allows SOX2high and double-negative cancer cells to emerge alongside SOX9high cells 

as prominent components in metastatic lesions.

Our work shows that tumors can engender phenotypic heterogeneity by subverting tissue 

repair mechanisms, wherein distinct developmental stage-specific susceptibilities enable 

context-dependent adaptation and immune evasion. The expansion of DTCs to form 

metastases is kept in check by NK cells. Targeting these lethal and solitary metastasis-

initiating cells will require entirely different strategies than those targeting the AEPs that 

constitute the bulk of overt macrometastases, whereas macrometastases that evade NK cell-

mediated surveillance may be more effectively targeted by therapies harnessing the adaptive 

immune system.

METHODS

Human Specimens

Non-involved lung, tumor tissues, and metastatic lesions were obtained from patients with 

lung adenocarcinoma undergoing resection surgery at Memorial Sloan Kettering Cancer 

Center (MSKCC, New York, NY) after obtaining informed consent. All protocols were 

reviewed and approved by the Institutional Review Board (IRB) at MSKCC (IRB protocol 

#14–091). Samples were collected from 14 patients spanning stage I-IV disease. Patient 

resection site, smoking history, primary lesion size, disease stage, diagnostic pathology, 

oncogenic mutations identified by targeted exome sequencing using MSK-IMPACT20, and 

treatment history are annotated in Extended Data Fig. 1; complete MSK-IMPACT results 

including oncogenic mutations in the investigational panel are detailed in Supplementary 

Table 3. Care was taken to collect primary tissue from the tumor core and non-involved lung 
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distant from the primary tumor as a wedge spanning the distal and conducting airway. Tissue 

samples were immediately placed in RPMI media (Corning) or Hypothermosol on ice and 

dissociated using both mechanical and enzymatic digestion (Human Tumor Dissociation Kit 

#130–095-929, Miltenyi Biotec), generally within 1 h of surgical resection. Tissues were 

minced with a razor blade in the Miltenyi enzyme mix according to the manufacturer’s 

specifications and transferred to a Gentle MACS Octo Dissociator with heaters (# 30–

096-427, 37°C) for further mechanical dissociation. Upon completion, cell suspensions were 

passed through a 70 μm filter and washed twice with FACS buffer (2% heat-inactivated FBS, 

1 mM EDTA and Pen/Strep in PBS without Ca or Mg). Red blood cells were lysed in Red 

Blood Cell Lysis Solution (ACK lysis buffer) once or twice depending on red blood cell 

content, and final single-cell suspensions were made in Hanks’ Balanced Salt Solution 

(HBSS). For scRNA-seq, the remaining cell suspensions were subsequently flow sorted with 

a BD FACSAria II cell sorter fitted with a 100 μM nozzle to enrich for viable, single cells 

according to forward and side scattering, and DAPI exclusion. Cells were sorted directly into 

RPMI media with 10% FBS, washed thrice and re-suspend in PBS with 0.04% BSA for 

single cell encapsulation. Final cell concentrations were determined with a hemocytometer. 

Three additional matched primary tumor and metastases were acquired under IRB protocol 

#17–239.

Droplet-based scRNA-seq

Patient Data (10X Genomics Protocol): The 10X Genomics Chromium Platform was used 

to generate a targeted 5000 single cell Gel Bead-In-Emulsions (GEMs) per sample, loaded 

with an initial cell viability of ~90%. scRNA-seq libraries were prepared following the 10X 

Genomics user guide (Single Cell 3′ V2 Reagent Kits User Guide PN-120233, 10X 

Genomics). After encapsulation, emulsions were transferred to a thermal cycler for reverse 

transcription (RT) at 53°C for 45 min, followed by heat inactivation for 5 min at 85°C. 

cDNA from the RT reaction was purified using DynaBeads MyOne Silane Beads (Thermo 

Fisher Scientific) and amplified for 12 cycles using Amplification mix and primers provided 

in the Single Cell 3’ reagents module 1 (10X Genomics). After purification with 0.6X 

SPRIselect beads (Beckman Coulter), cDNA quality and yield was evaluated using Agilent 

Bioanalyzer 2100. Using a fragmentation enzyme blend (10X Genomics) the libraries were 

fragmented, end-repaired and A-tailed. Products were double side cleaned using 0.6X and 

0.8X SPRIselect beads, and adaptors provided in the kit were ligated for 15 min at 30°C. 

After cleaning ligation products, libraries were amplified and indexed with unique sample 

index i7 through PCR amplification. The number of PCR cycles was chosen based on cDNA 

yield for each sample individually. Final libraries were double-side cleaned using 0.6X and 

0.8X SPRIselect beads and their quality and size was evaluated using Agilent Bioanalyzer 

2100. Libraries were sequenced by pooling two per lane on HiSeq2500 (Illumina) paired-

end read flow cell with a 10.5pM loading concentration, sequenced 26 cycles on the forward 

read (10X Barcode + UMI), followed by 8bp I7 Index (Sample Index) and 98bp on the 

reverse read.

Mouse Data (inDrops Protocol11,12): Barcoded hydrogel bead synthesis, single cell 

encapsulation and library construction were done following a modified inDrops 

protocol12,13. Barcoded hydrogel beads were synthesized in house and contained a poly(T) 
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sequence, T7 promoter, PE1 sequencing primer, unique cell barcode, unique molecular 

identifier (UMI) and a photo-cleavable linker. Cells were re-suspended in PBS with 0.04% 

BSA at ~400 cells/μL. Before encapsulation, cells were mixed at a 1:1 ratio with OptiPrep 

mix (32% OptiPrep Density Gradient Medium (Sigma-Aldrich), 0.08% BSA in PBS). Single 

cells were encapsulated in droplets together with barcoded hydrogel beads and reverse 

transcription mix (SuperScript™ III Reverse Transcriptase, SUPERase-In, FS buffer 

(Thermo Fisher Scientific) NP-40, DTT, MgCl2, Tris and dNTPs) using a microfluidic 

device with three inlet channels for aqueous solutions (barcoded hydrogel beads, RT mix 

and cells), an oil inlet, and an outlet channel for emulsion. Emulsion was collected for 30 

min in a 1.5 mL tube in ice block. Immediately after encapsulation, primers were released 

from hydrogel beads by incubating the emulsion on ice under UV light for 7 min. The 

emulsion was then transferred to heat block at 60°C for 1 min, 50°C for 2 h (RT), followed 

by heat inactivation at 70°C for 15 min. The emulsion was then divided into smaller aliquots 

that contained an estimated 5000 cells. A few drops of 20% 1H,1H,2H,2H-perfluorooctanol 

(PFO, Sigma-Aldritch) was added on top of each tube to break emulsions, which were then 

transferred and stored at −80°C. Hydrogel beads were removed by filtration through a spin 

column (Zymo Research) and excess primers were digested using Exo1, HinF1 and FastAP 

enzyme mix (Themo Fisher Scientific). After the DNA/RNA duplex was purified using 1.2X 

SPRIselect beads (Beckman Coulter), second strand synthesis (SSS) was done using 

NEBNext® Ultra™ II Non-Directional RNA Second Strand Synthesis Module (New 

England BioLabs) at 16°C for 2.5 h followed by inactivation at 65°C for 20 min. SSS 

reaction material was then amplified using HiScribe™ T7 High Yield RNA Synthesis Kit 

(New England BioLabs) for 15 h at 37°C. Reaction products were purified using 1.2X 

SPRIselect beads (Beckman Coulter) and their quality was evaluated on Agilent Bioanalyzer 

2100. Amplified material was fragmented using RNA fragmentation reagents (Ambion Life 

Technologies) at 70°C for 2.5 min. Fragmentation was stopped by addition of ice cold 1.2X 

SPRIselect beads mixed with STOP solution. After purification, fragmented aRNA was 

mixed with PE2-STUB (IDT) which contains random hexamers, incubated for 3 min at 

70°C, cooled on ice, and reverse transcribed using PrimeScript RTase (Takara Bio USA) for 

60 min at 42°C. Libraries were purified with 1.2X SPRIselect beads (Beckman Coulter) and 

amplified via PCR (Kapa 2× HiFi HotStart PCR mix, Kapa Biosystems) using P1-P2 

Illumina index primers; optimal cycle number was determined using qPCR. Amplified and 

indexed libraries were cleaned two times using SPRIselect double-sided size selection (0.6X 

and 0.8X). Library size was analyzed using Agilent Bioanalyzer 2100 and quantified by 

Qubit dsDNA HS Assay kit (Thermo Fisher Scientific). Libraries were sequenced one per 

lane of HiSeq4000 (Illumina) paired-end read flow cell, loaded at a 10.5pM concentration 

with 15% PhiX spike-in. 54 bp were sequenced in the forward read (inDrop Barcode + 

UMI) and 46 bp on the reverse read.

scRNA-seq Computational Analysis

Pre-processing, cell selection and filtering of patient droplet-based scRNA-seq 
data: The Sequence Quality Control (SEQC) package13 was utilized to process the data, 

constructing a count matrix from raw reads, including de-multiplexing, alignment, error-

correction, and the generation of a raw digital expression matrix by collapsing groups of 

reads with the same unique molecular identifier (UMI), cell barcode and gene annotation. 
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Alignment to the hg38 annotation was restricted to transcribed, polyadenylated RNA of 

length > 200 nucleotides (gene biotypes accessible by 3’ mRNA sequencing technologies) to 

increase mapping specificity. SEQC then follows with a number of filtering steps to ensure 

data quality. Viable cells were distinguished from droplets consisting of ambient mRNA 

transcripts arising in solution due to premature lysis or cell death based on library size; 

whereby cells were filtered beyond the knee point of the second derivative of the empirical 

cumulative density function of total cell transcript counts (Extended Data Fig. 2a). 

Additionally, cells with low complexity libraries (in which detected transcripts are aligned to 

a small subset of genes) were filtered (Extended Data Fig. 2b). Cells with > 20% of 

transcripts derived from mitochondria were considered apoptotic and also excluded 

(Extended Data Fig. 2c). After clustering (described below), two minority cell clusters were 

additionally excluded from patient data with characteristically low library size and 

signatures of partial cell lysis that escaped the automated filters described above. Genes 

detected in fewer than 10 cells or genes with low expression levels, identified as those with 

count values < 5 standard deviations from the second mode of the log-log distribution of 

total transcript counts/gene, were also excluded. This yielded a total of 40,505 patient-

derived cells with a median library size of 4,038 transcripts per cell (Extended Data Fig. 2d–

e), for downstream analysis (Fig. 1–3 & 5 Data).

Normalization and imputation: The filtered count matrix was normalized for library size 

per cell, whereby the expression level of each gene was divided by the cell’s total library 

size and then scaled by the median library size of all cells. Principal Component Analysis 

(PCA) was computed using randomized principal component analysis48 applied to the 

normalized count matrix. Finally, MAGIC imputation14 was applied to the median-

normalized count matrix to further denoise and recover missing gene values using 

conservative parameters (t = 3–4, k = 27–28). Imputation was performed using the first 20–

40 principal components of the normalized count matrix. The number of principal 

components was selected per dataset based on the knee point of the cumulative explained 

variance49 and accounted for >90% of variance in patient data (acquired on 10X platform) 

and ~60% of variance in mouse data (acquired on inDrop platform). Within the epithelium/
stroma and lymphoid subsets, ordinary least squares was applied to linear regress library size 

out of each principal component prior to MAGIC imputation because a partial correlation 

was observed between some principal components and library size. When incorporating 

metastatic samples in patient data and to facilitate their comparison to the primary samples, 

the MAGIC imputed data was secondarily normalized by dividing the imputed expression 

level of each gene in a cell by the cell’s total imputed library size and then scaling by the 

median imputed library size of all cells. Normalization post-imputation was necessary for 

this dataset because metastases were transcriptionally more active, with larger and more 

complex libraries when compared to epithelium of the normal lung or primary tumors. In all 

cases, imputed data was used for data visualization, clustering and to explore trends of 

individual genes or gene-gene correlations in the data; it was never used to identify 

differentially expressed genes or enriched pathways.

