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Abstract

Effective discovery of causal disease genes must overcome the statistical challenges of quantitative 

genetics studies and the practical limitations of human biology experiments. Here we developed 

diseaseQUEST, an integrative approach that combines data from human genome-wide disease 

studies with in silico network models of tissue- and cell-type-specific function in model organisms 

to prioritize candidates within functionally conserved processes and pathways. We used 

diseaseQUEST to predict candidate genes for 25 different diseases and traits, including cancer, 

longevity, and neurodegenerative diseases. Focusing on Parkinson’s disease (PD), a 

diseaseQUEST-directed Caenhorhabditis elegans behavioral screen identified several candidate 

genes, which we experimentally verified and found to be associated with age-dependent motility 

defects mirroring PD clinical symptoms. Furthermore, knockdown of the top candidate gene, 

bcat-1, encoding a branched chain amino acid transferase, caused spasm-like ‘curling’ and 

neurodegeneration in C. elegans, paralleling decreased BCAT1 expression in PD patient brains. 

diseaseQUEST is modular and generalizable to other model organisms and human diseases of 

interest.
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Understanding the etiology of disease requires comprehensive data-driven methods capable 

of identifying and experimentally verifying candidate disease genes. Whereas quantitative 

genetics approaches provide a valuable, relatively unbiased source of candidate genes, they 

suffer from statistical and biological limitations (for example, lack of power because of 

sample size, multiple hypothesis testing, or variants with small effect sizes), thereby 

potentially missing a large fraction of disease-associated genes. Network-based methods 

have emerged as a useful set of tools to complement quantitative genetic studies, by 

leveraging the disease signals captured by these studies to further interpret and prioritize 

candidate disease genes. Tissue-specific networks1,2 have been shown to be important, 

because they address many of the limitations (for example, coverage and lack of tissue 

specificity) of previous methods that rely on protein–protein physical-interaction 

networks3–5. Tissue specificity is especially critical, because tissue-specific gene expression 

and pathway regulation underlie human physiology, and their dysfunction often results in 

disease. Another major challenge is the inability to systematically screen and test candidate 

disease genes in humans, owing to technical and ethical limitations. Model organisms 

provide a powerful answer to that challenge6–8, but their most effective use requires 

reconciling human disease genetics with model-organism biology.

To address these issues, we developed disease-associated quantitative unbiased estimation 

across species and tissues (diseaseQUEST), an integrated computationally driven approach 

that combines human quantitative genetics with in silico functional network representations 

of model-organism biology to systematically identify disease-gene candidates. Our approach 

leverages the disease signals in quantitative human genetics studies (such as genome-wide 

association studies (GWAS)) as well as the functional pathway signals in cell-type- and 

tissue-specific networks, integrating large collections of ‘omics’ data in model organisms, to 

predict and experimentally screen candidate disease genes for their association with relevant 

phenotypes. Intuitively, these networks summarize functional relationships between genes in 

specific tissues or cell types, such that a functional relationship represents genes working 

together, either directly or indirectly, in a biological pathway. The tissue specificity of this 

approach reflects the roles that tissue and cell-type diversity play in most complex human 

diseases and is critical for both the accuracy and the interpretation of diseasegene 

predictions. In essence, diseaseQUEST enables computationally guided phenotype screens 

that identify the top gene candidates for the disease of interest, prioritizing areas for which 

the model system used by diseaseQUEST is informative for human disease biology.

We used diseaseQUEST to predict candidate genes for 25 human diseases and traits by using 

C. elegans as a model system. This application of diseaseQUEST harnesses a 

semisupervised approach that we developed to generate tissue-specific functional networks, 

which are combined with human GWAS results to identify new disease-related-gene 

candidates. We showed that diseaseQUEST can accurately identify disease genes across 

organ systems and demonstrated its ability to predict the tissue specificity of known 

longevity pathways by using only human GWAS genes as input.

We took advantage of the experimental tools in C. elegans that allow for high-throughput 

behavioral testing (thus making it a valuable system to quickly assay disease-associated 

genes), as well as the worm’s short lifespan (enabling fast screening of age-related 

Yao et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disorders), to experimentally assay 45 candidate PD genes across 13,255 individual worms. 

PD is the most common neurodegenerative movement disorder worldwide, for which 70–

95% of cases have unknown origins, thus reflecting the need for innovative approaches to 

identify disease-modifying genes. Knockdown of most of the diseaseQUEST PD-candidate 

genes caused motor defects in C. elegans, and neuronal knockdown of our top candidate, 

bcat-1, caused spasm-like curling and exacerbated α-synuclein-mediated degeneration of 

dopaminergic neurons. Notably, BCAT1 is normally highly expressed in areas of the brain 

that are affected by PD, and expression of BCAT1 is significantly lower (false discovery rate 

(FDR) = 0.0227) in the substantia nigra in PD patients than unaffected individuals, thus 

suggesting that diseaseQUEST with high-throughput C. elegans behavioral screening can 

successfully identify and test new disease genes.

RESULTS

Combining tissue-specific model-system biology with human disease studies

diseaseQUEST includes three key components (Fig. 1a) within an integrated computational-

experimental framework for discovery and directed experimental screening of disease-gene 

candidates. The Functional Representation module leverages a semisupervised approach for 

building tissue- and cell-type-specific model-organism functional networks (in this study, we 

built C. elegans networks, described below). The Disease Prediction module utilizes these 

model-organism networks and human quantitative genetic data to make candidate-disease-

gene predictions. Finally, the Phenotypic Assay module experimentally tests these 

predictions in phenotyping screens in the model organism.

A semisupervised regularized Bayesian integration method to build tissue-specific 
functional networks

To enable diseaseQUEST to effectively leverage the wealth of cell-type information 

available for many worm genes, we developed a new approach that efficiently extracts cell-

lineage-specific signals from the compendium of C. elegans expression data and generates 

network representations of tissue- and cell-type-specific functional similarity for the 

Functional Representation module. We applied this semisu-pervised, ontology-aware 

regularized Bayesian integration method to 203 cell types and tissues in C. elegans, 

including not only tissues in the major organ systems but also hermaphrodite- and male-

specific tissues, thereby providing networks of resolution down to specific cell types (for 

example, dopaminergic neurons; hyp 1, a specific hypo-dermal cell; marginal cells; full list 

in Supplementary Data 1). Our approach addresses limitations in the knowledge of cell-type-

specific gene expression and protein function by using semisupervised learning. The method 

supplements the limited number of known patterns of cell-type-specific expression or 

function with high-confidence predictions made from large collections of functional 

genomic data. This procedure enabled us to generate high-quality networks, even for cell 

types and tissues with few known cell-type-specific genes (for example, the ASIR neurons 

or the V2l cells, with only 76 and 47 annotated cell-type-specific genes).

Across all tissues and sex-specific systems, the networks were accurate in predicting known 

tissue-specific functional associations in ‘hold-out’ evaluations (in which a subset of genes 
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with known functional associations is ‘hidden’ from the system throughout training and is 

used to evaluate its performance) (Fig. 1b,c). Our semisuper-vised framework captured 

tissue-specific function significantly better than a global, non-tissue-specific network 

representing the whole organism (Fig. 1b, one-sided Wilcoxon rank-sum test, P < 2.087 

×10−14; another example of a global non-tissue-specific approach is WormNet 3.0 (ref. 9), P 
< 3.66 × 10−15) or networks generated by a fully supervised framework approach1 (Fig. 1c, 

one-sided Wilcoxon rank-sum test, P < 2.52 × 10−13; to our knowledge, no other tissue-

specific worm networks have been described). Notably, individual neuron subsets, such as 

cholinergic and dopaminergic neurons, were among the top-performing tissue networks 

determined through the semisupervised approach, and they outperformed the whole nervous-

system network (Fig. 1b). We have made all these networks available for download and 

interactive exploration through a dynamic web interface (Worm Integrated in Specific 

Contexts (WISP), http://wisp.princeton.edu/).

Predicting candidate human disease genes

The Disease Prediction module of diseaseQUEST then leverages the cell-type- and tissue-

specific model-organism networks described above in concert with human disease genes 

from quantitative genetics studies within a machine-learning framework to predict new 

candidate genes. Specifically, we identified the closest worm functional orthologs10 of 

reported disease-associated genes in the GWAS Catalog11 as positive examples, and we used 

the support-vector machine-learning approach with the network neighborhoods of these 

genes as input to predict other genes with similar network topology. Intuitively, our approach 

learns coherent tissue-specific-network signals that are indicative of genes involved in a 

specific human disease as opposed to other diseases, then uses these patterns to predict new 

gene candidates.

