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Abstract

This paper introduces distributional regression also known as generalized additive models

for location, scale and shape (GAMLSS) as a modeling framework for analyzing treatment

effects beyond the mean. In contrast to mean regression models, GAMLSS relate each

distributional parameter to covariates. Therefore, they can be used to model the treatment

effect not only on the mean but on the whole conditional distribution. Since they encompass

a wide range of different distributions, GAMLSS provide a flexible framework for modeling

non-normal outcomes in which additionally nonlinear and spatial effects can easily be incor-

porated. We elaborate on the combination of GAMLSS with program evaluation methods

including randomized controlled trials, panel data techniques, difference in differences,

instrumental variables, and regression discontinuity design. We provide practical guidance

on the usage of GAMLSS by reanalyzing data from the Mexican Progresa program. Con-

trary to expectations, no significant effects of a cash transfer on the conditional consumption

inequality level between treatment and control group are found.

1 Introduction

Program evaluation typically identifies the effect of a policy or a program on the mean of the

response variable of interest. This effect is estimated as the average difference between treat-

ment and comparison group with respect to the response variable, potentially controlling for

confounding covariates. However, questions such as “How does the treatment influence a per-

son’s future income distribution” or “How does the treatment affect consumption inequality

conditional on covariates” cannot be adequately answered when evaluating mean effects alone.

Concentrating on mean differences between a treatment group and a comparison group is

likely to miss important information about changes along the whole distribution of an out-

come, for example in terms of an unintended increase in inequality, or when targeting ex ante

vulnerability to a certain risk. These are concepts that do not only take the mean into account

but rely on other measures such as the variance and skewness of the response.

As shown by Bitler et al. [1], analyzing average effects in subgroups does not adequately

capture heterogeneities along the outcome distribution. For a systematic and coherent analysis
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of treatment effects on all functionals of the response distribution, we introduce generalized

additive models for location, scale and shape (GAMLSS, [2]) to the evaluation literature.

GAMLSS allow all parameters of the response distribution to vary with explanatory variables

and can hence be used to assess how the conditional response distribution changes due to the

treatment. In addition, GAMLSS constitute an overarching framework to easily incorporate

nonlinear, random, and spatial effects and hence to flexibly model the relationship between

the covariates and the predictors. The method encompasses a wide range of potential outcome

distributions, including discrete and multivariate distributions, and distributions for shares.

Due to estimating only one model including all distributional parameters, practically every dis-

tribution functional (quantiles, inequality measures such as the Gini coefficient, etc.) can be

derived consistently from the conditional distribution making the scope of application

manifold.

Besides a brief review of the methodological background for GAMLSS, our main contribu-

tions are (i) to link the flexibility of GAMLSS modelling with treatment effect evaluation and

(ii) to practically demonstrate how to conduct such a treatment effect evaluation. We specifi-

cally highlight the additional information that can be drawn from treatment effects beyond the

mean. For this purpose, we have chosen an example that is very familiar to the evaluation com-

munity in economics: We rely on the same household survey used in Angelucci and De Giorgi

[3] to evaluate Progresa/Oportunidades/Prospera—a cash transfer program in Mexico. Initi-

ated in 1997, the experimental design of the program allocated cash transfers to poor families

in treatment villages in exchange for the households’ children regularly attending school and

for utilizing preventive care measures regarding health and nutrition. By using this extensively

researched program as our application example, we show additional results using GAMLSS. In

fact, we find no significant decline in food consumption inequality after the introduction of

conditional cash transfers—a result that has gone unnoticed in the several analyses of the pro-

gram’s heterogeneous effects (e.g., [4, 5]).

While GAMLSS have not been used in the context of program evaluation, there is a sub-

stantial strand of literature that focuses on treatment effects on the whole distribution of an

outcome or, to put it differently, on building counterfactual distributions. The idea is to con-

sider the distribution of the treated versus their distribution if they had not been treated. The

literature generally differentiates between effects on the unconditional distribution and the

conditional distribution. While the effects on the unconditional distribution and uncondi-

tional quantile effects have been dealt with (e.g., [6–10]), the focus of this paper is the condi-

tional distribution and the functionals that can be derived from it. Conditional distributions

are of interest, when analyzing the effect heterogeneity based on the observed characteristics

[10]. Especially in the case of inequality, conditional distributions are important to differenti-

ate between within and between variance. For example, differences in consumption or income

might stem from different characteristics or abilities such as years of education. With condi-

tional distributions, we, however, assess the differences in consumption or income for individ-

uals with equal or similar education and work experience. The fair notion would be that a

person with higher education and more work experience earns more. It is the conditional

inequality that is perceived as unfair.

To estimate the conditional distribution, a popular approach is to use quantile regression

[11, 12]. Quantile regression is a very powerful instrument if one is interested in the effect at a

specific quantile but distributional characteristics can only be derived after the effects at a very

high number of quantiles have been estimated yielding an approximation of the whole distri-

bution. As we believe that quantile regression is most familiar to practitioners when estimating

effects beyond the mean, we will elaborate a direct comparison of GAMLSS and quantile

regression in Section 3.

Treatment effects beyond the mean
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Other interesting approaches to go beyond the mean in regression modeling include

Chernozhukov et al. [13] and Chernozhukov et al. [14] who introduce “distribution regres-

sion”. Building upon Foresi and Peracchi [15], they develop models that do not assume a

parametric distribution but estimate the whole conditional distribution flexibly. The basic

idea is to estimate the distribution of the dependent variable via several binary regressions for

F(z|xi) = Pr(yi� z|xi) based on a fine grid of values z. These models have the advantage of not

requiring an assumption about the form of the response distribution. However, they require

constrained estimates to avoid crossing predictions similar to crossing quantiles in quantile

regression. Recently, Shen [16] proposed a nonparametric approach based on kernel func-

tions to estimate the effect of minimum wages on the conditional income distribution. She

points out that the flexibility of estimating distributional effects conditional on the other

covariates is also useful for the regression discontinuity design (RDD). In Shen and Zhang

[17] they develop tests relating the stochastic dominance testing to the RDD.