Data visualization: The global atlas of all patient cells, including diverse epithelium/
stroma, myeloid and lymphoid cell subpopulations (Fig. 1c, Extended Data Fig. 2f–g), and 
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all immune subsets (Extended Data Fig. 3–4), were visualized using the Barnes-hut 

approximate version of t-SNE50 (https://github.com/lvdmaaten/bhtsne) computed on the 

principal components of the imputed data. This visualization was appropriate given the 

diversity of cell types represented in these data subsets. Force-directed graphs51 were 

alternatively used to visualize epithelial and tumor subsets, which better represent cell state 

transitions and local relationships between cancer cells and normal epithelial 

subpopulations, while maintaining a coherent global structure (Fig. 2 and 4, Extended Data 

Fig. 6–8 & 10). Force-directed layouts were computed on the principal components of the 

imputed data using a k-NN graph15; whereby the adjacency matrix representing this k-NN 

graph was converted to an affinity matrix using an anisotropic Gaussian kernel14 because the 

standard Gaussian kernel does not account for large differences in densities in the data. The 

adaptive kernel used distance to the k = 10 neighbor as the scaling factor for each cell to 

determine the affinities14. The affinity matrix was then used as input to compute the force-

directed layout using the ForceAtlas2 python module51. For both visualization methods, the 

number of principal components was selected per dataset based on the knee point of 

cumulative explained variance. Post-imputation, no more than 20 principal components 

explained > 90% of variance in all patient data (acquired on 10X platform) and no more than 

32 principal components explained > 80% of variance in mouse data (acquired on inDrop 

platform).

Customized plotting functions: All visualizations were performed in Python and are 

demonstrated in a Jupyter notebook available for download (see Code Availability). While 

most figures were generated using routine plotting functions, herein we elaborate on three 

customized functions utilized throughout the paper: dot plots, 2D kernel density estimate 

(KDE) distributions, and the construction of bipartite graphs.

Dot plots: For each gene and categorical grouping (i.e. cell type) a dot is plotted. Each dot 

represents two values: the fraction of cells expressing a given gene in each category 

(visualized by the size of the dot) and the average expression of expressing cells within each 

category (visualized by color). A gene is considered expressed if its normalized (un-

imputed) expression is greater than zero. Within each category the normalized (un-imputed) 

gene expression is averaged only over cells expressing the given gene.

KDE Visualizations: The cell density distribution across two variables (i.e. genes, fraction 

of lineage-specific markers) was visualized in two dimensions using the bivariate kernel 

density estimate function in Seaborn. We used default parameters (Gaussian kernel) and 

specified 10 contour levels. The lowest contour of the bivariate KDE plot was not shaded 

when plotting multiple cell densities on the same axis.

Bipartite graphs: To visualize linkage between two disjoint and independent categorical 

sets we used NetworkX to construct a weighted bipartite graph. Here, nodes correspond to 

each categorical variable (i.e. mouse metastatic clusters and developmental states observed 

in patient tumor cells) and edges connect nodes across independent sets. Edges are weighted 

by variables linking the two independent sets like their genome-wide correlation (i.e. Fig. 4f 

and Extended Data Fig. 10f) or number of co-occurring cells (Supplementary Data Fig. 1b). 
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Edges are subsequently filtered by criteria specified in each figure legend (i.e. Pearons R > 

0.20 and p < 0.05). Nodes of the resulting weighted graph are positioned according to the 

Fruchterman-Reingold force-directed algorithm implemented in NetworkX using default 

parameters.

Meta-cell type annotation: Given the large variation observed in cell size as represented by 

total mRNA abundance in unsorted patient tumors, all cells were initially assigned to one of 

three meta-cell classes: lymphoid, myeloid and epithelial/stromal cell types, on a per-cell 

basis according to their expression of canonical immune, myeloid, mesenchymal and 

epithelial cell markers manually curated and listed in Supplementary Table 2. The 

cumulative expression of imputed counts per canonical marker list was computed and then 

z-normalized across cells. Cells were hierarchically clustered by these z-normalized scores 

using the cosine distance metric (Extended Data Fig. 2h). Meta-cell type assignments were 

subsequently smoothed by a nearest-neighbor vote. The purpose of this annotation was to 

simply isolate lymphoid cells, which showed reduced transcript capture rates, as expected13 

(Extended Data Fig. 2g). Cell type annotations were subsequently performed separately 

within the lymphoid compartment and the myeloid/epithelial/stroma compartment using 

refined, graph-based methods to avoid introducing biases from cell type-specific capture 

rates.

Phenograph clustering within meta-cell types: Myeloid/epithelial/stromal cells (Extended 

Data Fig. 3) and lymphoid cells (Extended Data Fig. 4) were directly subset from the 

imputed count matrix described above. Phenograph clustering15 was computed directly on 

the imputed count matrix of each subset and 39 phenotypic cell types were identified within 

the myeloid/epithelial/stromal compartment (parameter k = 30, Extended Data Fig. 3a) and 

21 phenotypic cell types were identified within the lymphoid compartment (parameter k = 

50, Extended Data Fig. 4a). For the latter, the parameter k was chosen to be consistent with 

the larger size of the lymphoid subset.

Cluster based differential gene expression analysis: Cell type-specific gene signatures 

were identified by ranking differentially expressed genes (DEG) between each Phenograph 

cluster and all other clusters using the R package MAST44. MAST was run using default 

parameters with normalized counts (without imputation) as the input and the Bonferroni 

correction was applied to correct for multiple hypothesis testing (padj). DEGs were reported 

per cluster according to their fold change and padj value. DEG were ranked for GSEA 

according to: rank = −10 * log10(padj) * sgn[log2(fold change)]. A subset of 784 

housekeeping genes related to translation and ribosomal RNA transcription and processing 

(listed in Supplementary Table 2) were excluded from ranked DEGs prior to Gene Set 

Enrichment Analysis (GSEA).

Gene signatures for cluster annotation: A custom annotation file was generated to probe 

the role of normal lung epithelial development and regeneration in cancer. This was 

assembled by integrating gene signatures of lung epithelial cell types identified by single 

cell sequencing in the developing mouse (D18.5) 5,23–25 with gene ontology (GO) and 

Reactome molecular signatures containing key words related to normal lung development: 
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Wnt, TGFβ, sonic hedgehog, Notch, retinoic acid, Hippo, FGF, development or wound 

response52, as well as the complete Hallmark Gene sets (see Supplementary Dataset). Seven 

defined epithelial cell types were ultimately annotated in this paper and their associated 

lineage-specific gene-sets are listed in Supplementary Table 1. These were sourced from 

LungGENS23,24 (https://research.cchmc.org/pbge/lunggens/) for all mature lung epithelial 

lineages (AEC1, AEC2, club and ciliated) because these gene sets encompassed and 

expanded upon signatures defined in earlier studies25. Basal cells were defined by genes 

reported as differentially expressed (p < 0.001 and fold change > 2.8) in KRT5-GFPhigh and 

Lectin+ tracheal epithelial cells sorted from transgenic mice53. AEPs were likewise defined 

by reported genes differentially expressed (p < 0.01, fold change > 2) in human cells sorted 

from the normal lung using human-AT2-specific HTII-280 antibody and surface markers 

TM4SF1 and EPCAM, as compared to other human AEC2 cells5. A short list of manually 

curated, canonical markers expressed by neuroendocrine cells (CALCA, ASCL1, PPIG, 
DYNLRB1, CGA, ASH1L and DDC) and cells producing mucins (AGR2, TFF1, TFF3, 
PARM1, ADGRE2, GCNT3 and MUC variants) were additionally included as independent 

cell types in the lineage-specific gene sets (Supplementary Table 1). Published GMT files 

related to stromal cell types defined by single cell sequencing in the developing mouse 

lung5,23–25 and molecular signatures of immune cell types54,55 were additionally queried by 

GSEA when evaluating the merged myeloid, epithelial and stromal cell types in Extended 

Data Fig. 3.

To visualize GSEA results in an intuitive manner for cell type annotation, gene signatures 

distinguished by a Bonferroni corrected padj < 0.05 and an absolute Normalized Enrichment 

Score abs(NES) > 1.5 were considered significant and hierarchically clustered (clusters and 

gene signatures) by NES according to the Euclidean or cosine distance metric. The cosine 

distance metric was chosen when clustering highly diverse cell types (myeloid, epithelial 

and stroma in Extended Data Fig. 3b), so that instances of gene signatures drive clustering 

independent of their magnitude. When probing cell state heterogeneity within the epithelial 

compartment, the Euclidean distance metric was utilized, although clustering in this instance 

was largely independent of the distance metric. Values not meeting these criteria were 

whited out on the heatmap. For all epithelial data subsets interrogated in this paper, we 

additionally report an unfiltered list of all gene signatures distinguished by padj < 0.25. 

Columns of NES heatmaps are labeled by Phenograph cluster and by cell type when 

annotated.

Selection of variably expressed genes in single cell data: Variably expressed genes were 

selected per single cell dataset based on the dispersion of their expression across all cells. 

The distribution of the log10 mean and variance per gene across all cells, for all genes, was 

fit to a polynomial using least squares minimization. Highly variable genes were identified 

as those whose variance was greater than the mean fit.

Cell type annotation: The NES for gene signatures characterized by abs(NES) > 2 and padj 

< 0.05 within the myeloid, epithelial and stromal meta-subset, clustered according to the 

cosine distance metric (Extended Data Fig. 3b) show clear segregation between epithelial, 

stromal and myeloid cell types. DEGs per Phenograph cluster ranked according to padj and 
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fold change are ranked in Supplementary Table 4. However, GSEA results can be 

promiscuous and difficult to interpret. Therefore, cell type assignments were further 

informed by examining the correspondence between Phenograph cluster medians and the 

expression profiles of sorted immune populations, for which bulk microarray and RNA-seq 

datasets were available56,57. First, bulk microarray datasets were log2 transformed and 

library-size normalized. Then, the mean expression per cell type was computed across 

biological replicates and centered by mean subtraction per gene across all cell types. 

Correspondingly, the median imputed expression of each gene per Phenograph cluster was 

computed within the myeloid/epithelial/stroma and lymphoid subsets, and likewise centered 

by subtracting the mean expression level per gene across all clusters. Finally, the Pearson 

correlation between the centered transcriptional profile of each Phenograph cluster and bulk 

immune cell type was computed in a pairwise manner using all genes variably expressed in 

single cell data (described above) and detected in bulk immune data (~6000 genes). For each 

pairwise correlation, the Python package scipy was utilized to compute a p value testing for 

non-correlation. Hierarchical clustering of the Pearson correlation between each Phenograph 

cluster and bulk immune cell type is shown in Extended Data Fig. 3c and Extended Data 

Fig. 4b for the myeloid/epithelial/stroma or lymphoid subsets respectively; where each row 

is colored by Phenograph cluster. Only correlation coefficients characterized by p < 0.01 are 

visualized; all others are whited out. As expected, Phenograph clusters annotated as 

epithelium or stroma in Extended Data Fig. 3c do not show strong correlation with immune 

signatures. In agreement with GSEA, myeloid cell types positively correlated with 

monocyte, macrophage and dendritic cell signatures as shown in Extended Data Fig. 3c. 

Distinct subset of mast cells were also identified that did not associate significantly with any 

pathways queried by GSEA.

Bulk mRNA signatures do not exist for many epithelial and stromal cell types in the lung; 

however, a growing database of cell type-specific gene signatures in the developing mouse 

lung have now been annotated by LungGENS (https://research.cchmc.org/pbge/

lunggens/ )23,24. Mouse genes were converted to human genes by capitalization. Several of 

these signatures showed enrichment with Phenograph clusters within the myeloid/epithelial/
stroma subset by GSEA (Extended Data Fig. 3b).

All together, final cell type assignments were assembled based on GSEA results and 

correlation with published immune transcriptional profiles. Final epithelial, stromal and 

myeloid cell type assignments are shown in Extended Data Fig. 3d, which were further 

confirmed by evaluating the imputed expression of their canonical cell type markers 

(Extended Data Fig. 3e). For example, epithelial cells abundantly expressed E-cadherin 

(CDH1) as well as the lineage-determining transcription factors SOX2 and SOX9. The 

intermediate filament protein, vimentin, predominantly marked fibroblast-like cells positive 

for α-smooth muscle actin and desmin, another intermediate filament associated with 

contractile cells throughout the body. A minority of epithelial-like cells and a majority of 

macrophages also expressed increased levels of vimentin, as previously reported in alveolar 

macrophages58. Some mesenchymal cell types expressed platelet-derived growth factor 

receptor α (PDGFRα) and LGR5, characteristically expressed in the Wnt-responsive 

alveolar niche59,60; whereas others expressed PDGFRβ and neural/glial antigen 2, encoded 

by chondroitin sulfate proteoglycan 4, CSPG4, characteristic of pericytes. S100A4 (also 
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known as fibroblast-specific protein 1), a critical mediator of fibrotic progression61, was 

additionally used as a marker of fibroblasts in the lung62–64. Likewise, S100A4 was 

expressed in some immune cells, where it has been shown to play a role in macrophage 

recruitment and chemotaxis in vivo65. Pulmonary endothelial cells were distinguished from 

other stromal cell types by their expression of vascular endothelial (VE)-cadherin (CDH5) 

and the early endothelial cell marker CD34. Within the myeloid compartment, antigen-

presenting macrophages and dendritic cell type assignments were validated by their 

expression of MHC class II antigens, as well as other canonical markers including CD40, the 

chemokine receptor CCR7, and MARCO (macrophage receptor with collagenous structure). 