For 25 diseases and traits (Supplementary Data 2) with sufficient number of GWAS genes 

(Supplementary Data 3), we observed strong predictive performance across all major disease 

categories (fivefold cross-validation, Fig. 2a). The results included accurate predictions for a 

number of cancers (for example, lung, melanoma, and ovarian cancers), cardiovascular and 

muscular diseases (for example, hypertension and myocardial infarction), nervous-system 

diseases (for example, amyotrophic lateral sclerosis (ALS) and PD), and metabolic and 

autoimmune diseases and traits (for example, longevity, obesity, and celiac disease). We also 

found that the diseaseQUEST predictions reflected many aspects of known disease biology 

(Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) 

enrichments in Supplementary Data 4–7). For example, ALS is characterized by motor 

neuron degeneration and muscle atrophy, and the diseaseQUEST predictions were enriched 

in genes associated with locomotion and muscle biology (Supplementary Data 4). Moreover, 

alternative splicing, MAP kinase signaling, and phosphatidylinositol signaling were among 

the most highly enriched terms, and these pathways were previously implicated in ALS 

through mouse models12–14. The disease predictions for schizophrenia, which are enriched 

in various aspects of RNA biology (alternative splicing and mRNA surveillance) and the 

ubiquitin–proteasome system (Supplementary Data 5), are similarly supported by findings 

from human studies15–17. Support for the diseaseQUEST predictions extends to cancer, 

including ovarian and pancreatic carcinomas, in which the genetic basis for most disease 
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cases is unknown. For example, the ovarian cancer predictions were enriched in genes that 

regulate fatty-acid metabolism and mitochondrial function (Supplementary Data 6), and the 

pancreatic cancer predictions were highly associated with mRNA splicing/spliceosome 

factors (Supplementary Data 7), all associations that were consistent with prior 

literature18–20. These results demonstrate that leveraging the data-driven disease signal from 

only GWAS studies (i.e., without incorporating any prior disease knowledge into the 

prediction process), diseaseQUEST predictions identify known aspects of various diseases 

while making predictions for new genes and pathways that can be experimentally tested in 

model systems.

Recapitulating known aging biology and predicting tissue-specific longevity genes

To further systematically evaluate the Functional Representation and Disease Prediction 

modules, we examined gene predictions for longevity. This unique opportunity allows for 

evaluation of causality, not simply association, because thorough experimental studies in C. 
elegans have identified genes with clear causal associations with longevity. In fact, decades 

of small-scale experiments and large-scale screens have identified genes involved in the 

determination of C. elegans adult lifespan, many of which were later shown to influence 

lifespan in mammals21. As a test of diseaseQUEST ‘s predictive power, we assessed whether 

our tissue-specific network–based approach using only human-longevity GWAS genes as 

input could successfully predict these experimentally identified longevity genes in a data-

driven manner. By using the C. elegans network for the intestine, a tissue known to have 

many roles in lifespan regulation22,23, our method successfully predicted genes known to 

affect C. elegans adult lifespan (Fig. 2b and Supplementary Data 8, one-sided Wilcoxon 

rank-sum test, P < 5.619 × 10−7, FDR < 5.7 × 10−5). For example, the top diseaseQUEST 
predictions successfully identified several lifespan-associated components of the 

autophagy/TOR machinery (Supplementary Data 8), including let-363/MTOR, hlh-30/
TFEB, aak-1/AMPK, atg-7/Atg7, unc-51/Ulk2, lin-45, and ife-2/EIF4E, and intestinal 

autophagy is indeed specifically required for the increased longevity associated with dietary 

restriction in C. elegans24. These findings reveal that diseaseQUEST can be successfully 

used to predict causal disease genes that are amenable to phenotypic screening.

To evaluate the specificity of these predictions, we also calculated the predictive 

performance of general, non-tissue-specific networks and found that using the intestine 

network dramatically improved the performance (one-sided Wilcoxon rank-sum tests: 

intestine network P < 5.619 × 10–7 versus non-tissue-specific global network P < 0.001, 

WormNet 3.0 (ref. 9); P < 0.003, protein–protein interaction network P < 0.122). 

Furthermore, when predictive performance on longevity genes was compared across all 203 

C. elegans tissue and cell type networks, the intestine and the larger alimentary-system 

networks were the best performing (Fig. 2c) among the 203 sets of predictions, and many 

other tissues known to be relevant to longevity were also among the higher-ranked results 

(Fig. 2c and Supplementary Data 8), thus demonstrating a tight correspondence between the 

computational models and related biological knowledge. This analysis is especially 

important because, in addition to demonstrating the accuracy and tissue specificity of 

diseaseQUEST predictions, it shows that human GWAS genes, although not guaranteed to 
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be causal, as a group, provide an informative signal about disease causality sufficient to 

discover new candidates.

Applying diseaseQUEST to PD

We next focused on identifying candidate PD genes by using the full computational-

experimental diseaseQUEST framework (Supplementary Data 9 and Fig. 3). The PD-

candidate genes from the Disease Prediction module appeared to be relevant to human PD 

biology, because they were significantly enriched in orthologs of known PD genes, 

according to Human Gene Mutation Database annotations, which were not used in any stage 

of the diseaseQUEST prediction process (one-sided Wilcoxon rank-sum test, P < 4.151 × 

10−4). The predictions were also enriched in orthologs of human genes closest to the 43 

significant single-nucleotide polymorphisms reported in a recent 23andMe PD GWAS 

study25 that was also independent of our analysis (one-sided Wilcoxon rank-sum test, P < 

8.577 × 10−6). Furthermore, our predictions were enriched in significantly differentially 

expressed genes in the substantia nigra of patients with sporadic PD26 (one-sided Wilcoxon 

rank-sum test, P < 9.009 × 10−3).

To interpret the processes and pathways represented in our top PD predictions, we examined 

them in the context of the dopaminergic neuron WISP functional network. These predictions 

formed four major clusters (Fig. 3a and Supplementary Data 10), including two clusters 

related to movement: cluster A was enriched in genes related to muscle movement, 

locomotion, and activity level, and cluster B was enriched in terms related to synapse density 

as well as motor neuron and nervous-system morphology. Clusters C and D were both 

enriched in metabolic processes, and cluster D also had strong aging/longevity and growth-

pathway signals. Overall, the predictions were enriched in cellular components known to be 

dysregulated in PD27, such as lysosomes and phagosomes (Fig. 3b, Supplementary Fig. 1 

and Supplementary Data 11).

Directed PD-candidate screens for age-dependent motility defects

We then used the Phenotypic Assay module to experimentally screen the top predictions for 

PD-associated phenotypes. Reasoning that age-dependent motility defects could be used to 

model human PD symptoms, we examined the top-ranked genes for the effects of candidate 

gene knockdown on swimming behavior with age. To prioritize the top-scoring predictions 

for experimental follow-up, we considered only worm genes with known human orthologs, 

and we split these top predictions into three tiers based on known and/or predicted human 

brain expression and C. elegans neuronal expression (Online Methods and Supplementary 

Data 12). To avoid developmental defects and to enhance RNA interference (RNAi) in 

neurons, we knocked down gene expression specifically in neuronal-RNAi-sensitive adults 

by feeding late larval stage (L4) larvae with bacteria encoding each of the top 45 candidate 

genes’ double-stranded RNA. We then used CeleST28 to analyze the swimming behavior of 

young, mid-life, and older worms (days 2, 5, and 8; 13,255 worms across 1,823 videos, 

Supplementary Data 13 and Supplementary Fig. 2). Swimming slowed with age, and 

principal component analysis suggested that aging had a major effect on behavior 

(Supplementary Fig. 3).
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However, knockdown of many (11 of 45) of the top PD candidates caused a drastic and 

significant spasm-like curling phenotype with age (Fig. 4a,b), which also corresponded with 

‘stretch’ phenotypes (25 of 45; Fig. 4c), both of which are atypical of normal aging. Notably, 

knockdown of scav-1, one of the PD GWAS orthologs (which was a ‘positive’ example in 

our training and was also strongly predicted by our method to be PD related), caused 

obvious, severe curling (Fig. 4d), and all four of the PD GWAS-positive hits significantly 

affected stretch (Fig. 4c). Although we originally reasoned that age-dependent defects in 

motility might be generally analogous to human motor disorders, scav-1’s motility defect 

suggests that these worm swimming phenotypes can be used to model several aspects of 

human parkinsonism, including resting tremors, which are also spasm-like.

To assess the specificity of the curling phenotype with regard to the PD predictions, we 

analyzed the top-scoring genes across a wide spectrum of disease predictions, including 

cancers and metabolic disorders, for curling. We tested the top predictions across 13 

different diseases in 23,662 worms, generating 4,441 snapshots that were analyzed for 

curling. Even though all genes tested are expressed in adult neurons29 (Supplementary Data 

14), none of the non-PD disease-candidate genes caused a curling phenotype 

(Supplementary Fig. 3). This result demonstrates the specificity of the diseaseQUEST 
approach in identifying disease-specific genes.

bcat-1 and neurodegeneration

One of the most severe age-related curling defects was caused by adult-specific knockdown 

of bcat-1 (Fig. 5a,b and Supplementary Fig. 4), a BCAA transferase that is required for 

development30 but has not been previously linked to PD. BCAT1 catalyzes the first step in 

the catabolism of BCAAs, which play roles in glutamate metabolism, mTOR signaling, 

obesity, and diabetes31–33. In C. elegans, bcat-1 knockdown in wild-type adults was 

previously found to increase the endogenous accumulation of BCAAs (valine, leucine, and 

isoleucine) and to extend lifespan34, as we also observed. We treated wild-type (N2) animals 

(whose neurons are refractory to RNAi) with bcat-1 short interfering RNA and found that 

curling was not induced, in contrast to the phenotype observed in neuronal-RNAi-sensitive 

worms, thus suggesting that the curling defect is due to bcat-1 downregulation in neurons 

(Fig. 5c and Supplementary Fig. 5). These findings are consistent with a role of bcat-1 in 

neuron-related disorders.