Thus, different concepts are already introduced with different scope for application. By

applying GAMLSS to the evaluation context, we provide a flexible, parametric complement to

the existing approaches. The advantage of this approach is that it provides one coherent model

for the conditional distribution which estimates simultaneously the effect on all distributional

parameters avoiding crossing quantiles or crossing predictions. If the distributional assump-

tion is appropriate, the parametric approach allows us to rely on classical results for inference

in either frequentist or Bayesian formulations, including large sample theory. The parametric

formulation furthermore enables us to derive various quantities of interest from the same esti-

mated distribution (quantiles, moments, Gini coefficient, interquartile range, etc.) which are

all consistent with each other. As the distributional assumption obviously plays a crucial role

in GAMLSS, we suggest guiding steps and easy-to-use tools for the practitioner to decide on a

distribution.

The remainder is structured as follows: Section 2 provides the methodological background

of GAMLSS. Section 3 elaborates on the potential benefits and limitations of GAMLSS for

evaluating treatment effects. A practical step-by-step implementation and interpretation is

given in Section 4. Though this section uses data from a randomized controlled trial (RCT),

the methodology proposed in this paper applies to non-experimental methods as well. The

appendix elaborates on the combination of GAMLSS with other evaluation methods including

panel data approaches, difference-in-differences, instrumental variables (IV), and regression

discontinuity design (RDD). Section 5 concludes.

2 Generalized additive models for location, scale and shape

2.1 A general introduction to GAMLSS

For the sake of illustration, we start with a basic regression as it would be used, for example,

when evaluating data from an RCT. Based on observed values ðx0i;Ti; yiÞ; i ¼ 1; . . . ; n; we are

interested in determining the regression relation between a treatment, Ti, and the response

variable yi, while controlling for a vector of non-stochastic covariates x0i. For simplicity and in

line with the application in Section 4, we describe the method in the context of a binary treat-

ment but it applies to the continuous case as well. A corresponding simple linear model

yi ¼ b0 þ bTTi þ x0iβ1 þ εi ð1Þ

with error terms εi subject to E(εi) = 0 implies that the treatment and the remaining covariates

linearly determine the expectation of the response via

EðyiÞ ¼ mi ¼ b0 þ bTTi þ x0iβ1: ð2Þ

Treatment effects beyond the mean

PLOS ONE | https://doi.org/10.1371/journal.pone.0226514 February 14, 2020 3 / 29

https://doi.org/10.1371/journal.pone.0226514


If, in addition, the distribution of the error term is assumed to not functionally depend on the

observed explanatory variables (implying, for example, homoscedasticity), the model focuses

exclusively on the expected value, that is, it is a mean regression model. In other words, all

effects that do not affect the mean but other parameters of the response distribution such as

the scale parameter are implicitly subsumed into the error term.

One possibility to weaken the focus on the mean and give more structure to the remaining

effects is to relate all parameters of a response distribution to explanatory variables. In the case

of a normally distributed response yi � Nðmi; s
2
i Þ, both mean and variance could depend on

the explanatory variables. Assuming again one treatment variable Ti and additional covariates

x0i, the corresponding relations in a GAMLSS can be specified as follows:

mi ¼ b
m

0
þ b

m

TTi þ x0iβ
m

1
; ð3Þ

logðsiÞ ¼ b
s

0
þ b

s

TTi þ x0iβ
s

1
: ð4Þ

Here, the superscripts in b
m

0
; b

m

T; β
m

1
; b

s

0
; b

s

T and βs
1

indicate the dependency of the intercepts

and slopes on the respective distribution parameters. The log transformation in Eq (4) is

applied in order to guarantee positive standard deviations for any value of the explanatory

variable.

Aside from the normal distribution, a wide range of possible distributions is incorporated

in the flexible GAMLSS framework (see e.g. [18] for a comprehensive overview of distributions

used with GAMLSS):

(a). In addition to distributions with location and scale parameters, distributions with skew-

ness and kurtosis parameters can be modeled to account for regression effects on such

features.

(b). For count data, not only the Poisson but also alternative distributions such as the nega-

tive binomial distribution that accounts for over-dispersion or compound distributions

accounting for zero-inflation can be used. Outside the GAMLSS context, these distribu-

tions are for example used in Chen et al. [19] for crash frequency modeling.

(c). Often we consider nonnegative dependent variables, e.g. income, with an amount of

zeros that cannot be captured by continuous distributions. For these cases, a mixed dis-

crete-continuous distribution can be used that combines a nonnegative continuous dis-

tribution with a point mass in zero.

(d). For response variables that are shares, also called fractional responses, we can consider

continuous distributions defined on the unit interval.

(e). Even multivariate distributions can be placed within this modeling framework (see e.g.

[20]).

GAMLSS assume that the observed yi are conditionally independent and that their distribu-

tion can be described by a parametric density p(yi|ϑi1, . . ., ϑiK) where ϑi1, . . ., ϑiK are K different

parameters of the distribution. For each of these parameters we can specify an equation of the

form

gkðWikÞ ¼ b
Wk
0
þ b

Wk
T Ti þ x0iβ

Wk ; ð5Þ

where the link function gk ensures the compliance with the requirements of the parameter

space, such as the log link to ensure positive variances in Eq (4). Linking the parameters to an

unconstrained domain also facilitates the consideration of semiparametric, additive regression
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specifications including, for example, nonlinear, spatial or random effects. Due to assuming a

distribution for the response variable, the likelihood is readily available such that model esti-

mation can be conducted for example by (penalized) maximum likelihood [2] or in a Bayesian

framework based on Markov chain Monte Carlo simulations [21, 22].

2.2 Additive predictors

The univariate case described in the previous subsection can be easily extended to a multivari-

ate and even more flexible setting. In particular, each parameter ϑik, k = 1, . . ., K, of the

response distribution is now conditioned on several explanatory variables and can be related

to a predictor Z
Wk
i via a link function gk such that Wik ¼ g � 1

k ðZ
Wk
i Þ.

A generic predictor for parameter ϑik takes on the following form:

Z
Wk
i ¼ b

Wk
0
þ b

Wk
T Ti þ f Wk1 ðx1iÞ þ � � � þ f WkJk ðxJki

Þ: ð6Þ

This representation shows nicely why we refer to Z
Wk
i as a “structured additive predictor”.