A subset of ITGAM(CD11B)+ immature myeloid cells expressing both CSF1R and 

immunosuppressive IL10 were further distinguished as myeloid-derived suppressor cells 

(MDSCs), which have been shown to dampen inflammatory responses66,67. These cell type 

assignments (Extended Data Fig. 3d) were mapped back to the complete patient dataset in 

(Fig. 1c) using the same color scheme.

In the lymphoid subset, Phenograph clusters largely correlated with distinct B, cytotoxic 

NK, NKT and T cells (Extended Data Fig. 4b). Cell type assignments within the B, NK and 

T cells of the lymphoid compartment were likewise refined by examining the median 

imputed expression of canonical marker genes on a per cluster basis (Extended Data Fig. 

4c). Imputed expression levels of individual genes were z-normalized by subtracting the 

mean and dividing by the standard deviation per gene across all cells. DEGs per Phenograph 

cluster, ranked according to their Bonferroni-corrected p value and fold change, are 

annotated in Supplementary Table 5. Final lymphoid cell type assignments are shown in 

Extended Data Fig. 4d, which were further confirmed by evaluation of canonical cell type 

markers (Extended Data Fig. 4e–f). Regulatory B cells and four subpopulations of mature 

plasma cells distinguished by specificity of their immunoglobulin secretion were observed. 

Distinct T and Natural Killer (NK) lymphoid cell types were identified that corresponded to 

known immune subpopulations, like CD4+IL2RA(CD25)+FOXP3+ regulatory T cells. NK 

cells and to a lesser extent, NKT cells, most abundantly expressed the surface receptors 

NKG7, NCR3, FCGR3A(CD16) and NCAM1(CD56). NKT cells were distinguished from 

NK cells by specific expression of CD3. Again, these cell type assignments (Extended Data 

Fig. 4d) were mapped back to the complete patient dataset in (Fig. 1c) using the same color 

scheme.

Final, merged cell type assignments are shown in Fig. 1c, which are further validated based 

on the imputed expression of their canonical cell type markers in Extended Data Fig. 5a. We 

observe most cell types are detected across all patient samples, but display different amounts 

of mixing between patient samples (Extended Data Fig. 2f and Extended Data Fig. 5a).

Mixing of samples in cell types: We wished to evaluate which cell types were well 

represented across all patients and which cell types were more patient specific in their 

nature. To quantify the degree of mixing between patients within each cell type, we used an 

entropy-based metric13, along with bootstrapping to correct for cell type size (which ranged 

from 89 to 7254 cells), such that we uniformly sampled 100 cells from each cell type and 

computed the distribution of patients across these cells. We then computed the Shannon 

entropy for this distribution across patient samples m = 1,…,17 according to 
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Hi = − ∑m = 1
17 pi

mln pi
m , where Pi represents the fraction of cells in patient i. We repeat this 

procedure 100 times for each cell type, and visualize the entropy distribution per cell type 

using a kernel density plot (Extended Data Fig. 5b). We repeated this analysis for cell states 

observed in analysis of epithelial lineages derived from the normal lung, primary tumor and 

metastases (Fig. 2c and Extended Data Fig. 8e). High entropy indicates that a cell state is 

highly reproducible across patient samples; whereas low entropy indicates that the cluster/

cell state is mostly derived from the same sample and are patient-specific. We observe no 

patient-specific clusters across the cell types annotated in our global cell atlas; in fact, all 

cell types are detected in at least four patients with the majority detected in nearly all 17 

patient samples (Extended Data Fig. 5a–b). As also observed in 13, intra-tumor macrophages 

show the highest degree of patient specificity.

Individual sample normalization, imputation and clustering: Merging data across 

patients increases statistical power for detecting cell types and is widely used in single cell 

analyses13,68,69. To test the robustness of our ability to detect cell types when analyzing 

patients individually, we analyzed the cellular composition of each patient one-by-one and 

report the patient frequency per cell type (Extended Data Fig. 5d–e). We processed each 

patient from raw cell counts using the cohort level analysis pipeline described above, 

including only cells from each individual patient for library size normalization, PCA, 

MAGIC imputation, Phenograph clustering and tSNE projection. Contrary to the cohort 

analysis, we did not separate the lymphoid and non-lymphoid cells before clustering all 

populations within each patient. Moreover, due to the smaller number of cells, Phenograph 

was applied to a k-NN graph of only 20 nearest neighbors. Cell type annotations of these 

clusters followed the same procedures used for the cohort level analysis. For all major cell 

types, patient frequency was concordant across individual and grouped annotations 

(Extended Data Fig. 5a,e).

Lineage annotation within epithelial cells: Our analysis of the epithelial compartment 

focused on the relationship between primary tumor cells and mature or regenerative 

epithelial lineages of the post-natal lung; therefore we evaluated cell states within the 

epithelial compartment in a step-wise fashion: (E1) the normal, adult human lung (Extended 

Data Fig. 6), (E2) the merged normal lung and primary tumor (Fig. 2, Extended Data Fig. 7) 

and (E3) the merged normal lung, primary tumor and metastases (Fig. 3, Extended Data Fig. 

8). Normalization, imputation, visualization and DEG per Phenograph cluster were 

computed for each epithelial subset (E1–3) separately, as described above, from the level of 

raw counts. Parameters that varied across processing of the three epithelial subsets, 

including the number of principal components (PCs) utilized for MAGIC imputation, 

visualization and clustering, and the number of nearest neighbors, k, used to construct the k-

NN graph for Phenograph clustering, are annotated below.

(E1) Normal, adult human lung

20 PCs, > 95% explained variance, Phenograph k = 140, number of Phenograph Clusters = 4

(E2) Normal lung and primary tumour epithelium
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20 PCs, > 95% explained variance, Phenograph k = 50, number of Phenograph Clusters = 15

(E3) Normal lung, primary tumour and metastatic epithelium

14 PCs, > 95% explained variance, Phenograph k = 25, number of Phenograph Clusters = 25

In all cases, the knee point method was utilized to select the number of principal 

components for each processing step (< 20 components explained > 95% of variance in all 

data subsets). Phenograph clustering was computed on the principal components of the 

imputed count matrix. The number of nearest neighbors, k, used to construct the k-NN graph 

was selected such that the Jaccard graph per data subset was fully connected (k = 6–8) and it 

was within a range of k for which cluster assignments were robust. Robustness of 

Phenograph clusters was evaluated by computing the adjusted rand index (ARI)15 between 

categorical cluster assignments made using all pairwise values of k. For each pairwise 

comparison, we compute the ARI across all cells. The resulting k-by-k matrix of ARI values 

was visualized as a two-dimensional heatmap and k was selected within a range that showed 

stable concordance between categorical assignments (ARI > 0.75). For each epithelial 

subset, Phenograph clustering was performed using a value of k for which the graph was 

fully connected and the ARI > 0.75.

(E1) Epithelial cell types detected in the normal, adult human lung: A total of 658 cells 

assigned to the epithelial clusters defined in Fig. 1c and sampled from normal lung were 

subset from the count matrix to define normal epithelial lineages in the adult, human lung. 

Normalization, imputation, visualization and DEG per Phenograph cluster were computed 

for this data subset separately as described above. Phenograph cluster assignments were 

stable for higher values of k, as determined by the ARI above, and four clusters were 

identified in the normal lung sampled from four patients, which are annotated by cell type in 

Extended Data Fig. 6a–b. Cell type annotations were informed by GSEA using the 

Supplementary Dataset and by evaluating the imputed expression of lineage-specific genes 

listed in Supplementary Table 1. A complete list of DEG per cell type ranked according to 

their Bonferroni-corrected p value and fold change are listed in Supplementary Table 6. 

Hierarchical clustering of the imputed expression of the top 60 DEGs per cell type (distance 

metric = cosine), z-score normalized per gene across cells, clearly segregate the four 

epithelial lineages. Canonical lineage-specific genes25 (Supplementary Table 1) are labeled 

on the x-axis of this clustered heatmap (Extended Data Fig. 6c) and rows of the clustered 

heatmap are colored by lineage assignment. For visualization, GSEA pathways distinguished 

by abs(NES) > 2.5 and padj < 0.05 were clustered according to the Euclidean distance metric 

(Extended Data Fig. 6d) and show specific distal (AEC1 and AEC2) and proximal (club and 

ciliated) epithelial lineages; white areas of the heatmap indicate pathways that did not meet 

this criteria. An unfiltered list of all gene signatures distinguished by padj < 0.25 is provided 

in Supplementary Table 7. Cell type annotations were orthogonally validated by evaluating 

the fraction of cells per Phenograph cluster that abundantly express (at or above the 75th 

percentile of the population expression level) more than 60% of genes within the lineage-

specific signature25 (Extended Data Fig. 6e, Supplementary Table 1). Club cells fail this 

specific test, despite showing significant enrichment of two Club cell signatures 

independently derived in the developing mouse embryo at D18.5 (LungGens23,24 NES = 
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2.64, padj=0.01 and Treutlein et al25, NES = 2.56, padj=0.02) (Extended Data Fig. 6d). This 

suggests their annotation may be driven by high expression of few canonical markers 

including SCGB1A1, SCGB3A2 and CYP2F1, as revealed by downstream analysis in 

Extended Data Fig. 7a.

(E2) The relationship between primary tumor and normal lung epithelial cell types: We 

subsequently analyzed the merged 2,140 epithelial cells sampled from both the non-tumor-

involved lung and primary LUADs. Again, we subset epithelial cells at the level of the raw 

count matrix and repeated normalization, imputation, visualization and DEG per 

Phenograph cluster for this data subset separately as described above. In addition to the four 

epithelial cell types previously identified in the non-tumor involved lung, eleven more 

phenotypic states were identified by Phenograph clustering. DEGs per Phenograph cluster 

ranked according to their Bonferroni-corrected p value and fold change are annotated in 

Supplementary Table 8. DEGs that intersect with lineage-specific genes listed in 

Supplementary Table 1 and characterized by an absolute fold change > 1.5 and padj < 0.05 

are colored by their associated lineage on volcano plots for annotated Phenograph clusters 

(Fig. 2c and Extended Data Fig. 7a). Ranked gene lists per Phenograph cluster were queried 

by GSEA using the custom lung development annotation file (Supplementary Dataset). The 

NES of gene sets characterized by abs(NES) > 1.5 and padj < 0.05 are visualized on a 

heatmap, clustered by Phenograph clusters (columns) and gene signatures (rows) according 

to the Euclidean distance metric (Extended Data Fig. 7b). White areas of the heatmap show 

signatures that did not meet the NES and padj criteria described above. Columns are colored 

above by cell type annotation; mapping between Phenograph clusters and cell type 

annotations was achieved by evaluating the lineage-labeled volcano plots and GSEA results. 

An unfiltered list of all gene signatures distinguished by padj < 0.25 is provided in 

Supplementary Table 9. Cell type annotations were further supported by waterfall plots of 

the imputed expression of lineage-specific genes (Extended Data Fig. 7c) within each cell 

type; cells annotated as mixed lineage (grey) indeed express canonical markers of multiple 

proximal and distal cell types.

(E3) Cell state heterogeneity within normal, primary tumor and metastases: Phenotypic 

heterogeneity was evaluated within all 3,786 epithelial cells sampled from normal lung, 

primary tumor and metastases, subset directly from the raw count matrix (Extended Data 

Fig. 8a–c). Normalization, imputation, secondary normalization post-imputation, 

visualization and DEG per Phenograph cluster were computed as described above for this 

data subset separately. Tissue source (Extended Data Fig. 8b, Left) and Phenograph cluster 

(Extended Data Fig. 8b, Center) are visualized on a force-directed layout of all epithelium. 