The possible role of BCAA metabolism in PD is intriguing. Although this role was not 

previously characterized in relation to PD, an analysis of Allen Brain Atlas data revealed 

that BCAT1 expression is high in PD-susceptible brain regions of healthy individuals (Fig. 

5d, Supplementary Fig. 6 and Supplementary Data 15), whereas BCAT1 is significantly 

diminished in the substantia nigra in patients with sporadic PD26 (FDR = 0.0227; Fig. 5e). 

Furthermore, the levels of BCAAs in the urine of patients with PD correlate with disease 

severity35, and high levels of BCAAs may be damaging to neuron function36. Strikingly, 

adults with maple syrup urine disease (which results in high BCAA levels) experience 

movement disorders, including parkinsonism37, and exhibit loss of dopaminergic neurons in 

the substantia nigra and pontine nuclei38. In contrast, decreased BCAAs have been found to 
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improve metabolic health in both mice and humans39,40, although motor and cognitive 

function were not tested in those studies.

bcat-1 decrease promotes dopaminergic neurodegeneration in a C. elegans model of PD

To further examine the role of bcat-1 in PD phenotypes, we used a well-established C. 
elegans model of dopaminergic neurode-generation41. α-synuclein has been linked to PD 

both genetically and pathologically42, and worms expressing human α-synuclein in 

dopaminergic neurons exhibit progressive loss of dopamine neuron cell bodies and 

neurites43–45. Therefore, we tested whether bcat-1 RNAi influenced α-synuclein-mediated 

dopaminergic neu-rodegeneration. Knockdown of bcat-1 in a-synuclein-expressing worms 

increased the loss of dopaminergic cell bodies and neur-ites, and caused the remaining 

neurites to become irregularly shaped (Fig. 5f,g and Supplementary Fig. 7). These results 

suggest that bcat-1 exacerbates the effect of α-synuclein in dopaminergic neurons.

Our results demonstrated an association of bcat-1 with the major features of PD: (i) 

progressive, age-related motor dysfunction and (ii) degeneration of dopaminergic neurons in 

the context of α-synuclein toxicity. The presence of these features suggests that our model is 

specifically relevant to PD. Moreover, our findings suggest that BCAA metabolism may 

provide an as-yet-unidentified link between seemingly disparate neuropathologies in PD.

DISCUSSION

Here, we demonstrated the effectiveness of our diseaseQUEST frame-work for integrative, 

cross-species analysis of disease-associated genes in revealing mechanisms underlying 25 

human diseases and traits. Our framework revealed important underlying biological 

mechanisms that can now be investigated in mammalian systems, such as the role of bcat-1 
in PD.

Although we used reported GWAS genes for longevity and PD, as well as the C. elegans 
model system as a proof of principle, one of the primary advantages of this framework is its 

modularity. diseaseQUEST can be readily applied to any disease and any model system (for 

example, mouse, fly, or zebrafish) for which a relevant high-throughput assay can be 

developed (Supplementary Note). This extensibility is critical, because researchers may 

prefer different model organisms depending on disease relevance and experimental 

convenience. For example, an entorhinal cortex–specific network in mice could be combined 

with Alzheimer’s disease GWAS46,47 to generate candidate AD genes by using a Phenotypic 

Assay module of novel object recognition48. Alternatively, a pronephron-specific network in 

zebrafish combined with cardiac arrhythmia GWAS studies49 and a heart-rate assay50 could 

be used to identify hypertension gene candidates. As network-based approaches to prioritize 

candidate disease genes continue to improve, the Disease Prediction module can also be 

updated to use state-of-the-art methods. A notable additional observation from our analysis, 

especially the longevity study, for which detailed experimental characterization of the 

process in worms is available, is that although not all GWAS-identified genes are truly 

causal, as a group they possess strong signal that enables identification of novel disease 

candidates, including tissue-specific aspects of their biology.
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Overall, our results underscore the importance of systematically integrating computational 

methods with experimental approaches, as well as combining experimental tools in model 

organisms, such that high-throughput behavioral analyses can be performed along with 

large-scale studies in human genetics, to further the understanding of complex diseases.

METHODS

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper.

ONLINE METHODS

We integrated 174 genome-level data sets spanning 56,179 expression- and interaction-based 

measurements from more than 3,578 publications in addition to small-scale expression 

assays derived from approximately 2,400 publications, thus generating 203 tissue- and cell-

type-specific networks for C. elegans. A semisupervised data-integration method based on 

regularized Bayesian integration was developed to perform data integration. Each of the 203 

networks was evaluated for tissue and functional signal. Worm tissue networks relevant to 

tissue-specific diseases represented in the GWAS Catalog were used to predict candidate 

disease genes, and top gene predictions for PD were screened via thrashing assays.

Data-compendium assembly.

We downloaded and processed 24,270 physical-interaction results (based on more than 155 

publications), 29,173 genetic interaction results (based on 3,258 publications), and 166 

worm microarray data sets (consisting of 2,736 microarray experiments). Processed dataset 

values were discretized into representative bins for efficient storage and learning.

Physical-interaction data were downloaded from BioGRID52, IntAct53, and MINT54. Data 

from each database were separately discretized into four bins (0, 1, 2, and ≥3), depending on 

the number of experiments that supported presence of the corresponding interaction. 

Genetic-interaction data were downloaded from WormBase (WS241)55. For each pair of 

genes, the Fisher z-transformed Pearson correlation of interaction profiles (presence/absence 

of genetic interactions across all other genes) was calculated and discretized into one of the 

following seven bins: (−∞, −0.1), [−0.1, 0), [0, 0.1), [0.1, 0.25), [0.25, 0.5), [0.5, 0.75), or 

[0.75, ∞).

Experimentally defined transcription factor (TF)-binding sites were down-loaded from 

JASPAR56, and the (1 kb) upstream region of each gene was scanned for the presence of TF-

binding-site motifs with the MEME software suite57. For each pair of genes, the Fisher z-

transformed Pearson correlation of TF binding profiles was calculated and discretized into 

one of the following seven bins: (−∞, −1.5), [−1.5, −0.5), [−0.5, 0.5), [0.5, 1.5), [1.5, 2.5), 

[2.5, 3.5), or [3.5, ∞).

Gene expression data sets were downloaded from the Gene Expression Omnibus (GEO) data 

repository58 maintained by NCBI. After duplicate samples were collapsed, genes with 

values missing in >30% of the samples were removed, and all other missing values were 
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imputed as described in ref. 59. After normalization of expression within each gene per data 

set, the product of normalized expression scores per pair of genes in each sample was 

calculated and discretized into one of the following seven bins: (−∞, −1.5), [−1.5, −0.25), 

[−0.25, 0.25), [0.25, 1.5), [1.5, 2.5), [2.5, 3.5), or [3.5, ∞).

Semisupervised data integration and network evaluation.

Construction of global functional-interaction gold standard.—The global (tissue-

naïve) functional-interaction gold standard was constructed on the basis of coannotation (or 

absence thereof) of genes to expert-selected biological process terms from GO51 according 

to whether the term would be verifiable through specific molecular experiments. For each of 

the 309 selected terms, we obtained all GO annotations with experimental-evidence codes 

(i.e., EXP, IDA, IPI, IMP, IGI, and IEP).

Gene pairs coannotated to any of the selected terms (after propagation) were considered 

positive examples of the presence of a functional relationship. Gene pairs lacking 

coannotation to any term were considered negative examples, except in cases in which the 

two genes were separately annotated to highly overlapping GO terms (hypergeometric P < 

0.05) or coannotated to other higher-level GO terms that might still indicate the possible 

presence of a functional relationship60. The additional criteria were added to decrease the 

number of potential false negatives, and any gene pair that met either condition was 

excluded from the gold standard.

Construction of a tissue–gene expression standard.—Gene annotations to tissue 

and cell type were obtained from curated anatomy associations from WormBase (WS241)55, 

as well as annotations from the C. elegans Tissue Expression Consortium61 and other small-

scale expression analyses, as curated in ref. 62. No microarray or RNA-seq results were 

included in the tissue–gene gold standard. All annotations were mapped and propagated on 

the basis of the WormBase anatomy ontology, and only sufficiently well understood tissues 

(in terms of gene expression) were retained (more than ten direct gene annotations). A 

‘tissue-slim’ was also defined to categorize the resulting tissues. These were system-level 

anatomy terms in the WormBase anatomy ontology (immediate children of ‘organ system’ 

and ‘sex-specific entity’, under ‘functional system’).