While b
Wk
0

denotes the overall level of the predictor and b
Wk
T is the effect of a binary treatment

on the predictor, functions f Wkj ðxjiÞ; j ¼ 1; . . . ; Jk; can be chosen to model a range of different

effects of a vector of explanatory variables xji:

(a). Linear effects are captured by linear functions f Wkj ðxjiÞ ¼ xjib
Wk
j , where xji is a scalar and

b
Wk
j a regression coefficient.

(b). Nonlinear effects can be included for continuous explanatory variables via smooth func-

tions f Wkj ðxjiÞ ¼ f Wkj ðxjiÞ where xji is a scalar. We recommend using P(enalized)-splines

[23] due to their versatility in approximating even complex nonlinear effects.

(c). Accounting for spatial autocorrelation is a specific challenge due to the resulting spatial

dependence between the observed response variables. In GAMLSS, this problem is dealt

with by including a spatially correlated random effect in one or multiple of the regression

predictors (similar as in Zeng et al. [24] for an ordinal logit model) where the exact speci-

fication depends on the type of spatial information. If the spatial allocation is given in

terms of geographical coordinates, the spatial pattern can be accounted for via Gaussian

random fields f Wkj ðxjiÞ ¼ f Wkj ðsx;i; sy;iÞ, where an appropriate covariance function is utilized

to determine the dependence between observations and sx,i, sy,i are the coordinates of

observation i. If spatial information is given in terms of administrative units si, Gaussian

Markov random fields enable the specification of spatial dependence based on the neigh-

borhood structure of the regions, see [25] for a detailed discussion of both options.

(d). If the data are clustered, random or fixed effects f Wkj ðxjiÞ ¼ b
Wk
j;gi

can be included to adjust

for unobserved, group-specific heterogeneity as well as within-group dependence, where

gi denoting the cluster the observations are grouped into.

Consequently, GAMLSS allows the researcher to incorporate very different types of effects

within one modeling framework. Estimation may then be done via a back-fitting approach

within the Newton-Raphson type algorithm that maximizes the penalized likelihood and esti-

mates the unknown quantities simultaneously. The methodology is implemented in the

gamlss package in the software R, and described extensively in Stasinopoulos and Rigby [26]

and Stasinopoulos et al. [18]. Alternatively, a Bayesian implementation is available in the open

source software BayesX [27, 28].

Treatment effects beyond the mean
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2.3 GAMLSS vs. quantile regression

A popular alternative to simple mean regression is quantile regression, see, for example, [12]

for an excellent introduction. Quantile regression relates not the mean but quantiles of the out-

come variable to explanatory variables without making a distributional assumption about the

outcome variable. In addition to requiring independence of observed values yi, a quantile

regression model with one explanatory variable xi only assumes that

yi ¼ b0;t þ b1;txi þ εi;t ð7Þ

where εi,τ is a quantile-specific error term with the quantile condition P(εi,τ� 0) = τ replacing

the usual assumption E(εi,τ) = 0. This implies a specific form of the relationship: The explana-

tory variable influences the τ-quantile in a linear fashion. Thus, the model can still be misspeci-

fied even though we do not make an assumption about the distribution of the response. A

further disadvantage of quantile regression is that the response variable must be continuous.

This is especially problematic in the case of discrete or binary data, continuous distributions

with a probability greater than zero for certain values or when the dependent variable is a pro-

portion. This is different to the GAMLSS approach that also includes those cases. Note that we

appraise GAMLSS as a generic framework here, even though it does not yield additional bene-

fits if the distribution has only one parameter such as the binomial or Poisson distribution.

Another problem in quantile regression is the issue of crossing quantiles [29]. Theoretically,

quantiles should be monotonically ordered according to their level such that b0;t1
þ b1;t1

xi �

b0;t2
þ b1;t2

xi for τ1� τ2 and all xi, i = 1, . . ., n. Since the regression models are estimated for

each quantile separately, this ordering does not automatically enter the model and crossing

quantiles can occur especially when the amount of considered quantiles is large in order to

approximate the whole distribution. If one assumes parallel regression lines, crossing quantiles

can be avoided. However, in this case the application of quantile regression becomes redun-

dant since for each quantile only the intercept parameter shifts while the effect of the explana-

tory variables would be independent from the quantile level. Therefore, the models rely on the

less restrictive assumption that quantiles should not cross for the observed values of the

explanatory variables. Strategies to avoid quantile crossing include simultaneous estimation,

for example, based on a location scale shift model [30], on spline based non-crossing con-

straints [31], or on quantiles sheets [32]. Chernozhukov et al. [33] and Dette and Volgushev

[34] propose estimating the conditional distribution function first and inverting it to obtain

quantiles. However, all of these alternatives require additional steps and most of them cannot

easily incorporate an additive structure for the predictors [35]. In empirical research, conven-

tional quantile regression is predominantly used by far. In any case, quantile regression esti-

mates the relationship for certain quantiles separately but does not have a model to estimate

the complete distribution. This can be also problematic if measures other than the quantiles

such as the standard deviation or Gini coefficient should be analyzed.

In contrast, GAMLSS are consistent models from which any feature of a distribution can be

derived. If the assumed distribution is appropriate, GAMLSS can provide more precise estima-

tors than quantile regression especially for the tails of the empirical distribution where data

points are scarce. Since we use maximum likelihood for estimation, a variety of related meth-

ods and inference techniques that rely on the distributional assumption can be used such as

likelihood ratio tests and confidence intervals. As simulation studies in Klein et al. [36] show

bad performance for likelihood-based confidence intervals in certain situations, we will, how-

ever, rely on bootstrap inference for the application in Section 4. The main drawback of

GAMLSS is a potential misspecification but Section 4 presents associated model diagnostics to

minimize this risk. Besides the methodological differences, quantile regression and GAMLSS
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expose their benefits in different contexts. Following Kneib [35], we suggest using quantile

regression if the interest is on a certain quantile of the distribution of the dependent variable.

On the other hand, the GAMLSS framework is more appropriate if one is interested in the

changes of the entire conditional distribution, its parameters and certain distributional mea-

sures relying on these parameters, such as the Gini coefficient.

3 Potentials and pitfalls of GAMLSS for analyzing treatment effects

beyond the mean

GAMLSS can be applied to evaluation questions when the outcome of interest is not the differ-

ence in the expected mean of treatment and comparison group but the whole distribution and

derived distributional measures while at the same accounting for differences in covariates.