For orientation, cell type annotations made during analysis of the normal and primary tumor 

epithelium (Fig. 2b) were mapped onto this merged dataset; matching between cells across 

datasets was achieved using their cell barcodes and are labeled by text on the force directed 

layout (Extended Data Fig. 8b, Right). DEGs per Phenograph cluster, ranked according to 

their Bonferroni-corrected p value and fold change, are annotated in Supplementary Table 

10. Differentially expressed pathways per Phenograph cluster distinguished by abs(NES) > 

1.5 and padj < 0.05 were clustered according to the Euclidean distance metric for 

visualization (Extended Data Fig. 8a). An unfiltered list of all gene signatures distinguished 
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by padj < 0.25 is provided in Supplementary Table 11. The clustered heatmap is colored 

along columns by Phenograph cluster (lower) and fraction of tissue source detected per 

cluster (upper). In the same order, box plots show the fraction of each Phenograph cluster 

detected per metastasis (n = 5, Extended Data Fig. 8d). Finally, we evaluated the entropy of 

the distribution of patients in each Phenograph cluster, with bootstrapping to correct for 

number of cells in each cluster as described above (Extended Data Fig. 8e). Patient-specific 

cell states are observed in neo-adjuvantly treated primary tumors and metastases (Extended 

Data Fig. 8e). Interestingly, these are almost exclusively associated with the SOX9+ alveolar 

epithelial progenitor state (type III). Clusters associated with the adult stem to regenerative 

state (type I-II) are reproducibly observed across multiple patients.

Robustness of clustering to imputation: Imputed data was never used to identify 

differentially expressed genes or pathways in the analyses, however clustering was 

performed on imputed data. Therefore, to evaluate the robustness of cluster structure to 

imputation within the critical analysis of normal lung and primary tumor derived epithelium, 

we independently clustered the data using PCA applied to the normalized un-imputed count 

matrix or the normalized imputed count matrix, yielding two sets of categorical assignments 

hereafter referred to as Imputed Phenograph Clusters (IPC) and Un-Imputed Phenograph 

Clusters (UIPC). In both cases, the knee point method was utilized to select the number of 

principal components input into Phenograph using default parameters (k-NN = 50). To 

compare the probabilities of individual cells co-clustering across Imputed and Un-Imputed 

Phenograph Clusters, we calculated the normalized mutual information (NMI = 0.81) 

between these two sets of categorical assignments according to 

NMI IPC, UIPC = 2 x MI IPC, UIPC
H IPC + H UIPC , where MI is mutual information and H is Shannon 

entropy. Quality of clustering was evaluated between un-imputed and imputed data with 

normalized mutual information because this facilitates comparison between sets that have 

different numbers of clusters (imputation increases cluster resolution). Next, we computed 

the cell-cell co-occurrence matrix for all cells across the Un-imputed vs. Imputed 

Phenograph clusters (Supplementary Fig. 1a). The row of each imputed Phenograph cluster 

is colored by its annotated cell lineage (Fig. 2b). We construct a bipartite graph where each 

cluster is represented by a node, whose diameter is proportional to cell number, and we add 

an edge between un-imputed and imputed Phenograph clusters sharing more than 50 cells 

(Supplementary Fig. 1b). The majority of assignments map one-to-one across imputed and 

un-imputed Phenograph clusters; with imputation sometimes increasing cluster resolution 

within a given lineage. Importantly, there is negligible mixing between clusters assigned to 

different lineages with or without imputation, as best visualized by the bipartite graph 

representation of this cell co-occurrence matrix.

Lineage promiscuity in single cells: Analysis of the combined normal and primary tumor 

epithelium revealed six Phenograph clusters that differentially expressed canonical markers 

associated with multiple proximal and distal lung epithelial cell lineages (Fig. 2b–e). DEGs 

per cluster and lineage-specific gene expression was exclusively analyzed in un-imputed 

data to ensure that imputation did not artificially introduce unexpected mixing of marker 

genes. To test whether this lineage promiscuity was also observed at the level of individual 

cells, we generated a binary matrix representing the single cell expression of specific lineage 
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markers shown in Fig. 2c. A marker was considered abundantly expressed in a cell if its 

normalized (un-imputed) counts were in the top quartile of expression across all cells 

evaluated per gene. The binary heatmap revealed clusters of tumor cells aberrantly 

expressing markers associated with AEC1, AEC2, club and neuroendocrine lineages at the 

level of individual cells (data not shown, see Jupyter notebook). Lineage marker 

combinations also reflected underlying Phenograph cluster structure; for example 

Phenograph Clusters 0 and 1 showed striking mixing between AEC1 and AEC2 lineages. 

Next, we compute what fraction of abundantly expressed lineage-specific genes belong to 

each annotated epithelial cell type. Finally, we visualize the density of cells expressing 

pairwise fractions of cell-type specific markers, as shown for AEC1 and AEC2 markers (Fig. 

2f) for normal epithelial cells assigned to these two lineages, and for mixed-lineage 

Phenograph Clusters 0 and 1, which show particular promiscuity between these two 

lineages.

Defining lineage phenotypic volume: Intrigued by the lineage promiscuity observed in 

primary tumors, we wanted to quantify the degree of tumor cell-intrinsic heterogeneity, 

relative to epithelial of the normal lung, specifically focused on lineage markers. That is, we 

wanted to distinguish between heterogeneity that might be induced by the environment (e.g. 

inflammation or hypoxia) and focus only on heterogeneity derived from promiscuity 

amongst transcription factors specifying canonical epithelial cell types in the lung. Thus we 

define Lineage Phenotypic Volume, by adapting a metric of phenotypic heterogeneity, 

Phenotypic Volume13 (described below) to compare the extent of Phenotypic Volume 

occupied by lineage specific genes in epithelium derived from the normal lung and primary 

tumors, within a limited lineage related gene-set.

More specifically, the metric of Phenotypic Volume as defined in 13 is the pseudo-

determinant of the gene-gene covariance matrix. Thus, this metric for volume considers 

covariance between all gene pairs, in addition to their variance, to measure the volume 

spanned by independent phenotypes. To describe this metric intuitively, consider the case 

with only two phenotypes: the determinant is equal to the area of the parallelogram spanned 

by two vectors representing the phenotypes (in our case defined by expression of lineage 

specific genes). This area is larger for independent phenotypes, but is equal to zero if they 

are fully dependent. With more than two phenotypes, we are then interested in measuring the 

volume of the parallelepiped spanned by all these phenotypes, where more independent 

covariance patterns lead to increased volume. The volume of the parallelepiped spanned by 

these phenotypes is measured by the pseudodeterminant of the covariance matrix, which can 

be computed as the product of its nonzero eigenvalues.

The Phenotypic Volume (number of observed cell-states) is naturally correlated with the size 

of a population. Therefore, to correct for the effect of cell number differences across groups 

when comparing their volume, the same number of cells was uniformly sampled with 

replacement from each group in the comparison. The gene-gene covariance matrix was then 

empirically computed for each randomly selected subset of cells. Imputed data was not 

utilized here because it could alter the gene-gene covariate structure. The log Phenotypic 

volume was then computed as the sum of the log of the non-zero eigenvalues, λe, of each 

empirical gene-gene covariance matrix:
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log Phenotypic Volume = ∑
e

0.5*log10 λe
2 ; ∀ λe > 0 .

Finally, given the high number of dimensions (genes), the log of the Phenotypic Volume was 

normalized by the total number of genes.

Rather than computing Phenotypic volume on all genes, Lineage Phenotypic Volume 

restricts the computation to lineage-specific genes, including all genes annotated in 

Supplementary Table 1 that are variably expressed within the merged data (n = 833). We 

computed the Lineage Phenotypic Volume per data subset (primary verses tumor) as 

described above, sampling 500 cells, repeated 50 times to achieve the range of values 

reported in (Fig. 2g).

Diffusion component analysis and extrema: Diffusion maps were used to characterize 

major components of variation across cells70 and the extrema of the top three most 

informative diffusion components were determined as bounding states of the phenotypic 

space. As described in14, a cell-cell Euclidean distance matrix was computed based on the 

principal components of the normalized (unimputed) count matrix, where the number of 

principal components was selected based on the knee point of the cumulative explained 

variance49. An adaptive Gaussian kernel was then applied to convert distances into affinities, 

so that similarities between two cells decreases exponentially with distance. The affinity 

matrix was then row-normalized to construct a Markov transition matrix, whose 

eigenvectors are termed diffusion components. The eigenvalues of this matrix provide 

information on the importance of each diffusion component. In this dataset, we focused on 

the top three diffusion components based on the Eigen gap of the ranked diffusion 

components.

Next, we used the top three diffusion components to define bounds on the phenotypic space, 

where each component represents dominant axes of variation and its extreme ends define 

boundaries of the observed phenotypic states. To determine which cells belonged to the 

extreme (bounding) states determined by the ends of each diffusion component, we used the 

maximum of the second derivative of cells ranked along each diffusion component. For each 

of the two ends of the diffusion component, we defined all cells beyond this maxima (above 

for the top half and below for the bottom half) to constitute the extreme ends (Extended Data 

Fig. 7d). Next, the distribution of cell source (normal vs. tumor) and lineage was evaluated 

within the extreme end of each diffusion component (Extended Data Fig. 7e–f). Gene trends 

along each diffusion component were identified by evaluating the Pearson correlation 

between gene expression and the ordering of cells along each diffusion component 

(Supplementary Table 7). Gene expression trends were computed using imputed data to 

prevent dropout from adversely affecting the trends and were smoothed using a 20-cell 

sliding window. Finally, GSEA was performed on genes ranked by their correlation with 

each diffusion component, and gene signatures associated with each diffusion component 

(padj < 0.25) are listed in Supplementary Table 9.
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Metastatic clusters ranked by lung epithelial development: Of the 21 Phenograph 

clusters identified in epithelium from the normal lung, primary tumors and metastases 

(analysis of subset E3, described above), 11 of these clusters were sourced >10% from all 

cells derived from the 5 metastatic samples and were termed patient metastatic clusters 

(Extended Data Fig. 8a, indicated with a star). These patient metastatic clusters differentially 

expressed gene signatures related to migratory stem cells, respiratory system development 

and morphogenesis, and downstream regenerative alveolar epithelial progenitors (Extended 

Data Fig. 8a). This informed selection of gene-sets (listed in Supplementary Table 2) used to 

characterize these clusters (Fig 3a). First, the 11 patient metastatic clusters were ranked by 

their average expression of a 34-gene signature of lung epithelial development computed on 

the imputed and normalized count matrix. Boxplots show the distribution of this score across 

cells within each patient metastatic cluster; clusters are ranked in ascending order from left 

to right by the distribution median (Fig 3a). Then, the average expression of other key gene 

signatures, again computed on the imputed and normalized count matrix, were visualized 

using boxplots per patient metastatic cluster in the same ranked order. To test whether the 

ranking of metastatic clusters was robust to individual genes in the 34-gene signature of lung 

epithelial development, we performed a leave-one-out analysis, whereby we iteratively 

removed each gene from the GO lung epithelial development signature and ranked 

metastatic clusters as described above using the remaining 33 genes (Extended Data Fig. 8f). 

Of the 34 gene analyzed, 19 had no change to order and 10 genes showed a swap of adjacent 

clusters in the ordering. We observed more frequent swapping between Clusters H13 and H7 

or between Clusters H6 and H10, as they had similar distributions. The only outlier to this 

was gene AGR2, the highest expressed gene in this signature. Removal of AGR2 
significantly altered the ranking of two clusters: H13 and H14. However, expression of 

AGR2 alone was not sufficient to drive metastatic cluster ranking, which indeed reflects the 

overall average expression of the cumulative lung epithelial development signature. Based 

on these genesets we observed patient metastatic clusters partitioned into 3 metastatic 

classes (type I-III), driven by their expression of adult stem, lung morphogenesis and 

alveolar epithelial progenitor programs. Finally, a Mann-Whitney U test was computed per 

meta-class for each expression signature by pooling cells from all patient metastatic clusters 

assigned to each meta-class and comparing to all remaining cells. As always, reported p-

values are computed on the normalized (un-imputed) count matrix.

Assigning individual tumor cells to developmental states: Individual cells were likewise 

ranked in ascending order based on their cumulative expression of the same lung epithelium 

development signature computed on the imputed and normalized count matrix. Expression 

of key endoderm- and lung-specifying transcription factors along ranked cells are visualized 

on a heatmap (Fig. 3c); where individual gene expression levels were z-normalized across 

cells and smoothed using a 20-cell moving window. Additionally, we report the average 

expression of three canonical proliferation markers: proliferating cell nuclear antigen 

(PCNA), MKI67 and minichromosome maintenance complex component 2 (MCM2) below 

the ranked tumor cells. Phenograph clustering (k = 500) was applied directly on this matrix. 

Six unique clusters were identified and assigned to the type I proliferating (I-P) or quiescent 

(I-Q) developmental state (distinguished by proliferation score), 2 of these clusters were 

collapsed and assigned to the type II developmental state, and the final 2 clusters were 
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collapsed and assigned to type III developmental states. Clusters were collapsed based on 

similar gene expression of key endoderm- and lung-specifying transcription factors (Fig. 3c) 

to simplify our description of developmental states observe in patient tumor cells.