Incorporation of tissue specificity into a functional gold standard.—To construct 

a tissue-specific functional gold standard for each tissue, we labeled each gene appearing in 

either positive or negative example gene pairs in the global functional gold standard with any 

known tissue annotations in the tissue–gene expression standard. An overlay of tissue–

expression implies three possible types of edges for each gene pair in each tissue: between 

two genes both expressed in the tissue, bridging a gene expressed in the tissue and a gene 

expressed elsewhere, or exterior to genes in that tissue (i.e., neither gene has been annotated 

to the tissue). Because the goal of tissue-specific functional networks is to predict functional 

relationships between genes that are coexpressed in the tissue, positive examples in the 

tissue-specific functional-relationship gold standard included only between edges for 

positive examples of functional relationships. Negative examples of tissue-specific 

functional relationships included a combination of the other edge types, i.e., all three edge 
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types among negative functional examples (between, bridging, and exterior), as well as 

bridging and exterior edges (relative to the current tissue) among positive functional 

examples from other tissues.

Supplementation of tissue-specific gold standard by using previously 
unlabeled features.—The tissue-specific functional gold standard was further 

supplemented by gene pairs that did not meet the stringent requirements of being present in 

the global functional gold standard as a positive example and being a between edge, where 

both genes are annotated to the tissue. The two components of our definition for a positive 

example of a tissue-specific functional interaction were satisfied as follows:

1. Functional interaction: there is a predicted functional interaction with high 

probability in the global functional network.

2. Tissue coexpression: the predicted tissue–gene expression (based on expression 

compendium)61 of both genes in a gene pair indicates probable expression in the 

tissue.

Each gene pair is thus assigned a weight representing the predicted probability of being a 

true-positive example of a tissue-specific functional relationship:

wij =Pr(i ∈ Gt)Pr(j ∈ Gt)Pr(FRij =1), for genes i and j, with Gt as the set of genes expressed 

in tissue t, and FRij = I(functional relationship between genes i and j), where I is an indicator 

function.

For genes known to be in the gold standard and functionally interacting, it is clear that: Pr(i 
∈ Gt)=Pr(j ∈ Gt)=Pr(FRij)=1 ⇒ wij =1; for all other gene pairs, 0 ≤ wij ≤1

Data integration considering new features.—Each tissue-specific functional network 

was learned by our semisupervised regularized Bayesian integration method. More 

specifically, we trained a naïve Bayesian classifier (while considering weights) for each 

tissue with a binary class node representing the indicator function for a functional 

relationship between a pair of genes conditioned on additional nodes representing each of 

the aforementioned data sets. The global and fully supervised tissue-specific regularized 

functional integrations were generated as described previously63 (for the fully supervised 

tissue-specific networks, unweighted tissue-specific gold standards were used in lieu of the 

global gold standard).

The regularized posterior probability of a tissue-specific functional relationship generated 

from our semisupervised method for any gene pair i and j was calculated as follows:

Pr TFRi j = 1|Di j
1 , Di j

2 , …Di j
n =

Pr TFRi j = 1 ∏k = 1
n Pr * Di j

k = di j
k |TFRi j = 1

Pr Di j
1 , Di j

2 , …Di j
n

where TFRij = I(tissue-specific functional relationship between genes i and j), where I is an 

indicator function; Di j
k  is the kth data set for which both genes i and j have data, and di j

k  is the 

actual experimental value for genes i and j.
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The typical Pr Di j
k = di j

k |TFRi j = 1  term in the naïve Bayes equation has been replaced with 

a weighted data-set probability function for purposes of regularization:

Pr * Di j
k = di j

k |TFRi j = 1 =
ηwi j

η + αk
Pr Di j

k = di j
k |TFRi j = 1 +

αk
η + αk

1
Dk ,

where

αk = 2
Uk − 1,

Uk =
∑i ≠ k Ipairs∈renegative  Dk; Di

H Dk

Here, η is a pseudocount constant (set to 3 in our integration, as done previously)63, |Dk| is 

the number of discretization levels for data set Dk, and wij is the previously described gold-

standard weight. Uk is the data-set mutual-information criterion for any data set Dk, with 

Ipairs∈negative(Dk;Di) as the mutual information between data sets Dk and Di for any gene 

pairs that are negative examples of functional interactions (on the basis of the tissue-naïve 

functional gold standard), and H(Dk) as the entropy of data set Dk.

Regularization was necessary because large-scale genomics data sets typically violate the 

assumption of conditional independence for naïve Bayes classifiers. As in ref.63, we 

calculated the nonbiological conditional dependency between data sets and weighted them 

accordingly, to minimize the negative effects of violating the conditional-independence 

assumption.

After training the Bayesian classifier for each tissue, we used each model to estimate the 

probability of tissue-specific functional interactions between all pairs of genes represented in 

the data compendium. Implementation of these integration procedures used the Sleipnir 

library for functional genomics64, in which the weighted integration procedure has been 

added and is now publicly available.

Isotonic-regression adjustment of network probabilities.—To further mitigate the 

effect of violating the conditional independence assumption for naïve Bayes classifiers 

(which results in posterior probability estimates being pushed toward 0 and 1), we used 

isotonic regression to calibrate the probabilities output by our method, as described in ref. 

65.

Evaluation of tissue-specific functional relationships.—We evaluated the global 

and all tissue-specific functional networks (with and without semisupervised learning) by 

using a random gene holdout (one-third of all genes) from the gold standard. Thus, for the 

global and tissue-specific functional networks trained without using unlabeled edges, all 
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gene pairs for which either gene was present in the holdout were excluded from training. For 

the semisupervised tissue-specific functional networks, the same group of genes was held 

out at all stages of training (i.e., from the steps leading to the weighting of previously 

unlabeled features, including the tissue–gene expression standard for tissue–gene expression 

predictions and the functional-interaction standard used to generate the functional-

interaction predictions). The set of gene pairs used for evaluation were pairs for which both 

genes were present in the hold-out. All networks were evaluated on the basis of their 

AUROC.

Evaluation of tissue-specific functional networks generated by using progressively smaller 

subsamples (proportions: 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, and 0.8) of the full 

worm compendium showed that our network-construction method was robust to data-

compendium size (Supplementary Fig. 8). Similarly, networks of progressively smaller 

subsamples of prior knowledge (i.e., tissue gene annotations; proportions: 0.05, 0.1, 0.15, 

0.2, 0.4, 0.6, and 0.8) showed that the approach is powerful in situations with limited prior 

knowledge.

Human GWAS gene prediction.

Reported genes for GWAS represented in the GWAS Catalog11 were aggregated, and 

functional analogs were identified in worms10. When possible, GWAS diseases were 

mapped to the Disease Ontology. For each disease, the worm functional analogs were used 

as positive examples. Orthologs of all other genes reported in the GWAS Catalog (excluding 

genes reported in the same disease category, on the basis of the Disease Ontology slim) were 

used as negative examples. Each disease with a biologically relevant tissue network and at 

least five positive examples in its gold standard was retained. We then used this gold 

standard along with the relevant tissue network as features to predict additional disease 

genes, by using our previously validated network-based SVM prediction method66. SVM 

scores were converted to fold-over-random scores by first calculating probabilities with the 

Platt method67, then dividing the probability by the prior probability of candidate-gene 

prediction (based on the number of positives and negatives in the corresponding gold 

standard).

Clustering the top PD candidates in the dopaminergic neuron network.

We created a dopaminergic neuron subnetwork, in which nodes were all PD candidate-gene 

predictions with a probability greater than twofold over random of being PD associated, and 

clustered the corresponding shared k-nearest-neighbors (SKNN) network by using the 

Louvain community-finding algorithm68. Given any graph, we calculated the SKNN 

network by transforming each edge weight to the number of shared top k-nearest-neighbors 

(on the basis of ranking all neighbors by the original weights) and took the subnetwork 

defined by the top 5% of these edge weights. The Louvain algorithm was then used to 

cluster the resulting network. We used k = 50 for the clustering presented here but confirmed 

that the clustering was robust for k between 10 and 100. Furthermore, we subsampled 90% 

of the nodes and repeated the Louvain algorithm 1,000 times. For each pair of genes, a 

cluster co-membership score was calculated according to the proportion of times the pair 

was partitioned to the same cluster. Pairs of genes with co-membership scores ≥0.2 are 
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shown in Figure 4, in which the layout (by using gephi69) is based on the edge weights 

≥0.65 in the dopaminergic neuron network. The layout was robust to different co-

membership scores and edge-weight cutoffs. The enrichment in GO biological process and 

WormBase phenotype terms in each cluster was calculated by using one-sided Fisher’s exact 

tests, with Benjamini–Hochberg multiple hypothesis testing correction to calculate the FDR.