Compared to an analysis where the distributional measures are themselves the dependent vari-

able, the great advantage of GAMLSS is that they yield one model from which several measures

of interest can be coherently derived. In case of income, for example, these measures might be

expected income, quantiles, Gini, the risk of being poor etc. Thereby, consistent results are

obtained since all measures are based on the same model using the same data. Furthermore,

aggregated distributional measures as dependent variables mask the underlying individual

information. On the contrary, GAMLSS allows the researcher to estimate (treatment) effects

on aggregate measures on the individual level.

To present some examples of beyond-the-mean-measures, we focus in the following on

inequality and vulnerability to poverty but a lot more measures can be analyzed using

GAMLSS. For example, as Meager [37] points out, risk profiles of business profits which are

important for the functioning of the credit market are based on characteristics of the entire

distribution and not only the mean.

3.1 Example: GAMLSS and vulnerability as expected poverty

Ex ante poverty measures such as vulnerability to poverty are an interesting outcome if one is

not only interested in the current (static) state of poverty but also in the probability of being

poor. Although there are different concepts of vulnerability, see [38] for an overview and

empirical comparison of different vulnerability measures, we focus on the notion of vulnera-

bility as expected poverty [39]. In this sense, vulnerability is the probability of having a con-

sumption (or income) level below a certain threshold. To calculate this probability, separate

regressions for mean and variance of log consumption are traditionally estimated using the

feasible generalized least squares estimator (FGLS, [40]), yielding an estimate for the expected

mean and variance for each household. Concretely, the procedure involves a consumption

model of the form

ln yi ¼ b
m

0
þ x0iβ

m

1
þ εi; ð8Þ

where yi is consumption or income, β0 an intercept, xi is a vector of household characteristics,

β1 is a vector of coefficients of the same length and εi is a normally distributed error term with

variance

s2
e;i ¼ b

s

0
þ x0iβ

s

1
: ð9Þ

To estimate the intercepts b
m

0
and b

s

0
and the vectors of coefficients β1 and βs

1
the 3-step

FGLS procedure involves several OLS estimation and weighting steps. Assuming normally dis-

tributed log incomes ln yi, the estimated coefficients are plugged into the standard normal
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cumulative distribution function

bPrðln yi < ln zjx0iÞ ¼ F
ln z � ðb̂m0 þ x0iβ̂

m

1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂s
0
þ x0iβ̂s1

q

0

B
@

1

C
A; ð10Þ

where b̂
m
0 þ x0iβ̂

m
1 is the estimated mean,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂s
0
þ x0iβ̂s1

q

the estimated standard deviation, and z
the poverty threshold. A household is typically classified as vulnerable if the probability is

equal or larger than 0.5. In contrast to the 3-step FGLS procedure, GAMLSS allow us to esti-

mate the effects on mean and variance simultaneously avoiding the multiple steps procedure.

While the efficiency gain of a simultaneous estimation is not necessarily large, its main advan-

tage is the quantification of uncertainty as it can be assessed in one model. In a stepwise proce-

dure, each estimation step is associated with a level of uncertainty that has to be accounted for

in the following step. Additionally, GAMLSS provide the flexibility to relax the normality

assumption of log consumption or log income.

3.2 Example: GAMLSS for inequality assessment

Although inequality is normally not a targeted outcome of a welfare program, it is considered

as an unintended effect since a change in inequality is likely to have welfare implications.

To assess inequality, our application in Section 4 focuses on the Gini coefficient but other

inequality measures are also applied. In general, we focus on the conditional distribution of

consumption or income, that is, the treatment effects will be derived for a certain covariate

combination. In other words, in order to analyze inequality, we do not measure uncondi-

tional inequality of consumption or income, for instance, for the entire treatment and

comparison group, but inequality given that other factors that explain differences in con-

sumption are fixed at certain values. Thus, for each combination of explanatory variables an

estimated inequality measure is obtained which represents inequality unexplained by these

variables. The economic reasoning is that differences in consumption or income are not per
se welfare reducing inequality since those differences might stem from different characteris-

tics or abilities such as years of education. We, however, assess the differences in consump-

tion or income for those with equal or similar education as it is the conditional inequality

that is perceived as unfair.

It is important to address some limitations regarding model selection and a priori model

specification. As the researcher has to select explanatory variables for more than one parame-

ter and a suitable response distribution, uncertainty in estimation can increase, yielding

invalid p-values and possibilities for p-hacking open up. Note, however, that there is a trade-

off between misspecification by simplifying the model via assuming constant distributional

parameters and misspecifying a more complex model. Additionally, a linear regression model

is certainly less complex to specify but more limited in its informative value. To reduce the

chance for misclassification of more complex GAMLSS, we suggest scrutinizing the model

using the criteria and tools for model diagnosis presented in Section 4. It is also common in

practice to report more than one model to check robustness to model specification. Covariates

can be pre-specified either on theoretical grounds or by using information from previous stud-

ies. To some extent, this is also possible for the response distribution. The type of response

(continuous, nonnegative, binary, discrete etc.) already restricts the set of possible distribu-

tions to choose from. Previous studies might also give hints about the distribution of the

response.
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4 Applying GAMLSS to experimental data

4.1 General procedure

To demonstrate how the analysis of treatment effects can benefit from GAMLSS, we replicate

and extend an evaluation study of a popular economic intervention and show how a distribu-

tional analysis could be implemented step by step.

We propose the following procedure to implement GAMLSS:

(a). Choose potentially suitable conditional distributions for the outcome variable.

(b). Make a (pre-)selection of covariates according to your hypothesis, theoretical consider-

ations, etc.

(c). Estimate your models and assess their fit, decide whether to include nonlinear, spatial,

and/or random effects.

(d). Optionally: Refine your variable selection according to statistical criteria.

(e). Interpret the effects on the distributional parameters (if such an interpretation is avail-

able for the chosen distribution), derive the effects on the complete distribution and

identify the treatment effect on related distributional measures.

In the following, we apply all of these steps to the Progresa data as used in Angelucci and

De Giorgi [3] to provide a hands on guide on how to use GAMLSS in impact evaluation. The

Mexican conditional cash transfer (CCT) program Progresa (first renamed Oportunidades

and then Prospera) transfers money to households if they comply with certain requirements

which include, for example, children’s regular school attendance. CCTs have been popular

development instruments over the last two decades and most researchers working in the area

are well familiar with their background making it an ideal demonstration example.