Computing overall survival hazard ratios: To identify patient metastatic clusters whose 

abundance in primary tumors portends a poor prognosis (Fig. 3f), the mean expression of the 

top 10 DEGs (all probes/gene) per cluster was used to analyze overall survival (OS) in the 

lowest (Q1) vs. highest (Q4) patient quartiles using Kaplan-Meier Plotter37. DEGs identified 

by MAST were ranked according to: rank = − 10 * log10(padj)*sgn[log2(fold change)] and 

genes related to translation and ribosomal RNA transcription and processing (listed in 

Supplementary Table 2) were removed from the ranked genes. The OS hazard ratio (HR) is 

reported with confidence intervals per metastatic cluster. HR > 1 are poorly prognostic; HR 

< 1 indicated improved OS and any CI crossing the line at 1 are not significant.

Data analysis of scRNA-seq from xenograft model of metastasis: An advantage to SEQC 

is that it is able to process 10X, in-drops and drop-seq using the same pipeline. The same 

SEQC strategy for filtering high quality cells, constructing count matrices from reads and 

selecting abundant genes (described above under Pre-processing, cell selection and filtering 
of droplet-based scRNA-seq data) was applied to our xenograft mouse model of human 

metastases. The only exception being that when filtering viable cells from ambient mRNA, 

we adjusted the width of the step size taken to compute the second derivative of the 

empirical cumulative density function of total cell transcript counts because the shape of this 

cumulative function could be bimodal for data acquired using inDrop. This yielded a total of 

8,748 tumor cells with a median library size of 3,423 transcripts per cell from spontaneous 

metastatic derivatives sequenced after one passage of in vitro antibiotic selection (essential 

to isolate putative DTCs, Fig. 4 Data) and 6,073 tumor cells with a median library size of 

3,399 transcripts per cell sequenced immediately upon dissociation from NK cell-depleted 

metastases (Fig. 6 Data). These two datasets were processed separately as described below.

Each count matrix was normalized for library size per cell, whereby the expression level of 

each gene was divided by the cell’s total library size and then scaled by the median library 

size of all cells. Principal Component Analysis (PCA) was then computed using randomized 

principal component analysis48 applied to the normalized count matrix. Next, ordinary least 

squares was applied to linear regress library size out of each principal component because a 

partial correlation was observed between some principal components and library size. 

Finally, MAGIC imputation14 was applied to the median-normalized count matrix to further 

denoise and recover missing gene values using conservative parameters (t = 3, k = 27). 

Imputation was performed using the top principal components of the normalized count 

matrix, selected based on the knee point of the cumulative explained variance49. The number 

of selected principal components were 28 and 34 in the spontaneous and NK cell-depleted 

metastases respectively; explaining ~60% of variance in each dataset. Principal components 

were then re-computed on the imputed data and 18 and 32 principal components were 

selected in the spontaneous and NK cell-depleted metastases respectively; explaining > 90% 

of the data variance. After imputation, a correlation between some principal components and 

library size was no longer observed.
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Force-directed graphs51 for visualization and Phenograph clustering using a k-NN graph15 

were computed on the selected principal components of the imputed data. The number of 

nearest neighbors, k, used to construct the k-NN graph for Phenograph was selected such 

that the Jaccard graph per data subset was fully connected (k = 7 for both datasets) and using 

a minimum value of k for which cluster assignments were stable, as measured by the 

adjusted rand index (ARI)15 for categorical cluster assignments across pairwise values of k 
for all cells. For both datasets, 18 clusters were identified using k = 70 (Fig. 4d and 

Extended Data Fig. 10d).

Finally, DEGs per Phenograph cluster compared to all other clusters were identified using 

the R package MAST44 and ranked as described above for GSEA. DEG per Phenograph 

cluster from spontaneous metastatic derivatives, ranked according to their Bonferroni-

corrected p value and fold change, are annotated in Supplementary Table 12; associated 

differentially expressed pathways distinguished by padj < 0.25 are also provided in 

Supplementary Table 13. Likewise, DEG per Phenograph cluster from NK cell-depleted 

metastases, ranked according to their Bonferroni-corrected p value and fold change, are 

annotated in Supplementary Table 14; associated differentially expressed pathways 

distinguished by padj < 0.25 are also provided in Supplementary Table 15.

Assigning mouse metastatic clusters to human developmental states: Variably expressed 

genes were identified within each mouse and human dataset separately based on the 

dispersion of each gene across all cells as described above. 2096 intersecting genes were 

variably expressed in spontaneous mouse metastatic clusters and in human patient data. 

Likewise, 2895 intersecting genes were variably expressed in NK cell-depleted mouse 

metastatic clusters and in human patient data. Intersecting genes were then used to compute 

the correlation between the genome-wide expression patterns of mouse Phenograph clusters 

with the four development stages observed in human tumors (annotated in Fig. 3c as type I-

Q, I-P, II, III). First, we computed the median expression of each gene per developmental 

state on the patient normalized count matrix, including all cells, from all clusters assigned to 

that developmental state in our computation. Then we centered the expression of each gene 

across all developmental states by mean subtraction. Ultimately, this provided a centered 

reference for each of the four developmental stages observed in patient tumors onto which 

we would like to map mouse Phenograph clusters identified in spontaneous and NK cell-

depleted metastasis respectively. For each mouse dataset, we similarly computed the median 

expression of each gene per mouse Phenograph cluster on its normalized count matrix and 

centered the expression of each gene across mouse Phenograph clusters by mean 

subtraction. Finally, we computed the Pearson correlation between the centered 

transcriptional profile of each mouse Phenograph cluster and each patient developmental 

state in a pairwise manner. For each pairwise correlation, the Python package scipy was 

utilized to compute a p value testing for non-correlation. We visualized the genome-wide 

correlation between these two independent sets using a bipartite graph (see Customized 

plotting functions), whereby edges link significantly correlated mouse Phenograph clusters 

(circular nodes) and human developmental states (square nodes). Correlations were 

considered significant for Pearson R > 0.20 and p < 0.05; edge width is scaled by the 

magnitude of the correlation. The same criteria were applied to assign mouse metastatic 
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clusters to patient developmental states when reporting the fraction of cells assigned to each 

developmental stage per spontaneous and NK cell-depleted mouse macrometastases (Fig. 

6c). Clusters not meeting these criteria were simply marked as un-assigned. When 

visualizing the mapping between spontaneous metastases and developmental states observed 

in patient tumors, the circular nodes representing mouse Phenograph clusters are shown as 

pie charts representing fraction of cells per mouse sourced from DTCs, incipient and macro-

metastases (Fig. 4f).

Analysis of additional validation datasets—The E8.75 gut tube pseudo-space 

ordering and imputed gene expression data was downloaded from45 (https://endoderm-

explorer.com). Gene expression trends of the selected genes were estimated using 

Generalized Additive Models by fitting the imputed expression as a function of the pseudo-

space ordering71. The estimated trends were z-transformed across the pseudo-space to be 

used for plotting.

Lung adenocarcinoma TCGA normalized data was downloaded from cBioPortal (https://

github.com/cBioPortal/datahub/blob/master/public/luad_tcga/

data_RNA_Seq_v2_expression_median.txt). The Spearman Rank correlation was used to 

evaluate the strength and directionality of the relationship between SOX9 target genes 

(Supplementary Table 2) and the average expression of MHC Class I genes (Supplementary 

Table 2) (Fig. 5j). The log2 average expression of an NK cell-specific signature72 

(Supplementary Table 2) was also evaluated in the first and third tertile of patients stratified 

by their SOX2 or SOX9 expression (Extended Data Fig. 9a).

Normalized mRNA data from all mouse KP derivatives was downloaded from 39 and Sox2 
and Sox9 expression levels per sample were plotted directly without additional data pre-

processing (Extended Data Fig. 9c).

Cell lines—H2087 (ATCC) latency competent cancer cell (LCC) derivatives (H20870-

LCC1 and H2087-LCC216) were cultured in RPMI 1640 media supplemented with 10% 

fetal bovine serum (FBS), 2 mM glutamine, 100 IU/ml penicillin/streptomycin, 1 μg/ml 

amphotericin B, 0.5 mM sodium pyruvate, 10 mM HEPES, 50 nM hydrocortisone, 25 nM 

sodium selenite, 20 μg/ml insulin, 10 μg/ml transferrin, 0.5% bovine serum albumin (BSA), 

and 1ng/ml recombinant human epidermal growth factor. LCC derivatives were re-

inoculated in mice to confirm their latent phenotype. KP482T1 metastatic cells (courtesy of 

Tyler Jacks’ lab) were cultured in RPMI 1640 media supplemented with 10% fetal bovine 

serum (FBS), 2 mM glutamine, 100 IU/ml penicillin/streptomycin and 1 μg/ml amphotericin 

B. No commonly misidentified cell lines were used and all cell lines tested negative for 

mycoplasma contamination.

Overexpression constructs—FUW-tetO-hSOX2 (Addgene plasmid #20724), was 

subcloned into the pLVX-tight-puro lentiviral expression vector using EcoRI restriction 

enzyme site. SOX9 was amplified from the human SOX9 ORF clone (GenScipt, Cat. 

OHu19789D) and cloned into the pLVX-tight-puro vector using NotI and XbaI restriction 

enzyme sites.
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Immunoblotting—Cells in described conditions were lysed in RIPA cell lysis buffer (Cell 

Signaling Technology) containing protease inhibitors (Roche, cOmplete, mini, EDTAfree 

protease inhibitor tablets, Cat. 11836170001) and phosphatase inhibitors (Thermo Scientific, 

Halt Phosphatase Inhibitor Cocktail, Cat. 78427). Protein concentrations were determined 

with the BCA Protein Assay (Pierce). Proteins were separated in NuPAGE Novex 4–12% 

Bis-Tris gels using 1X MOPS SDS running buffer, and transferred to nitrocellulose 

membranes. Membranes were immunoblotted with primary antibodies against SOX2 

(Abcam, Cat. ab97959), SOX9 (Abcam, Cat. ab185966) and β-actin (Cell signaling 

Technology, Cat. 3700). Proteins were detected using IRDye secondary antibodies captured 

on an Odyssey CLx infrared imaging system (LI-COR Biosciences).

Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR)—
Total RNA was isolated using the RNeasy Plus kit (Qiagen) and eluted in 60 ml H2O. RNA 

concentrations were estimated using a NanoDrop analyzer (ThermoFisher). 1 mg purified 

RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems). Total cDNA was diluted 1 in 10 with nuclease free H2O. 2 ul of the 

diluted cDNA was used in a 10 ul qPCR reaction using the Total TaqMan® Universal PCR 

Master Mix (2X) (Applied Biosystems) and TaqMan™ Gene Expression Assay (FAM) 

(20X) (Applied Biosystems). Quantitative PCR was performed on ViiA 7 Real-Time PCR 

System (Life Technologies). Assays were used for SOX2 (Hs01053049-s1), SOX9 
(Hs01001343_g1), HLA-A (Hs01058806_g1), HLA-B (Hs00818803_g1), B2M 
(Hs00187842_m1), ULBP1 (Hs04194603_s1), ULBP2 (Hs00607609_mH), ULBP3 
(Hs00225909_m1), RAET1E (Hs01026643_g1), RAET1G (Hs01584111_mH), RAET1L 
(Hs00867544_gH), MICA (Hs00741286_m1) and MICB (H200792952_m1). The ddCt 

method was used to calculate relative expression values, which were normalized to the 

housekeeping gene ACTB (Hs01060665_g1) or GAPDH (Hs02786624_g1).

Cell surface protein expression analysis—Adherent cells were detached using 0.25% 

Trypsin to generate single cell suspensions, and re-supended in FACS buffer (1X PBS, 

0.25mM EDTA, 2% FBS). Cells were incubated with APC-conjugated antibody for HLA-

Class I Bw4 for 20–30min (Miltenyi Biotec, Cat. 130–103-918), and washed twice in FACS 

buffer. Cell surface expression of HLA-Bw4 was analyzed by flow cytometry on a BD 

Fortessa (BD Biosciences). DAPI (Thermo Fisher Scientific, Cat. D1306) was used to 

exclude dead cells and IgG control staining was used as a negative control to set up the gate 

for analysis.