Selection of PD genes for further experimental validation.

After ranking of the gene predictions for PD, the list of genes was filtered for any genes with 

known human orthologs. Any genes with a chance greater than twofold over random of 

being a PD-associated gene were split into three tiers (in which each gene–ortholog pair 

would appear in only the highest matching tier; for example, if gene a–ortholog a was in Tier 

1, even if it met the criteria for Tier 2 or 3, it would not be included in those tiers):

Tier 1.—The worm gene is annotated to be neuron expressed by WormBase, and at least 

one of its human orthologs is annotated to be brain expressed by HPRD

Tier 2.—The worm gene is expressed in a neuron-specific RNA-seq library29, and at least 

one of its human orthologs is annotated to be brain expressed by HPRD.

Tier 3.—The worm gene is either annotated to be neuron expressed by WormBase or is 

expressed in the neuron-specific RNA-seq library, and at least one of its human orthologs is 

expressed in many brain expression samples (as determined by the Gene Expression 

Barcode70).

Thrashing screen for age-related motor defects.

RNAi clones were obtained from the Ahringer RNAi library. Candidate PD-related genes 

were tested for thrashing abnormalities at days 2, 5, and 8 of adulthood. Strain LC108 was 

synchronized from eggs onto HG plates seeded with OP50. At the L4 larval stage, worms 

were transferred via pipetting onto RNAi-seeded, IPTG-induced HG plates containing 

carbenicillin, IPTG, and 0.05 mM FUdR. Worms were transferred onto fresh RNAi-seeded 

HG plates on days 3 and 5 of the assay. Thrashing tests were performed as previously 

described28. Briefly, approximately four worms were picked at one time into a 10-μL drop 

of M9 buffer on a microscope slide. 30-s videos were captured with an ocular-fitted iPhone 5 

camera attached to a standard dissection microscope via an Arcturus Magnifi mount. 

Between 50 and 700 worms were imaged on each day for each strain tested. Images were 

captured with inverted colors, i.e., white worms on a black background, as required by the 

CeleST processing suite.

C. elegans strains.

C. elegans strains were grown on nematode growth medium (NGM) plates seeded with 

OP50 Escherichia coli and maintained at 20 °C. The following strains were used in this 

study: wild-type worms of the N2 Bristol strain, LC108 uIs69 (myo-2p::mCherry, 

unc-119p::sid-1), TU3311 uIs60 (unc-119p::sid-1, unc-119p::yfp), CQ495 vsIs48 

(unc-17p::gfp); uIs69 (myo-2p::mCherry, unc-119p::sid-1), CQ435 vtIs7 (dat-1p::gfp); 

uIs69 (myo-2p::mCherry, unc-119p::sid-1), CQ492 vtIs7 [dat-1p::gfp]; vIs69 [pCFJ90 
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(myo-2p::mCherry + unc-119p::sid-1)], and CQ434 baIn11 [dat-1p:: a-syn; dat-1p::gfp]; 

vIs69 [pCFJ90 (myo-2p::mCherry + unc-119p::sid-1)].

CeleST.

Captured videos were analyzed for a variety of motility characteristics via CeleST Worm 

tracker software28. Individual frames were extracted, and images were converted to 

grayscale and sharpened via ImageMagick (www.imagemagick.org/script/index.php/). After 

the user defined the bounding box for each video, CeleST automated the identification of 

individual worms and their procession throughout each image batch, as well as denoting 

periods in which confounding factors (such as worm overlap or disappearance from frame) 

led to censoring of the frames. Thereafter, a manual check of each worm was performed, in 

which the time course of each worm was displayed, and the user confirmed or rejected the 

software’s judgment for each defined block of time. The output of CeleST provides 

quantitative analysis of ten separate aspects of worm motility on an individual and collective 

basis.

RNAi treatment.

For individual RNAi experiments, animals were synchronized from eggs through bleaching 

and plated on HG plates seeded with OP50. At day 1 of adulthood, RNAi-seeded 100-mm 

NGM plates containing carbenicillin and IPTG were induced with 0.1 M IPTG 1 h before 

worm transfer. Adult worms were picked onto RNAi plates and incubated at 20 °C. Worms 

were transferred onto fresh RNAi plates on days 3 and 5. Approximately 100 worms were 

imaged for each strain on each day of testing.

Manual curling analysis.

Manual analysis of the curling phenotype was used to complement the CeleST software, 

which underestimates the percentage of time spent curling. The quantification was 

performed with a standard EXTECH Instruments stopwatch. The percentage of time spent in 

a curled pose, as defined by the sum of the periods in which either the head or tail makes 

contact with a noncontiguous segment, was measured for each individual worm over the 

span of each video. Because multiple actors were involved in the measurement process, 

minimization of subjectivity was met by comparison of a sample by all involved. 

Measurement of a single condition was equally distributed among actors to further account 

for any variance in judgment or precision. More than 6,000 worms were individually 

measured for the assays in Supplementary Figures 4–6.

Microscopy.

Animals treated with RNAi from day 1 through day 8 of adult-hood were mounted on 2% 

agarose pads in M9 and sodium azide. Images were captured on a Nikon Eclipse Ti inverted 

microscope and processed in Nikon NIS elements software. At least 15 worms were imaged 

per condition in each replicate. For dopaminergic (dat-1p::GFP-labeled) neurons, cell bodies 

of the six head neurons were counted, and neurite morphology was examined by using the 

projections extending from the labeled head neurons. For dopaminergic neuron imaging, 

neuronal RNAi-sensitive worms expressing dat-1p::GFP and dat-1p:α-synuclein were 
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treated with control or bcat-1 RNAi from day 1 of adulthood. Imaging of day 6 adults was 

performed on a Nikon A1 confocal microscope at 40× magnification, and z stacks were 

processed in Nikon NIS elements software. ADE and CEP cell bodies were counted, as well 

as neurites projecting anteriorly from CEP cell bodies.

Statistics and reproducibility.

In Figure 4d, the mean ± s.e.m. is shown, and an unpaired two-sided t-test was performed, P 
= 1.15 × 10–13. L4440, n = 165 animals. scav-1 RNAi, n = 116 animals. T = 7.812, df = 

279, 95% CI = (9.284, 15.54).

In Figure 5a, two-way ANOVA with Sidak’s multiple-comparison test was performed. 

Control: day 2, n = 492; day 5, n = 345; day 8, n = 573. bcat-1 RNAi: day 2, n = 675; day 5, 

n = 714; day 8, n = 582. Curling day 8 control versus bcat-1 RNAi, t = 6.829, df = 3,375, 

95% CI: (−2.364, −1.139), P = 3.04 × 10–11. Stretch day 2 control versus bcat1 RNAi, t = 

3.449, df = 3,375, 95% CI: (−0.054, −0.0098), P = 0.00171. Stretch day 5 control versus 

bcat1 RNAi, t = 8.502, df = 3,375, 95% CI: (−0.1115, −0.06256), P < 1 × 10–15. Stretch day 

8 control versus bcat1 RNAi, t = 14.58, df = 3,375, 95% CI: (−0.156, −0.1121), P < 1 × 

10–15.

In Figure 5c, two-way repeated-measures ANOVA with Sidak’s multiple-comparison test 

was performed. Control:unc-119p::sid-1, n = 119 animals; bcat-1 RNAi:unc-119p::sid-1, n = 

133 animals; control:wild type, n = 98 animals; bcat-1 RNAi:wild type, n = 103 animals. 

Multiple comparisons: Control:unc-119p::sid-1 versus bcat-1 RNAi:unc-119p::sid-1, t = 

7.46, df = 449, 95% CI: (−19.87, −9.477), P = 2.699 × 10−12. Control:wild type versus 

bcat-1 RNAi:wild type, t = 0.2002, df = 449, 95% CI: (5.373, 6.254), P = 0.999. bcat-1 
RNAi:unc-119p::sid-1 versus bcat-1 RNAi:wild type, t = 9.585, df = 449, 95% CI: (14.2, 

25.02), P < 1 × 10−15.

In Figure 5g, unpaired two-sided t-tests were performed. L4440, n = 45; bcat-1 RNAi, n = 

61. Mean ± s.e.m. Top, t = 5.446, df = 104, 95% CI: (−1.34, −0.06248), P = 3.46 ×10−7. 

Bottom, t = 5.015, df = 104, 95% CI: (−1.38, −0.05988), P = 2.19×10−6. ****P < 0.0001. 

The experiment was repeated three times independently and yielded similar results.

In Supplementary Figure 3d, mean ± s.e.m. are shown. Control, n = 351; bcat-1, n = 420; 

cyb-2.1, n = 287; pxl-1, n = 289; frm-2, n = 279; mre-11, n = 272; sma-4, n = 286; snt-4, n = 

305; cdh-4, n = 285; lbp-2, n = 320; ani-3, n = 300; hcp-1, n = 264; BE0003N10.1, n = 229; 

let-363, n = 284; hil-3, n = 270. n represents the number of animals per condition. One-way 

ANOVA with Tukey’s multiple-comparison test. Control versus bcat-1 RNAi, P = 4.33 × 

10−8. ****P < 0.0001.