4.2 Application: Progresa’s treatment effect on the distribution

In their study “Indirect Effects of an Aid Program”, Angelucci and De Giorgi [3] investigate

how CCTs to targeted, eligible (poor) households affect, among other outcomes, the average

food consumption of both eligible and ineligible (non-poor) households. An RCT was con-

ducted at the village-level and information is available for four groups: eligible and ineligible

households in treatment and control villages. Aside from the expected positive effect of the

cash transfer on the eligible households’ mean food consumption, Angelucci and De Giorgi

[3] also find a considerable increase in the ineligible households’ mean food consumption in

the treatment villages. They link the increase to reduced savings among the non-poor, higher

loans, and monetary and in-kind transfers from family and friends. Consequently, the average

program effect on food consumption for the treated villages is larger than assumed when only

looking at the poor. Estimating the same relationship using GAMLSS provides important

information for policymakers on effects within a group, for example, whether conditional food

consumption inequality decreases for an average household among the poor (or the non-poor

or all households). We will assess the effect on conditional inequality via the Gini coefficient,

which is defined by

G ¼

Xn

i¼1

Xn

j¼1

jyi � yjj

2n
Xn

h¼1

yi

; 0 � G � 1; ð11Þ
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for a group of n households, where yi denotes the nonnegative consumption of household i.
For a given continuous consumption distribution function p(y), which we will estimate via

GAMLSS, the Gini coefficient can be written as

G ¼
1

2m

Z 1

0

Z 1

0

pðyÞpðzÞ jy � zj dy dz; ð12Þ

with μ denoting the mean of the distribution.

Thus, a positive treatment effect on consumption in one group results in a lower Gini coef-

ficient if all group members benefit equally, as the differences in (11) and (12) remain the

same, but the denominators increase. However, there might be reasons why in one group, e.g.

among the poor, only the better off benefit and the poorest do not, resulting in higher

inequality.

Using GAMLSS, we investigate the program’s impact on conditional food consumption

inequality measured by the Gini coefficient within the non-poor and poor by comparing the

treatment and control groups. In particular, we model food consumption by an appropriate

distribution and link its parameters to the treatment variable and other covariates. We obtain

estimates for the conditional food consumption distribution for treated and untreated house-

holds and the corresponding Gini coefficients. The pairs cluster bootstrap is applied for

obtaining an inferential statement on the equality of Gini coefficients; see Section B.2 in the

appendix for a description of this bootstrap method. Furthermore, we investigate the effect of

Progresa on global inequality by comparing treatment and control villages, that is, all house-

holds in treatment villages are considered as treated and all households in control villages as

not treated. Since the average treatment effects found by Angelucci and De Giorgi [3] are

larger for the poor than for the non-poor, a lower food consumption inequality (measured by

the Gini coefficient) in the treatment villages is expected. However, a higher Gini could arise if

the program benefits are very unequally distributed. Decreasing inequality is an expected, even

though often not explicitly mentioned and scrutinized target of poverty alleviation programs

and considered to be desirable, especially in highly unequal societies such as Mexico.

Regarding the data set and specification, we refer to Table 1 in Angelucci and De Giorgi [3]

and restrict our analyses to the sample collected in November 1999 and the more powerful

specifications including control variables. We rely on (nearly) the same data and control vari-

ables as Angelucci and De Giorgi [3]. Along the steps described in Section 4.1, we will show in

detail how to apply our modeling framework to the group of ineligibles which are also the

main focus group of Angelucci and De Giorgi [3]. The corresponding software code can be

downloaded from https://www.uni-goettingen.de/de/511092.html, whereas the dataset is avail-

able on https://www.aeaweb.org/articles?id=10.1257/aer.99.1.486.

Table 1. Summary of the quantile residuals for the model based on the log-normal distribution and Singh-Mad-

dala distribution.

Log-normal Singh-Maddala

Mean -0.000091 -0.001102

Variance 1.000235 0.998379

Coef. of Skewness 0.701639 0.060098

Coef. of Kurtosis 6.016006 3.115085

Filliben Correlation Coef. 0.984499 0.999201

Notes: A good fit is indicated by values close to 0, 1, 0, 3 and 1 for mean, variance, skewness, kurtosis, and Filliben

correlation coefficient, respectively.

https://doi.org/10.1371/journal.pone.0226514.t001
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4.2.1 Choice of potential outcome distributions. The distribution of the outcome vari-

able often gives some indication about which conditional distributions are appropriate candi-

dates. To check the adequacy of the model fit and the appropriateness of the chosen

distribution, (randomized) normalized quantile residuals [41] should be used.

The histogram of the dependent variable in the left panel of Fig 1 shows a heavily right-

skewed distribution while taking the logarithm yields approximately a normal distribution

(right panel) such that the log-normal distribution appears to be a reasonable starting point. It

has the additional advantage that it also renders easily interpretable effects of the explanatory

variables on the mean and variance of the dependent variable, at least on the logarithmic scale.

As a more flexible alternative, we will also consider the three-parameter Singh-Maddala that is

also known as Burr Type XII distribution and capable of modeling right-skewed distributions

with fat tails, see [42] for details. Note that the three parameters of the Singh-Maddala distribu-

tion do not allow a direct interpretation of effects on moments of the distribution.

4.2.2 Preliminary choice of potentially relevant covariates. We select the same covari-

ates as in Angelucci and De Giorgi [3] and relate all of them to all parameters of our chosen

distribution. The model contains nine explanatory variables per parameter: Besides the treat-

ment variable, these are six variables on the household level, namely poverty index, land size,

the household head’s gender, age, whether they speak an indigenous language and are illiterate,

as well as a poverty index and the land size as variables on the locality level. For the model rely-

ing on a log-normal distribution, two parameters μ and σ are related to these variables,

logðmiÞ ¼ b
m

0
þ Tib

m

T þ x0iβ
m

1
; ð13Þ

logðsiÞ ¼ b
s

0
þ Tib

s

T þ x0iβ
s

1
; ð14Þ

where Ti is the treatment dummy, b
m

T and b
s

T are the treatment effects on the parameters μ and

σ, respectively, xi is a vector containing the values of the remaining covariates for household i
and βm