RGB labeling to track clonal dynamics of metastases—To measure the size and 

number of subclones present in micrometastic lesions over time in xenograft models, we 

stochastically expressed trichromic reporter vectors in single cells using three lentiviral gene 

ontology vectors encoding Cerulean, Venus and mCherry fluorescent proteins at 50–60% 

multiplicity of infection43. Transduced cells were individually marked by an extensive color 

palette determined by variations in vector copy number and insertion sites, shown to be 

stable after multiple passages in vitro and in vivo43. Cerulean, Venus and mCherry 

fluorescent proteins in RGB-labeled cells were detected based on their intrinsic 

fluorescence.
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Animal studies—Animal experiments were performed in accordance with protocols 

approved by the MSKCC Institutional Animal Care and Use Committee. 1×105 H2087-

LCC2 cells16 expressing a lentiviral TK-green fluorescent protein (GFP)-luciferase (TGL) 

construct and the antibiotic resistance marker Blasticidin in 100 μl of PBS, were injected 

into the left cardiac ventricle of 6–7 week-old female athymic NCR nu/nu mice (Charles 

River) to ensure systemic dissemination of tumor cells. Metastatic colonization was then 

measured weekly using bioluminescence imaging (BLI). Mice were injected retro-orbitally 

with D-luciferin (150 mg/kg), anesthetized with isofluorane and subjected to BLI using an 

IVIS Spectrum Xenogen instrument (Caliper Life Sciences). BLI images were analyzed 

using Living Image Software v.4.4. NK cell depleted-outbreaks were achieved by twice-

weekly intra-peritoneal injection of 100μl of anti-asialo-GM1 antibody (Wako Chemicals 

Cat. 98610001) from the start of the NK cell depletion regimen. NK cell depletion was 

monitored by analysis of Lineage-CD45+Nkp46+ (Lineage-: CD3-Tcrβ-CD19-B220-

CD11c-Ly6G-F4/80-) NK cells from peripheral blood using flow cytometry (BD Fortressa, 

BD Biosciences). Experiments were not blinded or randomized.

Cancer cells were freshly derived from DTCs, incipient and spontaneous metastatic outbreak 

in vivo immediately following sacrifice of animals +/− BLI-detected metastases. Ex-vivo 

BLI was performed on harvested organs to confirm the absence or to define the precise 

location of macrometastatic lesions. Organs were resected under sterile conditions and 

mechanically dissociated using a gentleMACS dissociator (Miltenyl Biotec) and placed in 

culture medium containing a 1:1 mixture of DMEM/Ham’s F12 medium supplemented with 

0.125% collagenase III and 0.1% hyaluronidase. Minced samples were incubated at 37°C for 

1 h, with gentle rocking to produce single cell suspensions. After collagenase treatment, 

cells were briefly centrifuged, re-suspended in 0.25% trypsin, and incubated for a further 15 

min at 37°C. Cells were then re-suspended in their culture conditions and allowed to grow to 

confluence on a 15-cm dish in selection media containing blasticidin to select for tumor cells 

and exclude host cells. scRNA-seq assays and immunofluorescence assays were performed 

after a single passage from the primary dissociation.

Single cell suspensions were similarly derived from metastatic outbreaks in NK cell-

depleted mice, but were processed immediately for scRNA-seq without antibiotic selection. 

Cell suspensions were subsequently flow sorted with a BD FACSAria II cell sorter fitted 

with a 100 μm nozzle to enrich for viable, GFP-positive single cells according to forward 

and side scattering, fluorescent protein expression, and DAPI exclusion. Cells were sorted 

directly into RPMI media with 10% FBS, washed thrice and re-suspended in PBS containing 

0.04% BSA for single cell encapsulation.

NK cell cytotoxicity assays—Splenocyte suspensions were prepared by mechanical 

dissociation. NK cells were purified by magnetic depletion of non-NK cells using NK 

Isolation Kit II (Miltenyi Biotec, Cat. 130–096-892) and separation with magnetic columns 

(Miltenyi Biotec, Cat. 130–042-401). NK cells were cultured overnight in NK cell media 

(RPMI 1640 medium supplemented with 10% FBS, β2-mercaptoethanol, non-essential 

amino acids, 10 mM HEPES, 0.5 mM sodium pyruvate, 2 mM L-glutamine, and 10 IU/ml 

penicillin/streptomycin) containing 1000 U/ml recombinant interleukin-2.
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For measuring NK killing of cancer cells, target GFP-expressing cancer cells were incubated 

with or without NK cells at a 1:10 carcinoma:NK cell ratio, for 3 h at 37°C. Cell mixtures 

were stained with 7-AAD Viability Staining Solution (BioLegend, Cat. 420404) and 

Annexin V (BioLegend, Cat. 640941) to assess tumor cell cytotoxicity by flow cytometry; 

NK cells were excluded from the analysis by immunostaining with anti-CD45 antibody (BD 

Biosciences, Cat. 565967). Orthogonally, the relative proportion of SOX2-expressing and 

SOX9-expressing cancer cells after NK killing was quantified by image cytometry analysis 

of SOX2 and SOX9 immunofluorescence (described below). Experimentally, cancer cells 

were plated in cell chamber slides overnight, and incubated with or without NK cells 

(effector to target ratio of 1:10) for 21 h at 37°C. Slides were washed with PBS, fixed in 4% 

PFA for 10 min at room temperature, then washed with PBS thrice, followed by 

immunostaining for SOX2 or SOX9. Slides were imaged with a Leica TCS SP5-II inverted 

point-scanning confocal microscope with a 20x/0.7NA objective with 1.5x optical scan 

zoom. Between 5 and 8 locations per sample were imaged and quantified.

Immunofluorescence—Harvested organs were fixed in 4% paraformaldehyde (PFA) 

overnight at 4°C and washed in PBS. Organs were cryoprotected by immersion in 15% then 

30% sucrose. Cryoprotected organs were mounted using OCT Compound (Sakura) onto a 

sliding microtome outfitted with a platform freezing unit (Thermo Scientific, Microm KS-34 

and Microm HM-450). 80μm sections were cut and sequentially stored in anti-freezing 

solution (30% ethylene glycol, 30% glycerol in PBS) at −20°C. For macrometastatic lesions, 

PFA-fixed tissues were washed 2–3 times in PBS, dehydrated in 70% ethanol, paraffin 

embedded and prepared as 5μm sections. Macrometastases in the bone were fixed with 4% 

PFA overnight, washed in PBS and incubated with EDTA-based decalcification solution 

(140 g/L EDTA, pH 7.4) for 1–2 weeks at 4°C with agitation and daily changes of 

decalcification solution. Tissues were then washed with water for 1 hour, re-fixed with 4% 

PFA, washed twice in PBS, followed by ethanol dehydration, paraffin embedding and 

sectioning. Immunofluorescence staining for SOX2 and SOX9 was performed at the 

Molecular Cytology Core Facility, MSKCC, using the Discovery Ultra processor (Ventana 

Medical Systems-Roche)73. A rabbit polyclonal anti-SOX2 antibody (Abcam cat#97959) 

was used at 5 μg/mL concentration. A rabbit monoclonal anti-SOX9 antibody (Abcam 

cat#185966) was used at 1 μg/mL concentration. Samples were incubated with the primary 

antibodies for 5 h, followed by a 60-min incubation with biotinylated goat anti-rabbit IgG 

(Vector labs, cat#:PK6101) at a concentration of 5.75 μg/mL. Detection was achieved by 

Streptavidin-HRP D (Ventana Medical Systems), followed by incubation with Tyramide-

Alexa Fluor 568 (Invitrogen, cat. #B40956). Specificity of antibodies during co-

immunofluorescence were validated using a panel of cell lines validated to be double 

negative, double positive, or single positive for SOX2 and SOX9.

Image Cytometry Analysis—For all in vitro assays, the centroids of DAPI-stained 

nuclei were identified using a MATLAB implementation of the IDL tracking methods 

developed by John Crocker, David Grier, and Eric Weeks (physics.georgetown.edu/matlab/). 

Nuclei were then segmented using intensity thresholding of DAPI staining followed by a 

watershed process combining DAPI intensity with centroids determined in the previous step. 

Segmented nuclei were filtered by size using a threshold set using Otsu’s method74 and 
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circularity to exclude NK cells and debris. Regions with poor segmentation due to debris or 

with exclusively NK cell populations were manually excluded from further analysis. For 

quantitation of all in vivo tissue immunofluorescence, a convolution neural network based 

on the instance based Mask-RCNN architecture75 implemented in Tensorflow was used for 

automated nuclear segmentation. Segmented nuclei were then used as masks for per-nucleus 

quantification of the cumulative intensity of SOX2 and SOX9 normalized to DAPI intensity. 

For SOX2 and SOX9 co-immunofluorescence experiments, digital compensation was 

performed to correct for incomplete separation of fluorophores using a combination of 

single-stained controls and double-stained control populations with the assumption that 

control populations possess a non-zero fraction of cells single-positive for each marker76. 

Thresholds for positive and negative staining of each antigen were set based on the mean and 

standard deviation of each fluorophore’s distribution. Analysis and plotting were performed 

in Python.

Statistics—All statistical tests are explicitly and comprehensively described in their 

corresponding figure legends. Normality was validated for all t-tests; otherwise, non-

parametric Mann-Whitney or Kruksal-Wallis test were applied. When evaluating Pearson 

correlations, the Python package scipy was utilized to compute a p value testing for non-

correlation. The p-value roughly indicates the probability of an uncorrelated system 

producing datasets that have a Pearson correlation at least as extreme as the one computed 

from these datasets. Further information on research design is available in the Life Sciences 

Reporting Summary linked to this article.

Data availability—Raw data from Western blots is included in Source Data. A ranked list 

of DEG and complete GSEA results for all Phenograph clusters analyzed in this manuscript 

and provided in Supplementary Tables 4–15. A custom GSEA annotation file, assembled to 

query cell types and pathways related lung epithelial development and regeneration is 

provided in the Supplementary Dataset. All raw and processed single-cell RNA sequencing 

data with cell type annotations was deposited in NCBI’s Gene Expression Omnibus and are 

accessible through accession number GEO: GSE123904. Fully annotated count matrices are 

available for download at (https://s3.amazonaws.com/dp-lab-data-public/lung-development-

cancer-progression/PATIENT_LUNG_ADENOCARCINOMA_ANNOTATED.h5 and 

https://s3.amazonaws.com/dp-lab-data-public/lung-development-cancer-progression/

MOUSE_LUNG_ADENOCARCINOMA_METASTASIS_ANNOTATED.h5). All other 

datasets generated and analyzed in the current study are available from the corresponding 

authors upon request.

Code availability—All custom code, statistical analysis, and visualizations were 

performed in Python and are demonstrated in a Jupyter notebook available for download at 

(https://github.com/dpeerlab/lung-development-cancer-progression). The following open-

source algorithms were additionally used as described in the methods: SEQC (https://

github.com/ambrosejcarr/seqc), t-SNE (https://lvdmaaten.github.io/software/), MAGIC 

(https://github.com/dpeerlab/magic), and Phenograph (https://github.com/jacoblevine/

PhenoGraph).
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Extended Data
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Extended Data Fig. 1: Patient attributes.
Patient resection site, smoking history, primary lesion size, disease stage, diagnostic 

pathology, oncogenic mutations and treatment history.
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Extended Data Fig. 2: Single cell parameters and pre-processing.
Cells were filtered based on (a) cumulative number of transcript counts, (b) cell complexity 

and (c) fraction of mitochondrial mRNA content detected per cell as described in the 

Methods; shown here for one representative library. Excluded cells are labeled in red. 