In Supplementary Figure 4, mean ± s.e.m. are shown, Two-way ANOVA with Sidak’s 

multiple-comparison test was performed. Control: day 2, n = 492; day 5, n = 345; day 8, n = 

573. bcat-1 RNAi: day 2, n = 675; day 5, n = 714; day 8, n = 582. Body wave number day 2 

control versus bcat-1 RNAi, t = 3.075, df = 3,375, 95% CI: (−0.2648, −0.03323), P = 

0.0064.
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In Supplementary Figure 5a, two-way repeated-measures ANOVA with Sidak’s multiple-

comparison test was performed. Mean ± s.e.m. are shown. Control:unc-119p::sid-1, n = 28 

animals; bcat-1 RNAi:unc-119p::sid-1, n = 41 animals; control:wild type, n = 24 animals; 

bcat-1 RNAi:wild type, n = 30 animals. Multiple comparisons: Control:unc-119p::sid-1 
versus bcat-1 RNAi:unc- 119p::sid-1, t = 3.156, df = 119, 95% CI: (−18.7, −1.491), P = 

0.0121. Control: wild type versus bcat-1 RNAi:wild type, t = 0.7787, df = 119, 95% CI: 

(−11.98, 6.577), P = 0.9684. bcat-1 RNAi:unc-119p::sid-1 versus bcat-1 RNAi:wild type, t = 

3,422, df = 119, 95% CI: (2.272, 18.55), P = 0.0051.

In Supplementary Figure 5b, two-way repeated-measures ANOVA with Sidak’s multiple-

comparison test was performed. Mean ± s.e.m. are shown. Control:unc-119p::sid-1, n = 75 

animals; bcat-1 RNAiiunc-119p::sid-1, n = 86 animals; control:wild type, n = 73 animals; 

bcat-1 RNAi:wild type, n = 76 animals. Multiple comparisons: Control:unc-119p::sid-1 
versus bcat- 1 RNAi:unc-119p::sid-1, t = 4.305, df = 306, 95% CI: (−10.68, −2.546), P = 

0.000135. Control:wild type versus bcat-1 RNAi:wild type, t = 0.8621, df = 306, 95% CI: 

(−5.595, 2.847), P = 0.948. bcat-1 RNAi:unc-119p::sid-1 versus bcat-1 RNAi:wild type, t = 

4.576, df = 306, 95% CI: (2.952, 11.06), P = 000041.

In Supplementary Figure 7, unpaired two-sided t-tests were performed. Mean ± s.e.m. are 

shown. L4440, n = 45; bcat-1 RNAi, n = 61. t = 0.4156, df = 104, 95% CI: (−0.3112, 

0.2033), P = 0.6785. The experiment was repeated three times independently and yielded 

similar results.

Code availability.

The semisupervised integration procedure has been integrated into our Sleipnir library for 

functional genomics68 (https://libsleipnir.bitbucket.io/), the entire codebase can be 

downloaded from Supplementary Software, and we have also provide a diseaseQUEST 
docker image (https://github.com/FunctionLab/diseasequest-docker/; Supplementary Note).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability.

The authors declare that the data supporting the findings of this study are available within 

the paper and its supplementary information files. Source data for Figures 4a,c and 5a have 

been provided in Supplementary Data 13.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank K. Yao, R. Hong, and J. Zhou for assistance with video analysis, G. Laevsky for assistance with confocal 
microscopy, the CGC for strains, and Z. Gitai and the laboratories of O.G.T. and C.T.M. for valuable discussion. 
Strain UA44 was generously provided by G. Caldwell (University of Alabama), and strain BY250 was a generous 

Yao et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://libsleipnir.bitbucket.io/
https://github.com/FunctionLab/diseasequest-docker/


gift from R. Blakely (Vanderbilt University). V.Y. was supported in part by US NIH grant T32 HG003284. O.G.T. is 
supported as a senior fellow of the Genetic Networks program of the Canadian Institute for Advanced Research 
(CIFAR). C.T.M. is supported as the Director of the Glenn Center for Aging Research at Princeton and as an 
HHMI-Simons Faculty Scholar. This work was supported by the NIH (R01 GM071966 to O.G.T. and Cognitive 
Aging R01 and DP1 Pioneer Award to C.T.M.).

References

1. Greene CS et al. Understanding multicellular function and disease with human tissue-specific 
networks. Nat. Genet 47, 569–576 (2015). [PubMed: 25915600] 

2. Krishnan A et al. Genome-wide prediction and functional characterization of the genetic basis of 
autism spectrum disorder. Nat. Neurosci 19, 1454–1462 (2016). [PubMed: 27479844] 

3. Rossin EJ et al. Proteins encoded in genomic regions associated with immune-mediated disease 
physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011). [PubMed: 
21249183] 

4. Liu Y et al. Network-assisted analysis of GWAS data identifies a functionally-relevant gene module 
for childhood-onset asthma. Sci. Rep 7, 938 (2017). [PubMed: 28428554] 

5. International Multiple Sclerosis Genetics Consortium. Network-based multiple sclerosis pathway 
analysis with GWAS data from 15,000 cases and 30,000 controls. Am. J. Hum. Genet 92, 854–865 
(2013). [PubMed: 23731539] 

6. Pendse J et al. A Drosophila functional evaluation of candidates from human genome-wide 
association studies of type2 diabetes and related metabolic traits identifies tissue-specific roles for 
dHHEX. BMC Genomics 14, 136 (2013). [PubMed: 23445342] 

7. Bournele D & Beis D Zebrafish models of cardiovascular disease. Heart Fail. Rev 21, 803–813 
(2016). [PubMed: 27503203] 

8. Shulman JM et al. Functional screening of Alzheimer pathology genome-wide association signals in 
Drosophila. Am. J. Hum. Genet 88, 232–238 (2011). [PubMed: 21295279] 

9. Cho A et al. WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis 
elegans. Nucleic Acids Res. 42, W76–W82 (2014). [PubMed: 24813450] 

10. Park CY et al. Functional knowledge transfer for high-accuracy prediction of under-studied 
biological processes. PLoS Comput. Biol 9, e1002957 (2013). [PubMed: 23516347] 

11. Welter D et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic 
Acids Res. 42, D1001–D1006 (2014). [PubMed: 24316577] 

12. Arnold ES et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset 
motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl. Acad. Sci. USA 
110, E736–E745 (2013). [PubMed: 23382207] 

13. Kim EK & Choi E-J Pathological roles of MAPK signaling pathways in human diseases. Biochim. 
Biophys. Acta 1802, 396–405 (2010). [PubMed: 20079433] 

14. Wagey R, Pelech SL, Duronio V & Krieger C Phosphatidylinositol 3-kinase: increased activity and 
protein level in amyotrophic lateral sclerosis. J. Neurochem 71, 716–722 (1998). [PubMed: 
9681462] 

15. Takata A, Matsumoto N & Kato T Genome-wide identification of splicing QTLs in the human 
brain and their enrichment among schizophrenia-associated loci. Nat. Commun 8, 14519 (2017). 
[PubMed: 28240266] 

16. Addington AM et al. A novel frameshift mutation in UPF3B identified in brothers affected with 
childhood onset schizophrenia and autism spectrum disorders. Mol. Psychiatry 16, 238–239 
(2011). [PubMed: 20479756] 

17. Rubio MD, Wood K, Haroutunian V & Meador-Woodruff JH Dysfunction of the ubiquitin 
proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology 38, 1910–
1920 (2013). [PubMed: 23571678] 

18. Pyragius CE, Fuller M, Ricciardelli C & Oehler MK Aberrant lipid metabolism: an emerging 
diagnostic and therapeutic target in ovarian cancer. Int. J. Mol. Sci 14, 7742–7756 (2013). 
[PubMed: 23574936] 

Yao et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Wang CW, Hsu WH & Tai CJ Antimetastatic effects of cordycepin mediated by the inhibition of 
mitochondrial activity and estrogen-related receptor a in human ovarian carcinoma cells. 
Oncotarget 8, 3049–3058 (2017). [PubMed: 27966445] 

20. Dvinge H, Kim E, Abdel-Wahab O & Bradley RK RNA splicing factors as oncoproteins and 
tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016). [PubMed: 27282250] 

21. Kenyon CJ The genetics of ageing. Nature 464, 504–512 (2010). [PubMed: 20336132] 

22. Libina N, Berman JR & Kenyon C Tissue-specific activities of C. elegans DAF-16 in the regulation 
of lifespan. Cell 115, 489–502 (2003). [PubMed: 14622602] 