1
and βs

1
are the corresponding coefficient vectors of the same length. In the specification

relying on the three-parameter Singh-Maddala distribution, where μ and σ are modeled as in

Fig 1. Distribution of food consumption and log food consumption.

https://doi.org/10.1371/journal.pone.0226514.g001

Treatment effects beyond the mean

PLOS ONE | https://doi.org/10.1371/journal.pone.0226514 February 14, 2020 11 / 29

https://doi.org/10.1371/journal.pone.0226514.g001
https://doi.org/10.1371/journal.pone.0226514


(13) and (14), respectively, an additional parameter τ is linked to the nine explanatory vari-

ables,

logðtiÞ ¼ b
t

0
þ Tib

t

T þ x0iβ
t

1
; ð15Þ

resulting in the considerable amount of 30 quantities to estimate as each parameter equation

includes an intercept. This is, however, still a moderate number considering the sample size of

more than 4,000 households in the sample of ineligibles and even less problematic for the sam-

ple of eligibles with about 10,500 observations and the combined sample. In general, if the

sample size is large, it is advisable to relate all parameters of a distribution to all variables

which potentially have an effect on the dependent variable and its distribution, respectively.

Exceptions may include certain distributions such as the normal distribution when there are

convincing theoretical arguments why a variable might affect one parameter such as the mean

but not another one such as, for example, the variance. For smaller sample sizes, higher order

parameters such as skewness or kurtosis parameters may be modeled in simpler fashion with

few explanatory variables.

4.2.3 Model building and diagnostics. The adequacy of fit is assessed by some statistics of

the normalized quantile residuals. As a generic tool applicable to a wider range of response dis-

tributions than deviance or Pearson residuals, these residuals were shown to follow a standard

normal distribution under the true model. In Fig 2 and Table 1 it can be seen that both q-q

plot and statistics reveal that the log-normal distribution might be an inadequate choice for

modeling the consumption distribution. Especially the overly large coefficient of kurtosis,

which should be close to 3, and the apparent skewness of the normalized quantile residuals,

visible in the plot, suggest a distribution with a heavier right tail.

Fig 2. Diagnosis plots for the model based on the log-normal distribution (left panel) and the Singh-Maddala distribution

(right panel).

https://doi.org/10.1371/journal.pone.0226514.g002
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A model relying on the Singh-Maddala distribution yields a much more satisfying diagnos-

tic fit (see Fig 2 and Table 1). The q-q plot does not show severe deviations from the standard

normal distribution, which is confirmed by the summary measures of the quantile residuals.

More specifically, the Filliben correlation coefficient (measuring the correlation between theo-

retical and sample quantiles as displayed in the q-q plot) is almost equal to 1, the coefficient of

skewness is now close to 0 and the coefficient of kurtosis close to 3. Additionally, the mean

and the variance do not deviate much from their “desired” values 0 and 1, respectively.

Consequently, the Singh-Maddala distribution is an appropriate choice for modeling the

present consumption data. Other diagnostic tools, as described in Stasinopoulos and Rigby

[26], can be applied as well. In their application, Angelucci and De Giorgi [3] cluster the stan-

dard errors at the village level as some intra-village correlation is likely to occur. In a heuristic

approach, we regress the quantile residuals of the model above on the village dummies and

obtain an adjusted R2 of about 10% and a very low p-value for the overall F-Test. This suggests

unobserved village heterogeneity which we account for by applying a pairs cluster bootstrap

procedure to obtain cluster-robust inference. Alternatively, random effects could be applied to

model unexplained heterogeneity between villages. Since we use the same covariates as in

Angelucci and De Giorgi [3], we do not include nonlinear covariate effects in our model speci-

fication. The model diagnostics indicate a reasonable fit and we are not particularly interested

in the effects of the continuous covariates but as a check we ran a model with nonparametric

covariate effects and obtained very similar results. In general, we advocate the use of nonpara-

metric specifications for most continuous covariates.

4.2.4 Variable selection. A comparison between different models may be done by the

diagnostics tools described in the previous subsection. Additionally, statistical criteria for vari-

able selection may be used, see [43] for a corrected Akaike Information Criterion for GAMLSS.

Moreover, boosting is a valuable alternative especially for high-dimensional models [44]. An

implementation can be found in the R package gamboostLSS (see [45] for a tutorial with

examples), yet the set of available distributions is somewhat limited. Here, we retain all vari-

ables in the model in order to stay close to the original study.

4.2.5 Reporting and interpreting the results. For interpretation purpose it is straightfor-

ward to compute marginal effects of the treatment, that is, the change in features of an out-

come distribution when the treatment variable changes from 0 to 1 while all other variables are

fixed at some specified values. These features may comprise the mean and variance as well as

other quantities describing a distribution, such as the Gini coefficient or the vulnerability as

expected poverty. The latter we define as the probability of falling below 60% of the median

food consumption in our sample (which corresponds to about 95 Pesos). Finally, t-tests and

confidence intervals can be calculated for testing the presence of marginal effects of the treat-

ment on various measures.

The results in Table 2 show point estimates and 95% bootstrap percentile intervals of mar-

ginal effects of the treatment at means for an average household, that is, effects on various

distributional measures when the treatment changes from 0 to 1 and the other continuous

explanatory variables are fixed at their mean values and categorical variables at their modes.

The expected significant positive treatment effect on the mean of the dependent variable is

found and can be interpreted as follows: For an average ineligible household, living in a treat-

ment village induces an expected increase in food consumption of about 16.232 pesos per

adult equivalent. Although associated with large confidence intervals including zero, the effect

on the variances is also positive, indicating a higher variability in the food consumption

among the ineligibles in the treatment villages. The Gini coefficient is as well slightly bigger in

treatment villages and the confidence intervals do not reject the null hypothesis of equal food

consumption inequality (measured by the Gini coefficients) between treatment and control
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villages. We also report effects on other inequality measures, namely the Atkinson index with

inequality parameters e = 1, 2 and the Theil index. The results are qualitatively comparable to

the effect on the Gini coefficient. To put it differently: There is no evidence that the treatment

decreases inequality for an average household among the ineligibles, even though a positive

effect on the average food consumption can be found. Furthermore, vulnerability as expected

poverty does not change significantly due to the treatment, yet the point estimate indicates a

decrease by -0.015, corresponding to an estimated probability of falling below the poverty line

of 0.111 for an average household in a control village and the respective probability of 0.096

for an average household in a treatment village. The findings can be illustrated graphically: Fig

3 shows the estimated conditional food consumption distributions for an average ineligible

household living in treatment and control villages: It can be seen that the distribution for the

treated household is shifted to the right which corresponds to a higher mean and a lower prob-

ability of falling below the poverty line. Moreover, the peak of the mode is somewhat smaller

Table 2. Treatment effects for ineligibles.