Histograms showing the distribution of (d) total number of transcripts detected per cell and 

(e) number of unique genes detected per cell in retained cells colored by sample. f-h, t-SNE 

projection of the complete atlas of normal lung, primary tumor and metastatic LUAD (same 

projection as Figure 1c, n = 40,505 cells), cells colored by (f) sample and (g) meta-cell class 

as determined by (h) unsupervised clustering of canonical gene signatures within each meta-

cell class across all cells. Clustering of canonical cell type expression signatures (annotated 

in Supplementary Table 2), z-score normalized per gene across cells. Assignment to meta-

cell classes (detailed in Methods) are colored on the dendrogram.
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Extended Data Fig. 3: Phenotyping myeloid, epithelial and stromal cell types.
a, t-SNE projection of myeloid, epithelial and stromal cells (purple and tan populations from 

Extended Data Fig. 2g, n = 9,195 cells) colored and labeled by their Phenograph cluster 

assignment (Phenograph run on subset as detailed in Methods). b, Heatmap of gene 

signatures differentially expressed by Phenograph clusters with abs(NES) > 2 and padj < 

0.05, clustered (rows and columns) according to the cosine distance metric for visualization; 

hits not meeting these criteria are whited out. Numbered by Phenograph clusters (top) and 

colored by inferred cell type assignments (bottom, see Methods). NES, normalized 
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enrichment score; padj, Bonferroni corrected, two-sided p-value. c, Pearson correlations 

between Phenograph cluster centroids and bulk mRNA profiles from purified immune 

subpopulations56,57 (n = 5,987 genes, Methods). Correlation coefficients are whited out if p 

> 0.01 for the Pearson test for non-correlation. d, t-SNE projection of all myeloid/epithelial/
stromal cells (same as a) colored and labeled by inferred cell types. Phenograph clusters 

were mapped to cell types using (b-c) and are directly mapped back to the complete patient 

dataset in (Fig. 1c) using the same color scheme. e, Clustered heatmap of the average 

imputed expression per cell type of distinguishing markers, standardized by z-score. Rows 

are colored by annotated cell type.
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Extended Data Fig. 4: Phenotyping NK, T and B cells in the lymphoid compartment.
a, t-SNE projection of all lymphoid cells (blue cells from Extended Data Fig. 2g, n = 25,726 

cells) colored by Phenograph cluster. b, Pearson correlations between Phenograph cluster 

expression centroids and bulk mRNA data published from purified immune 

subpopulations56,57 computed based on intersecting, variably expressed genes (n = 5,613, 

Methods). Rows are colored and labeled by Phenograph clusters. Correlation coefficients are 

whited out if p > 0.01 for the Pearson test for non-correlation. c, Clustered heatmap of the 

average imputed expression per Phenograph cluster of canonical lymphoid markers, 
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standardized by z-scores. Rows are colored by Phenograph clusters (left) and annotated cell 

types (right, see Methods). d, t-SNE projection of all lymphoid cells (same as a) colored and 

labeled by inferred cell types. Phenograph clusters were mapped to cell types using (b-c) 

and are directly mapped back to the complete patient dataset in (Fig. 1c) using the same 

color scheme. e, The cell distribution of NKG7 imputed expression, a canonical NK cell 

marker, across all annotated lymphoid cell types. f, Dot plots showing relative frequency of 

expressing cells and mean normalized expression (un-imputed data) of canonical markers 

per lymphoid cell type.
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Extended Data Fig. 5: Reproducibility of cell types across patients.
a, Clustered heatmap of imputed average of key cell type markers, for all cell types 

annotated in the complete patient dataset (Fig. 1c) and standardized by z-scores. Rows are 

colored by cell type annotation, number of patients in which the cell type was detected, and 

the total number of cells assigned to this cell type (left to right on left side of clustered 

heatmap). b, Kernel density plot depicting entropy of the patient distribution as a measure of 

sample mixing across all patients within each cell type; computed with bootstrapping to 

correct for number of cells in each cluster (n = 100 random subsamples) as described in 

Methods. High entropy indicates most similar cells come from a well-mixed set of patient 

samples, whereas low entropy indicates most similar cells come from the same patient 

sample. Distributions are colored by annotated cell types. c, Estimates of tumor purity 

measured by scRNA-seq and targeted panel DNA sequencing of matched bulk tumor using 

FACETS, an allele-specific copy number analysis tool19. We test effectiveness of pairing 

between tumor purity estimates by reporting the Pearson correlation coefficient for n = 7 

samples for which matched scRNA-seq and bulk, targeted panel DNA sequencing was 

available with one-sided P value testing for non-correlation. d, t-SNE projection of 

individual patient tumors from n = 5 representative patient samples; annotated number of 

cells per patient. scRNA-seq data for each tumor was processed independently as described 

in the Methods; each dot represents a cell colored by Phenograph clusters, labeled by 

inferred cell types. e, Number of patients in which each cell type was detected for individual 

patient analyses. This is concordant with patient frequencies observed in the pooled analysis, 

summarized in a. Power to detect minority cell types like neutrophils and plasma cells is 

reduced when analyzing patient samples one-by-one.
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Extended Data Fig. 6: Epithelial cell types detected in the normal, adult human lung.
a, Force-directed layout of epithelial cells detected in the normal lung colored by 

Phenograph cluster and labeled with annotated cell type (n = 658 cells; Methods and below). 

b, Bar graphs representing the fraction of each cell type detected per patient. c, Clustered 

heatmap of the top 60 DEGs per cell type; imputed values standardized by z-scores are 

shown for visualization. DEGs were identified in un-imputed data using MAST44 as 

described in the Methods. Rows are colored by Phenograph cluster and labeled by annotated 

cell type. d, A clustered heatmap of differentially expressed gene signatures within each cell 

type. NES is shown for pathways in which abs(NES) > 2.5 and padj < 0.05; signatures not 

meeting this criterium are whited out. Columns are colored by Phenograph cluster. NES, 

normalized enrichment score; padj, Bonferroni corrected, two-sided p-value. Complete 

GSEA results per Phenograph Cluster, including nominal p-values, are provided in 

Supplementary Table 5. e, Histograms showing the fraction of cells per Phenograph cluster 

(i.e. cell loadings) expressing at or above the 75th percentile a fraction of each cell-type 

specific gene signature (AEC1, AEC2, Club and Ciliated) computed on imputed data; each 

distribution represents cells from one Phenograph cluster. Colors associated with each 

annotated epithelial cell lineage are maintained as in Fig. 2.
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Extended Data Fig. 7: The relationship between primary tumor and normal lung epithelial cell 
types.
a, Top DEGs per Phenograph Clusters annotated in Fig. 2b, compared to all other cells, 

computed using MAST44. Each lineage-specific gene is colored by associated cell type, with 

diameter proportional to −log10(padj). See Supplementary Table 1 for lineage-specific genes. 

b, Clustered heatmap of gene signatures differentially enriched (abs(NES) > 2 and padj < 

0.05) in one or more Phenograph Clusters. NES, Normalized Enrichment Score. Column 

colors (top) correspond to annotated epithelial lineages. Signatures not meeting these criteria 
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are whited out. See Supplementary Table 8 for complete GSEA results per Phenograph 

Cluster. c, Violin plots showing imputed expression of canonical lineage-specific 

transcription factors (columns) for each annotated epithelial cell lineage (color), scaled such 

that each plot has the same width; lines distinguish data quartiles. d, Force-directed layout of 

all epithelia (n = 2,140 cells) colored by extrema of the three most informative diffusion 

components (DCs, above) and by DC2 (below); GSEA of cells ranked along DC2 are 

positively enriched for embryonic stem cell gene signatures and pathways associated with 

proximal cell types, and negatively associated distal cell types. Complete GSEA results are 

provided in Supplementary Table 8. e, Fraction of normal- and primary tumor- derived cells 

comprising the union of all three DC extrema (center values, mean; error bars, 95% 

confidence interval; points, fraction of cells measured at n = 3 diffusion extrema). f, Fraction 

of each annotated cell type detected per diffusion component extrema and in non-extrema. g, 
Cumulative imputed expression of a bulk-derived gene signature up-regulated in LUAD and 

not expressed in non-cancerous epithelium30 evaluated per cell in normal vs. tumor-derived 

epithelium (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, n = 2,140 individual cells); two-sided p < 0.001, Mann Whitney 

U test.
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Extended Data Fig. 8: Identification of transcriptionally distinct metastatic subpopulations.
All data in this figure relates to the combined normal, primary tumor and metastatic 

epithelium. a, Clustered heatmap showing gene signatures differentially expressed across 

Phenograph clusters. Normalized enrichment score (NES) is colored for gene signatures in 

which abs(NES) > 1.5 and two-sided padj < 0.05. padj, Bonferroni corrected, two-sided p-

value. Rows correspond to gene signatures, column corresponds to Phenograph clusters. See 

Supplementary Table 10 for complete GSEA results per cluster. Fraction of each 

Phenograph cluster derived per tissue source is visualized above each column. White stars 
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(bottom) denote patient metastatic clusters based on fraction of metastatic cells (>10%). (b) 

Tissue source, clusters (matching those depicted in a), and cell types (annotated as in Fig. 2), 

are visualized on a force directed layout (n = 3,786 cells). c, SOX2, SOX9 and DAPI 

immunofluorescence in three additional patient-matched primary tumor-metastasis pairs. 

Scale bars, 100 μm. d, Fraction of each Phenograph cluster detected per metastasis sample 

(center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 

range; points, fraction detected per n = 5 metastatic samples). e, Entropy of patient 

distribution in each cluster, computed with bootstrapping to correct for number of cells per 

cluster (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range, n = 100 random subsamples of data). Metastatic clusters are shaded by 

Phenograph cluster ID and clusters are ordered by average entropy. Metastatic clusters 

associated with alveolar epithelial progenitor signature (type III), and two clusters comprised 

predominantly of primary tumor cells treated with neo-adjuvant therapy are patient-specific. 

f, Left, Patient metastatic clusters ranked according to average lung epithelial development 

GO signature expression (n = 34 genes) less one gene. Each row shows metastatic cluster 

ranking for each left-out gene. Right, kernel density plot of imputed and normalized 

expression of each left-out gene.
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Extended Data Fig. 9: Developmental stage-specific differential immune sensitivity extended.
a, Boxplots showing the average expression of NK cell-specific genes in TCGA lung 

adenocarcinoma patients stratified by SOX2 or SOX9 expression. NK cells are more 

abundant in SOX9high tumors and conversely, less abundant in SOX2high tumors (two-sided 

p < 0.001 based on Mann Whitney U test). Center line represents median; box limits, upper 

and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. b, Cropped Western 

blots showing SOX2 and SOX9 protein levels upon DOX induction in the H2087-LCC 

model; no independent repeats were performed. Un-cropped Western blots are provided in 

Source Data. c, mRNA expression of Sox2 and Sox9 in bulk KP mouse LUAD derivatives39, 

from primary tumors (circles) or metastases (x); red indicates the derivative is metatstatic. d, 
Endogenous expression of nuclear SOX9 enumerated by quantitative immunofluorescence 

in KP482T1 metastatic cells before and after co-culture with IL2-activated mouse NK cells. 

Fraction of SOX9 positive cells before and after NK cell co-culture are reported. Average of 

n = 3 technical replicates for each of 3 biological replicates. Between 5 and 9 locations were 

imaged and quantified per biological and technical replicate; resulting in quantitation of 

4,534 cells before NK cell co-culture and 2,556 individual cells after NK cell co-culture. P-
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values from paired two-tailed t-tests (n = 3 biological replicates, degrees of freedom = 2, t = 

8.33, p = 0.01 for SOX9 single positive comparison). e, Relative mRNA expression of NK 

activating ligands in H2087-LCC cells with and without induction of SOX2 or SOX9 (n = 3 

technical replicates; center values, mean; error bars, 95% confidence interval).
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Extended Data Fig. 10: Clonality and phenotypic landscape of NK cell-depleted 
macrometastases.
a, Integrated radiance of H2087-LCC cells intracardially injected in mice, +/− anti-GM1 

antibody treatment to deplete NK cells measured over time. b, Schematic illustrating 

trichromatic marking system implemented to assay the clonality of NK cell-depleted 

metastases. Fluorescence of trichromic reporter visualized in metastatic outbreaks generated 

in NSG mice lacking NK cells. c, FACS plots shows distribution of cells expressing 

Cerulean, Venus and mCherry per NK cell-depleted metastasis (lower) as compared to single 

and multi-color controls (upper); repeated independently for n = 6 NK cell-depleted 
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macrometastases. d, Force-directed layout of all single cells (n = 6,073 cells) 

transcriptionally profiled from 8 NK cell-depleted macrometastases colored by Phenograph 

cluster. e, Kernel density plot of the imputed expression of SOX2 and SOX9 in each NK 

cell-depleted Phenograph cluster; clusters are ranked by median of the SOX2 distribution. f, 
A bipartite graph representing genome-wide correlations across all common, variably 

expressed genes (n = 2,895; Methods) between each NK cell-depleted Phenograph cluster (n 

= 18,circular nodes) and each developmental state observed in human tumors (n = 4, square 

nodes, annotated in Fig. 3c). The Pearson correlation is computed across all categorical 

assignments between the two independent sets and edges link NK cell-depleted Phenograph 

clusters to human developmental for Pearson R > 0.20 and two-sided p < 0.05; edge width is 

scaled by the magnitude of the correlation (observed range: 0.20–0.62). Pearson correlation 

coefficients are also reported in Supplementary Table 2. Shading is used to highlight nodes 

assigned the three metastatic states detailed in Fig. 4.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The single-cell transcriptional landscape of human lung adenocarcinoma.
a, Patient tissues profiled (metadata summarized in Extended Data Fig. 1). b, Cell type 

fractions detected per sample, color coded as in c. c, t-SNE projection of the complete atlas 

of normal lung, primary tumour and metastatic LUAD colored by cell type; includes 

carcinoma and non-tumour epithelium, as well as immune and other stromal cell types 

within the tumours (n = 40,505 cells). d, Cell-type abundances differ between normal, 

primary and metastatic sites (n = 17 patient samples; center line, median; box limits, upper 

and lower quartiles; whiskers, 1.5x interquartile range; points, outliers). Significant 

differences in cell type abundance are highlighted (Kruskal-Wallis rank test).
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Figure 2. Regenerative and mixed lineages in primary tumours.
a, Key epithelial cell types and associated transcription factors (in brackets) implicated in 

lung development and regeneration29. Specialized cell types of the SOX9-specified distal 

lung include type I alveolar epithelial cells (AEC1) that perform gas exchange, and type II 

alveolar epithelial cells (AEC2) that secrete surfactants. The SOX2-specified proximal upper 

airway includes secretory, neuroendocrine (NE) and ciliated cell types that predominantly 

serve barrier functions. Infiltrating stromal cell types that support lung epithelial 

development and are detected by scRNA-seq are also illustrated. b, Force-directed layout of 
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normal and primary tumour epithelial cells colored by annotated lineage (n = 2,140 cells). 