23. Zhang P, Judy M, Lee S-J & Kenyon C Direct and indirect gene regulation by a life-extending 
FOXO protein in C. elegans: roles for GATA factors and lipid gene regulators. Cell Metab. 17, 85–
100 (2013). [PubMed: 23312285] 

24. Gelino S et al. Intestinal autophagy improves healthspan and longevity in C. elegans during dietary 
restriction. PLoS Genet. 12, e1006135 (2016). [PubMed: 27414651] 

25. Pickrell JK et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. 
Genet 48, 709–717 (2016). [PubMed: 27182965] 

26. Moran LB et al. Whole genome expression profiling of the medial and lateral substantia nigra in 
Parkinson’s disease. Neurogenetics 7, 1–11 (2006). [PubMed: 16344956] 

27. Levine B & Kroemer G Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008). 
[PubMed: 18191218] 

28. Restif C et al. CeleST: computer vision software for quantitative analysis of C. elegans swim 
behavior reveals novel features of locomotion. PLoS Comput. Biol 10, e1003702 (2014). 
[PubMed: 25033081] 

29. Kaletsky R et al. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype 
regulators. Nature 529, 92–96 (2016). [PubMed: 26675724] 

30. Maeda I, Kohara Y, Yamamoto M & Sugimoto A Large-scale analysis of gene function in 
Caenorhabditis elegans by high-throughput RNAi. Curr. Biol 11, 171–176 (2001). [PubMed: 
11231151] 

31. Sakai R, Cohen DM, Henry JF, Burrin DG & Reeds PJ Leucine-nitrogen metabolism in the brain 
of conscious rats: its role as a nitrogen carrier in glutamate synthesis in glial and neuronal 
metabolic compartments. J. Neurochem 88, 612–622 (2004). [PubMed: 14720211] 

32. Newgard CB et al. A branched-chain amino acid-related metabolic signature that differentiates 
obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009). 
[PubMed: 19356713] 

33. Lynch CJ & Adams SH Branched-chain amino acids in metabolic signalling and insulin resistance. 
Nat. Rev. Endocrinol 10, 723–736 (2014). [PubMed: 25287287] 

34. Mansfeld J et al. Branched-chain amino acid catabolism is a conserved regulator of physiological 
ageing. Nat. Commun 6, 10043 (2015). [PubMed: 26620638] 

35. Luan H et al. Comprehensive urinary metabolomic profiling and identification of potential 
noninvasive marker for idiopathic Parkinson’s disease. Sci. Rep 5, 13888 (2015). [PubMed: 
26365159] 

36. Manuel M & Heckman CJ Stronger is not always better: could a bodybuilding dietary supplement 
lead to ALS? Exp. Neurol 228, 5–8 (2011). [PubMed: 21167830] 

37. Carecchio M et al. Movement disorders in adult surviving patients with maple syrup urine disease. 
Mov. Disord 26, 1324–1328 (2011). [PubMed: 21484869] 

38. Kiil R & Rokkones T Late manifesting variant of branched-chain ketoaciduria (maple syrup urine 
disease). Acta Paediatr. 53, 356–364 (1964). [PubMed: 14184314] 

39. Scaini G et al. Chronic administration of branched-chain amino acids impairs spatial memory and 
increases brain-derived neurotrophic factor in a rat model. J. Inherit. Metab. Dis 36, 721–730 
(2013). [PubMed: 23109061] 

40. Fontana L et al. Decreased consumption of branched-chain amino acids improves metabolic health. 
Cell Rep. 16, 520–530 (2016). [PubMed: 27346343] 

Yao et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Harrington AJ, Yacoubian TA, Slone SR, Caldwell KA & Caldwell GA Functional analysis of 
VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian models of 
Parkinson’s disease. J. Neurosci 32, 2142–2153 (2012). [PubMed: 22323726] 

42. Goedert M, Spillantini MG, Del Tredici K & Braak H 100 years of Lewy pathology. Nat. Rev. 
Neurol 9, 13–24 (2013). [PubMed: 23183883] 

43. Lakso M et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans 
overexpressing human alpha-synuclein. J. Neurochem 86, 165–172 (2003). [PubMed: 12807436] 

44. Cao S, Gelwix CC, Caldwell KA & Caldwell GA Torsin-mediated protection from cellular stress 
in the dopaminergic neurons of Caenorhabditis elegans. J. Neurosci 25, 3801–3812 (2005). 
[PubMed: 15829632] 

45. Kuwahara T et al. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction 
in transgenic Caenorhabditis elegans. J. Biol. Chem 281, 334–340 (2006). [PubMed: 16260788] 

46. Beecham GW et al. Genome-wide association meta-analysis of neuropathologic features of 
Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014). [PubMed: 
25188341] 

47. Lambert JC et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for 
Alzheimer’s disease. Nat. Genet 45, 1452–1458 (2013). [PubMed: 24162737] 

48. Wilson DIG et al. Lateral entorhinal cortex is critical for novel object-context recognition. 
Hippocampus 23, 352–366 (2013). [PubMed: 23389958] 

49. Christophersen IE et al. Large-scale analyses of common and rare variants identify 12 new loci 
associated with atrial fibrillation. Nat. Genet 49, 946–952 (2017). [PubMed: 28416818] 

50. Kithcart A & MacRae CA Using zebrafish for high-throughput screening of novel cardiovascular 
drugs. JACC Basic Transl. Sci 2, 1–12 (2017). [PubMed: 30167552] 

51. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, 
D1049–D1056 (2015). [PubMed: 25428369] 

52. Chatr-Aryamontri A et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, 
D470–D478 (2015). [PubMed: 25428363] 

53. Orchard S et al. The MIntAct project: IntAct as a common curation platform for 11 molecular 
interaction databases. Nucleic Acids Res. 42, D358–D363 (2014). [PubMed: 24234451] 

54. Licata L et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, 
D857–D861 (2012). [PubMed: 22096227] 

55. Harris TW et al. WormBase 2014: new views of curated biology. Nucleic Acids Res. 42, D789–
D793 (2014). [PubMed: 24194605] 

56. Mathelier A et al. JASPAR 2014: an extensively expanded and updated openaccess database of 
transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147 (2014). [PubMed: 
24194598] 

57. Bailey TL et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, 
W202–W208 (2009). [PubMed: 19458158] 

58. Barrett T et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 
41, D991–D995 (2013). [PubMed: 23193258] 

59. Troyanskaya O et al. Missing value estimation methods for DNA microarrays. Bioinformatics 17, 
520–525 (2001). [PubMed: 11395428] 

60. Myers CL, Barrett DR, Hibbs MA, Huttenhower C & Troyanskaya OG Finding function: 
evaluation methods for functional genomic data. BMC Genomics 7, 187 (2006). [PubMed: 
16869964] 

61. Hunt-Newbury R et al. High-throughput in vivo analysis of gene expression in Caenorhabditis 
elegans. PLoS Biol. 5, e237 (2007). [PubMed: 17850180] 

62. Chikina MD, Huttenhower C, Murphy CT & Troyanskaya OG Global prediction of tissue-specific 
gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput. 
Biol 5, e1000417 (2009). [PubMed: 19543383] 

63. Huttenhower C et al. Exploring the human genome with functional maps. Genome Res. 19, 1093–
1106 (2009). [PubMed: 19246570] 

Yao et al. Page 20

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



64. Huttenhower C, Schroeder M, Chikina MD & Troyanskaya OG The Sleipnir library for 
computational functional genomics. Bioinformatics 24, 1559–1561 (2008). [PubMed: 18499696] 

65. Niculescu-Mizil A & Caruana R Predicting good probabilities with supervised learning in ICML 
′05 Proc. 22nd Intl. Conf. Mach. Learn 625–632 (ACM Press, Bonn, Germany, 2005).

66. Guan Y, Ackert-Bicknell CL, Kell B, Troyanskaya OG & Hibbs MA Functional genomics 
complements quantitative genetics in identifying disease-gene associations. PLOS Comput. Biol 6, 
e1000991 (2010). [PubMed: 21085640] 

67. Platt JC Probabilities for SV Machines in Advances in Large Margin Classifiers (eds. Smola AJ et 
al.) 61–74 (Massachusetts Institute of Technology, Cambridge, MA, USA, 2000).

68. Blondel VD, Guillaume J-L, Lambiotte R & Lefebvre E Fast unfolding of communities in large 
networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).

69. Bastian M, Heymann S & Jacomy M Gephi: an open source software for exploring and 
manipulating networks In Int. AAAI Conf. Weblogs Soc. Media (Association for the Advancement 
of Artificial Intelligence, Menlo Park, CA, USA, 2009).