Estimate Lower Bound Upper Bound

ME on mean 16.232 2.833 24.685

ME on variance 8463.007 -3037.648 16159.719

ME on Gini coefficient 0.014 -0.009 0.036

ME on Atkinson index (e = 1) 0.012 -0.008 0.033

ME on Atkinson index (e = 2) 0.018 -0.010 0.051

ME on Theil index 0.019 -0.018 0.055

ME on vulnerability -0.015 -0.048 0.009

Notes: Shown are point estimates for marginal effects of the treatment at means (ME) and corresponding 95% bootstrap confidence interval bounds based on 499

bootstrap replicates. n = 4, 248.

https://doi.org/10.1371/journal.pone.0226514.t002

Fig 3. Estimated conditional distributions for an average ineligible household.

https://doi.org/10.1371/journal.pone.0226514.g003
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and the right tail in this right-skewed distribution is slightly fatter, resulting in an increased

variance and thus higher inequality.

The preceding analyses were conducted for an average ineligible household. Clearly, mar-

ginal effects could be obtained for other covariate combinations to investigate how the treat-

ment effect looks like for specific subgroups. Even more heterogeneity can be allowed for by

including interactions between the treatment variable and other covariates. In general, we rec-

ommend computing marginal effects at interesting and well-understood covariate values

rather than averaging marginal effects which mask the heterogeneity of the single marginal

effects and could be affected overly strongly by observations that are not of primary interest.

However, aggregating marginal effects over all households in the sample is as straightforward

as showing the distribution of all these single marginal effects.

Qualitatively the same results emerge for the group of eligibles, as can be seen in Table 3.

The treatment effects on the mean are even bigger, still the Gini coefficient and other inequal-

ity measures do not decline significantly. In contrast, the point estimates rather indicate a

slight increase. A significant decrease is observed for the vulnerability as expected poverty.

Of particular interest are the results on the treatment effects on inequality for all house-

holds. In Table 4, we see no significant decline in food consumption inequality for a household

with the average characteristics, a quite sobering result for a poverty alleviation program, even

though we find evidence for a smaller vulnerability to poverty due to the treatment. The graph

of estimated conditional distributions looks similar to Fig 3 but due to including the eligibles,

the difference between the distributions is more pronounced (see S1 Fig for the eligibles and

Table 3. Treatment effects for eligibles.

Estimate Lower Bound Upper Bound

ME on mean 28.900 16.930 35.200

ME on variance 4550.073 837.941 7593.226

ME on Gini coefficient 0.007 -0.009 0.024

ME on Atkinson index (e = 1) 0.006 -0.007 0.021

ME on Atkinson index (e = 2) 0.012 -0.008 0.037

ME on Theil index 0.007 -0.014 0.028

ME on vulnerability -0.077 -0.124 -0.058

Notes: Shown are point estimates for marginal effects of the treatment at means (ME) and corresponding 95%

bootstrap confidence interval bounds based on 499 bootstrap replicates. n = 10, 492.

https://doi.org/10.1371/journal.pone.0226514.t003

Table 4. Treatment effects for all people living in treatment villages.

Estimate Lower Bound Upper Bound

ME on mean 25.900 14.730 31.130

ME on variance 4828.316 820.841 7750.220

ME on Gini coefficient 0.007 -0.006 0.021

ME on Atkinson index (e = 1) 0.006 -0.005 0.018

ME on Atkinson index (e = 2) 0.012 -0.004 0.034

ME on Theil index 0.007 -0.012 0.026

ME on vulnerability -0.056 -0.092 -0.040

Notes: Shown are point estimates for marginal effects of the treatment at means (ME) and corresponding 95%

bootstrap confidence interval bounds based on 499 bootstrap replicates. n = 14, 740.

https://doi.org/10.1371/journal.pone.0226514.t004
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S2 Fig for all households). However, the reasons for the findings are equivalent: The shift of

the distribution to the right due to the treatment lowers the risk of falling below the poverty

line. Additionally, while unequal benefits from the treatment increase the variability of the

consumption, the right tail of the distribution becomes fatter, preventing an arguably desired

decline in inequality.

5 Conclusion

This paper introduces GAMLSS as a modeling framework for analyzing treatment effects

beyond the mean in various research areas, including economics, which is the focus of this

paper, medicine, and epidemiology. Going beyond mean effects is relevant if the evaluator or

the researcher is interested in treatment effects on the whole conditional distribution or

derived measures that take parameters other than the mean into account. The main advantage

of GAMLSS is that they relate each parameter of a distribution and not just the mean to

explanatory variables via an additive predictor. Hence, moments such as variance, skewness

and kurtosis can be modeled and the treatment effects on them analyzed. GAMLSS provide a

broad range of potential distributions which allows researchers to apply more appropriate dis-

tributions than the (log-)normal. Furthermore, each distribution parameter’s additive predic-

tor can easily incorporate different types of effects such as linear, nonlinear, random, or spatial

effects.

To practically demonstrate these advantages, we re-estimated the (mean) regression that

Angelucci and De Giorgi [3] applied to evaluate the well-known Progresa program. They

found positive treatment effects on poor and non-poor that were larger for the poor (the target

group) than for the non-poor. Their findings suggest that the treatment should consequently

also decrease inequality within the two groups and within all households. We tested these

hypotheses by applying GAMLSS and could not find any evidence for a decline of the condi-

tional Gini coefficient or other inequality measures due to the treatment. An explanation is

that the treatment benefited some households distinctly more than others, leading to a higher

variance of consumption between households and a higher amount of households having a

considerably high consumption. We thus argue that GAMLSS can help to detect interesting

treatment effects beyond the mean.