Tumour cells that concomitantly express multiple cell type markers (mixed lineage) are in 

grey. Inset, same layout colored (in black) by source of epithelium. c, Left, Relative 

frequency of cells expressing each canonical lineage marker (any counts detected in un-

imputed data) and the average un-imputed expression of each gene (z-normalized across 

epithelial cell types) for all expressing cells in a given cluster. Right, Kernel density plot 

depicting entropy of cell mixing across all patients for each cell type, computed with 

bootstrapping to correct for number of cells in each cluster (n = 100 random subsamples of 

data). High entropy indicates most similar cells come from a well-mixed set of patient 

samples; low entropy indicates most similar cells come from the same patient sample. d, 

Fraction of each cell type detected per patient sample (colors as in b). e, Top DEGs for a 

representative mixed lineage cluster (Cluster 2, n = 183 cells) compared to all other cells 

computed using MAST44, indicating enrichment of AEC1, AEC2, club, ciliated, basal and 

AEP markers (volcano plots supporting other mixed-lineage clusters are in Extended Data 

Fig. 7a). Lineage-specific DEGs are colored by associated cell type (as in b), diameter 

proportional to −log10(padj) for genes with fold change > 1.5 and padj < 0.05 (see 

Supplementary Table 1 for lineage-specific genes). f, 2D cell density plot showing fraction 

of AEC1 and AEC2 lineage markers per cell in normal lung alveolar cells compared to 

tumour cells from Clusters 0 and 1. Only markers with normalized un-imputed expression in 

the top quartile (per gene, across all cells) are plotted. The overlapping distributions are 

shaded by cell type. g, Lineage phenotypic volume (Methods) of epithelium derived from 

primary tumours compared to normal lung, showing significant expansion of lineage gene-

gene covariate structure in primary tumours (two-sided Mann-Whitney rank test, p < 0.001). 

n = 50 random subsamples of the data each (center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range; points, outliers).
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Figure 3. Metastases exhibit a continuum of stem to lung epithelial progenitor states.
a, For each patient metastatic cluster, boxplots indicate the cellular distribution of the 

average imputed and normalized expression of five key gene signatures associated with lung 

development (see Supplementary Table 2 for the signatures). Clusters are ranked by average 

expression of the lung epithelial signature; cluster color and labels are as in Extended Data 

Fig. 8a–b. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, outliers. Cells from type I clusters (n = 813) are associated with 

increased expression of an adult stem cell signature (two-sided Mann-Whitney U-test: U = 
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281595, p = 7e-81). Cells from type I and II clusters (n = 1,408) show increased expression 

of genes involved in epithelial-mesenchymal transition (EMT) (U = 215794, p = 1e-115). 

Cells from type II intermediate clusters (n = 595) were specifically enriched for regenerative 

pathways related to morphogenesis and specification of the respiratory endoderm (U = 

332492, p =2e-25). Whereas cells from type III clusters (n = 756) exhibited the highest level 

of alveolar epithelial progenitor programs (U = 40174, p = 2e-276) and decreased expression 

of adult stem cell genes (U = 229739, p = 6e-106). b, Relationship between type I-III 

assignments and key transcription factors specifying stem and lung epithelial progenitors in 

the canonical model of lung morphogenesis29. c, Imputed and normalized expression of key 

transcription factors specifying stem and lung epithelial progenitors (rows) for all individual 

tumour cells, ranked by average expression of the lung epithelial development GO signature 

(Supplementary Table 2) in ascending order from left to right. Expression of each 

transcription factor was z-normalized across all cells and smoothed using a 20-cell moving 

average widow. Clustering applied directly to this matrix (Methods) assigned each cell to a 

proliferating (P) or quiescent (Q) stem-like state (type I), regenerative state (type II), or a 

SOX9high alveolar epithelial progenitor state (type III) (top row). Bottom, average 

expression of three canonical proliferation markers across ranked tumour cells (Methods). d, 

SOX2 and SOX9 immunofluorescence and DAPI in matched primary tumour, lymph node 

and cerebellar metastases from representative patient (repeated in n = 4 independent 

matched patients with similar results). Scale bar, 50 μm. Additional patients in Extended 

Data Figure 8c. e, Percentage of each metastatic cluster detected per primary tumour. Center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; each 

point is a primary tumour (n = 8 independent patient samples). f, Hazard ratio (HR) with 

95% confidence intervals for overall survival (OS), computed between lowest and highest 

quartiles for n = 673 LUAD patients37 (Methods). HR > 1 is poorly prognostic; HR < 1 

indicates improved OS and any CI crossing the line at 1 is not significant.
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Figure 4. Developmental continuum in a mouse model of metastatic escape.
a, Xenograft model of metastatic escape, illustrating the three stages from which single cells 

were sampled. b, BLI growth curves (measured ex vivo for up to 120 days) for all sampled 

xenograft metastases, including ex vivo BLI images acquired at tissue harvest. c-d, Force-

directed layout of all metastatic tumour cells (n = 8,748 cells) isolated from 6 mice colored 

by (c) source and (d) Phenograph cluster. Clusters were grossly assigned to one of three 

metastatic states: Quiescent, correlated with a non-proliferating stem-like state (type I-Q); 

Regenerating, correlated with proliferating stem (type I-P) and the regenerative (type II) 

state; and Escape, which is highly concordant with SOX9high alveolar epithelial progenitors 

(type III) (see Methods). e, Force-directed layout (as in c,d) of all xenograft tumour cells 

colored by imputed, z-normalized SOX2 and SOX9 expression. f, Bipartite graph 

representing genome-wide correlations across all common, variably expressed genes (n = 

2,096, Methods) between the 18 mouse clusters (circular nodes) and 4 developmental human 

tumour states (square nodes, annotated in Fig. 3c). Pie charts within circular nodes represent 

mouse cell sources. Edges link mouse clusters and human states with genome-wide Pearson 

R > 0.20 and two-sided p < 0.05; edge width is proportional to the correlation magnitude 
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(see Supplementary Table 2 for exact values). Dotted arrows suggest temporal ordering 

between metastatic states, based on the three stages from which cells were isolated and 

profiled (according to BLI signature).
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Figure 5. Developmental stage-specific differential immune sensitivity.
a, Average imputed and normalized Hallmark Inflammatory Response gene expression 

(Supplementary Table 2) across all patient-derived tumour cells, ranked by average lung 

epithelial development score. Each dot represents a cell colored by its imputed and 

normalized SOX9 transcript counts. b, NK cell co-culture assay. Tumour cells were cultured 

alone or with IL2-activated mouse NK cells at a 1:10 ratio for 3 h, and endogenous SOX2 

and SOX9 were detected by immunofluorescence (IF). c, Fraction of H2087-LCC cells 

exclusively positive for either nuclear SOX9 or SOX2 before and after co-culture (average of 

3 technical replicates for each of 4 independent experiments; paired two-sided t-tests, 3 

degrees of freedom). A total of 134,946 cells before co-culture and 32,602 cells after co-

culture were quantified. d, Percentage of cell death and apoptosis in H2087-LCC cells 

measured by flow cytometry before and after co-culture in the context of inducible SOX2 

and SOX9 over-expression (center line, mean; whiskers, SEM; points, 3 independent 

experiments; unpaired two-sided t-test, 8 degrees of freedom). e, SOX9 IF in KP482T1 

mouse metastatic tumour cells before and after 3-h co-culture of tumour and IL2-activated 

mouse NK cells at a ratio of 1:10 (repeated in 3 independent experiments with similar 

results). f, Expression of transcription factors specifying stem and lung epithelial 

progenitors, MHC Class I markers of self, and NK activating ligands across patient-derived 

tumour cells assigned to type I-Q, II or III developmental stages (top row, as in Fig. 3), in 
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patient primary tumours and metastases. Proliferation refers to mean PCNA, MKI67 and 

MCM2 expression per cell. MHC Class I and NK activating show the average expression of 

their associated genes, visualized individually below. For each gene, imputed expression was 

z-normalized across all cells and smoothed using a 20-cell moving average widow. Dashed 

boxes indicate association with spontaneous micro- or macro-metastases observed in our 

xenograft model. Bottom, SOX2/SOX9 status. g, Relative expression of MHC Class I genes 

important for NK cell evasion in H2087-LCC cells with and without SOX2 or SOX9 

induction, measured by RT-PCR (n = 3 technical replicates; center values, mean; error bars, 

95% confidence interval). h, Cells positive for HLA Class I Bw4 surface protein, measured 

by flow cytometry (n = 3 independent experiments; center values, mean; error bars, 95% 

confidence interval; points, all measured data). i, Imputed expression of MHC Class I 

markers of self and Sox transcription factors specifying stem and lung epithelial progenitors 

in the D8.75 mouse gut tube, showing spatial segregation of Sox2 and Sox9 lineages in cells 

ranked by their pseudospace ordering45. A, anterior; P, posterior. j, Correlation between 

average SOX9 target gene expression, predicted using motifs from the JASPAR Predicted 

Transcription Factor targets dataset (Supplementary Table 2)46,47 and the average expression 

of all MHC Class I genes across n = 510 TCGA LUAD patients (Pearson R = 0.48 and two-

sided p < 0.001 to test for non-correlation). Outliers defined as 1.5X the interquartile range 

less than Q1 or greater than Q3 (n = 16) are removed from the scatter plot.
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Figure 6. NK cell-dependent pruning limits the phenotypic expansion of metastasis-initiating 
cells.
a, in vivo NK cell perturbation assay in mice harboring latent metastasis-initiating cells. b, 
2D cell density plot of z-normalized SOX2 and SOX9 imputed expression in H2087-LCC 

cells isolated from macrometastases +/− NK cell depletion, as determined by scRNA-seq. c, 
Fraction of type I/II and type III cells detected in spontaneous versus NK cell-depleted 

macrometastases (3 spontaneous macrometastases harvested from n = 3 independent mice 

and 8 NK cell-depleted macrometastases harvested from n = 5 independent mice; center 

line, geometric mean; whiskers, geometric s.d.; points, all measured data; two-sided Mann-

Whitney rank test). Cell types are assigned by significant correlation with patient tumour 

states (Pearson R > 0.20 and two-sided p < 0.05 to test for non-correlation; as in Fig. 4f). d, 
Top DEG for NK cell-depleted cluster with highest SOX2 expression (Phenograph cluster 8, 

n = 322 cells, see Extended Data Fig. 10e) compared to all other cells, computed using 

MAST44. DEGs are red, with diameter proportional to −log10(padj) for genes with fold 
change > 1.5 and padj < 0.05. e, SOX2 and SOX9 immunofluorescence in a representative 

spontaneous and NK cell-depleted macrometastasis (n = 15 macrometastases evaluated, 

nuclear SOX9 expression summarized in f). Scale bars, 50 μm. f, Nuclear SOX2 and SOX9 

single-positive, double-positive, and negative cell fractions quantified per macrometastatic 

lesion (n = 11,376 single cells quantified, fraction of metastases reported across n=15 lesions 

including lung, bone, kidney, and soft connective tissues harvested from 7 mice). 5 

representative 20X frames were evaluated per lesion. SOX9 single-positive cells were 

enriched in spontaneous as compared to NK-cell-depleted macrometastases (n = 15 

independent macrometastases, p = 0.06, one-sided Mann-Whitney rank test); abundance of 
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other cell types was not significantly altered (data not shown). Center line, geometric mean; 

whiskers, geometric s.d.; points, all measure data.
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