70. McCall MN, Uppal K, Jaffee HA, Zilliox MJ & Irizarry RA The Gene Expression Barcode: 
leveraging public data repositories to begin cataloging the human and murine transcriptomes. 
Nucleic Acids Res. 39, D1011–D1015 (2011). [PubMed: 21177656] 

Yao et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Integrated computational-experimental diseaseQUEST framework for predicting gene 

candidates with potential relevance to human disease.(a) The integrated computational-

experimental diseaseQUEST framework for predicting gene candidates with potential 

relevance for human disease. diseaseQUEST consists of three main modules: (i) Functional 

Representation, leveraging model-organism tissue-specific gene expression data derived 

from small-scale experiments as well as a functional genomics data compendium to 

construct tissue-specific functional networks in the model organism. Networks can be 

downloaded and explored through the WISP interface at http://wisp.princeton.edu/; (ii) 

Disease Prediction, combining the functional representations of model-organism tissue 

biology with quantitative genetics data (e.g., human disease GWAS genes) into a machine-

learning framework (e.g., support vector machine (SVM)) to predict candidate disease 

genes; and (iii) Phenotypic Assay, evaluating all predictions computationally and 

experimentally screening top candidate-disease-gene predictions for a final shortlist of genes 

that are likely to have relevance to the human disease. (b,c) Evaluation of the tissue- and 

cell-type-specific networks. A random set of genes from the training gold standard was 

withheld, and a single global network was constructed, as well as two sets of tissue 

networks: one set constructed with a fully supervised method (without any predicted tissue-

specific functional interactions in the gold standard) and the other set constructed with the 

semisupervised method. Performance was measured on the basis of the area under the 

receiver operator curve (AUROC, n = 203 individual tissue networks). All tissues with more 

than 100 positive network-edge examples in the evaluation standard are shown (n = 59). A 

comparison of the performance of the semisupervised tissue networks (y axis) against the 

global network (b, x axis) and fully supervised tissue networks (c, x axis) shows that the 

method is significantly better at recapitulating the held-out set of relationships (above the 
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diagonal line), thus suggesting likely strong performance in predicting novel tissue- and cell-

type-specific functional relationships.
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Figure 2. 
Network-based disease predictions and validation. (a) Evaluation of disease predictions. We 

made predictions for 25 diseases across four disease categories. Performance is shown as 

mean and s.e.m. of the area under the precision recall curve (AUPRC; cancer, n = 11 

diseases; cardiovascular and muscular system, n = 3 diseases; nervous system, n = 6 

diseases; metabolic and autoimmune, n = 5 diseases), log2-transformed fold over random 

(with random set at 0), showing strong predictive performance across all disease categories. 

(b) Validation of the disease-prediction framework by using known C. elegans lifespan 

genes (n = 801 genes). Longevity gene predictions (n = 21,043 genes) determined by using 

orthologs from human longevity GWAS as input were made on the basis of the intestine-

specific tissue network. Enrichment analysis of GO-annotated aging genes was performed 

on ranked predictions (green) or on a scrambled control (gray). (c) Comparison of longevity 

predictions across all 203 tissue- and cell- type-specific networks. Predictions were made by 

using each of the 203 networks (each with n = 21,043 genes) with functional orthologs of 

human longevity GWAS genes as input and were evaluated against known C. elegans 
lifespan genes (annotated to ‘determination of adult lifespan’ in GO51, one-sided Wilcoxon 

rank-sum test, n = 801 genes). Among all networks, the alimentary system and intestine 

were the top performers, matching biological knowledge of aging-relevant tissues in C. 
elegans.
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Figure 3. 
PD functional modules and enrichment. (a) The network of functional interactions between 

PD gene predictions with a score >2.0 (n = 609 genes) formed four major clusters (with 

larger node sizes corresponding to higher prediction scores). The network was clustered with 

a shared-nearest-neighbor-based community-finding algorithm (Online Methods). 

Representative GO biological-process terms and/or WormBase phenotype terms enriched in 

each cluster are highlighted (all enriched terms can be found in Supplementary Data 11). (b) 

Novel PD predictions made by using the dopaminergic neuron network were enriched in 

various metabolic pathways, including BCAA metabolism, and known PD related processes 

such as lysosomes and phagosomes. KEGG pathway-enrichment analysis, as performed on 

PD predictions with a score >2.0 (n = 609 genes). Bars represent individual Benjamini P 
values derived from GO enrichment analysis.
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Figure 4. 
Curling and stretch analysis of PD candidate genes. (a,c) CeleST quantification of curling 

(a) and stretch (c) on day 8. Mean ± s.e.m., unpaired two-sided t-test with Benjamini–

Hochberg multiple hypothesis testing correction. *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001. n ≥ 50 animals per gene (exact sample sizes per gene in Supplementary 

Data 13). Control vector L4440 RNAi (blue), direct GWAS worm orthologs (red), and 

candidates independently identified on the basis of the 23andMe GWAS study25 (yellow) are 

shown. (b) Representative curling images from 1,823 videos analyzed. Yellow arrows 

indicate worms exhibiting curling. The screen for motility defects in PD candidates was 

performed once. (d) Manual quantification of curling, showing that CeleST28 underestimates 
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the curling phenotype specifically, as animals are automatically censored in highly coiled 

formations (shown with arrows in (b)). Mean ± s.e.m., unpaired two-sided t-test, ****P = 

1.15 × 10−13. The experiment was repeated twice independently and yielded similar results. 

More details are provided in Online Methods, ‘Statistics and reproducibility’.
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Figure 5. 
Adult-onset bcat-1-knockdown in neurons causes age-specific motor defects. (a) bcat-1 and 

control RNAi-treated unc-119p::sid-1 worms (which are sensitive to RNAi in all tissues) 

exhibit decreased overall activity with age, whereas curling and stretch phenotypes markedly 

increase with age in worms with bcat-1 knockdown. Videos were analyzed with CeleST28. 

Mean ± s.e.m., two-way analysis of variance (ANOVA) with Sidak’s multiple-comparison 

test, n ≥ 345 worms per day and condition, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001. (b) Curling posture on day 8, shown in bcat-1-knockdown worms compared with 

control. The experiment was repeated three times independently and yielded similar results. 

(c) Curling of day 8 unc-119p::sid-1 (TU3311) and N2 (wild-type) animals. Mean ± s.e.m., 

two-way repeated-measures ANOVA with Sidak’s multiple-comparison test, n ≥ 98 worms 

per group, NS, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Worm 

thrashing videos were counted by hand. (d) Average BCAT1 expression in selected brain 

regions in healthy human subjects from the Allen Brain Atlas (mean ± s.e.m. shown). 

Average age = 42.5 years. n = 6 human donors for each sample from the Allen Brain Atlas 

database for gene expression. DMN, dorsal motor nucleus. (e) log2 expression (robust-
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multiarray-average normalized) of BCAT1 in the substantia nigra in controls (n = 13 

individuals) and patients with PD (n = 24)26. (f) bcat-1 RNAi exacerbates the toxic effect of 

α-synuclein in dopaminergic neurons, as measured on day 6 of adulthood. Arrows show loss 

of neurites and abnormal projections in RNAi-sensitive worms expressing α-synuclein in 

dopaminergic neurons exposed to bcat-1 or control RNAi. The experiment was repeated 

three times independently and yielded similar results. (g) Quantification of neurite damage 

in head dopaminergic neurons and cephalic sensilla (CEP) cell-body loss. Mean ± s.e.m., 

two-sided unpaired t-test, L4440, n = 45 worms; bcat-1 RNAi, n = 61 worms. Top, ****P = 

3.46 × 10−7; bottom, ****P = 2.19 × 10−6. The experiment was repeated three times 

independently and yielded similar results. Box plots show minimum, first quartile, median, 

third quartile, and maximum values. More details are provided in Online Methods, 

‘Statistics and reproducibility’.

Yao et al. Page 29

Nat Biotechnol. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	RESULTS
	Combining tissue-specific model-system biology with human disease studies
	A semisupervised regularized Bayesian integration method to build tissue-specific functional networks
	Predicting candidate human disease genes
	Recapitulating known aging biology and predicting tissue-specific longevity genes
	Applying diseaseQUEST to PD
	Directed PD-candidate screens for age-dependent motility defects
	bcat-1 and neurodegeneration
	bcat-1 decrease promotes dopaminergic neurodegeneration in a C. elegans model of PD

	DISCUSSION
	METHODS
	ONLINE METHODS
	Data-compendium assembly.
	Semisupervised data integration and network evaluation.
	Construction of global functional-interaction gold standard.
	Construction of a tissue–gene expression standard.
	Incorporation of tissue specificity into a functional gold standard.
	Supplementation of tissue-specific gold standard by using previously unlabeled features.
	Data integration considering new features.
	Isotonic-regression adjustment of network probabilities.
	Evaluation of tissue-specific functional relationships.

	Human GWAS gene prediction.
	Clustering the top PD candidates in the dopaminergic neuron network.
	Selection of PD genes for further experimental validation.
	Tier 1.
	Tier 2.
	Tier 3.

	Thrashing screen for age-related motor defects.
	C. elegans strains.
	CeleST.
	RNAi treatment.
	Manual curling analysis.
	Microscopy.
	Statistics and reproducibility.
	Code availability.
	Reporting Summary.
	Data availability.

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