Besides showing the practical relevance of GAMLSS for treatment effect analysis, this paper

bridges the methodological gap between GAMLSS in statistics and popular methods used for

impact evaluation. While our practical example considers only the case of an RCT, we also

develop frameworks for combining GAMLSS with the most popular evaluation approaches

including regression discontinuity designs, differences-in-differences, panel data methods,

and instrumental variables in the appendix. We show there further how to conduct (cluster

robust) inference using the bootstrap. The bootstrap methods proposed in this paper rely on

re-estimation of a GAMLSS model for each bootstrap sample. In cases of large datasets and

complex models, such approaches are computationally very expensive. The implementation of

a computationally more attractive alternative, maybe in the spirit of the score bootstrap

method proposed by Kline and Santos [46], is desirable.

Appendix

A Combining evaluation methods for non-experimental data and GAMLSS

As demonstrated in Section 4.1, GAMLSS can be used for the analysis of randomized con-

trolled trials, as those are typically handled within the ordinary regression framework. The

same applies to difference-in-differences approaches which only include additional regressors,
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namely interactions. In the following, we describe how other commonly used evaluation meth-

ods and models (see [47] for an overview) can be combined with GAMLSS.

A.1 GAMLSS and panel data models. In the evaluation literature, linear panel data mod-

els with fixed or random effects seem to be the preferred choice when individuals are observed

over time:

yit ¼ b0 þ x0itβ1 þ ai þ εit; i ¼ 1; . . . ;N; t ¼ 1; . . . ;Ti: ð16Þ

Here, i denotes the individual and t the time period. The vector of explanatory variables xit

may include a treatment effect of interest, time dummies and control variables. In order to

capture unobserved time-invariant factors that affect yit, individual-specific effects αi are incor-

porated in the model. Commonly, these are modeled as fixed effects if the random effects

assumption of independence between the time-invariant effects and the explanatory variables

is presumed to fail. The Hausman test is an occasionally used tool to underpin the decision for

using fixed effects. Another approach which loosens the independence assumptions was pro-

posed by Mundlak [48]. The idea is to extend the random effects model such that for each

explanatory variable which is suspected to be correlated with the random effects, a variable

including individual-specific means of that variable is added. If this procedure is done for all

explanatory variables, we obtain the model

yit ¼ b0 þ x0itβ1 þ �x 0iδ1 þ ai þ εit; i ¼ 1; . . . ;N; t ¼ 1; . . . ;Ti; ð17Þ

where αi, i = 1, . . ., N, are random effects, �x i is a vector containing the means of the explanatory

variables over all Ti time periods for individual i, and δ1 is the vector of associated coefficients.

In this specification, the other vector of coefficients β1 only includes the effects of the explana-

tory variables stemming from their variation around the individual-specific means. Hence, β1

in (17) is equivalent to β1 in a fixed effects model according to (16).

For nonlinear (additive) panel data models, the same question about the validity of the

independence assumption between the random effects and the explanatory variables arises.

One can allow for dependence via the Mundlak formulation in the same fashion as described

above for linear models, that is, avoiding the explicit inclusion of fixed effects while loosening

the independence assumption, see chapter 15 in [49] for more details. As random effects are

an integrated part of the GAMLSS framework, GAMLSS specifications can be easily used to

model panel data. Assume that yit follows a distribution that can be described by a parametric

density p(yit|ϑit1, . . ., ϑitK) where ϑit1, . . ., ϑitK, are K different parameters of the distribution.

Then, according to model (17), we can specify for each of these parameters an equation of the

form

gkðWitkÞ ¼ b
Wk
0
þ x0itβ

Wk
1
þ �x 0iδ

Wk
1
þ a

Wk
i ; i ¼ 1; . . . ;N; t ¼ 1; . . . ;Ti; ð18Þ

with link function gk, see Sections 2.1 and 2.2 in the main text for details and extensions.

A.2 Instrumental variables. Instrumental variable (IV) regression aims at solving the

problem of endogeneity bias, for example arising from omitted variables. In this view, an

explanatory variable is endogenous, if an unobserved confounder influences the response and

is associated with this endogenous variable. That is, we consider the regression specification

y ¼ b0 þ xebe þ xobo þ xubu þ ε with Eðεjxe; xo; xuÞ ¼ 0; ð19Þ

where xo is an observed explanatory variable, xe the endogenous variable, xu the unobserved

confounder, ε is an error term and βo, βe, and βu represent regression coefficients for the

observed, endogenous, and unobserved explanatory variable, respectively. However, xu cannot

be observed and thus cannot be included in the model. As xu is correlated with xe, this violates
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the assumption that the error term’s expectation given all observed variables is zero. As a con-

sequence, the OLS estimator for βe is inconsistent. In order to demonstrate how a suitable

instrument can be used to solve this problem in a nonlinear context, we present the approaches

developed for generalized linear models (GLM, [50]), and generalized additive models (GAM,

[51] and extend them to the GAMLSS context.

A.2.1 Instrumental variables in generalized linear models (GLM): Terza et al. [50] pro-

posed a two-stage residual inclusion procedure (2SRI) that addresses endogeneity in nonlinear

models. In fact, the procedure was already suggested by Heckman [52] as a means to test for

endogeneity. The reason why ordinary two-stage least squares does not work in the nonlinear

context is that the expectation of the response variable is associated via a nonlinear function—

the link function in GLMs—with the predictor. Due to this function, the unobserved part is

not additively separable from the predictor [51, 53].

In a GLM framework, we consider the model

EðyjXe;Xo;XuÞ ¼ hðXeβe þ Xoβo þ XuβuÞ; ð20Þ

where y is the outcome variable dependent on Xo, a n × So matrix of observed variables, on Xe,

a n × Se matrix of endogenous variables, and on Xu which is a n × Su vector of unobserved con-

founders that are correlated with Xe. Consequently, βo is a So × 1 vector, βe a Se × 1 and βu a Su
× 1 vector of regression coefficients. The function h(�) denotes the response function, or the

inverse of the link function.

The model in (20) can be written as

y ¼ hðXeβe þ Xoβo þ XuβuÞ þ ε ð21Þ

where the error term ε is defined as ε = y − h(Xe βe + Xo βo + Xu βu) such that

EðεjXe;Xo;XuÞ ¼ 0: ð22Þ

The correlation between Xe and Xu is the core of the endogeneity issue at hand. If we were able

to observe Xu, consistent estimators for the coefficients in Eq (21) could, for example, be

obtained via maximum likelihood estimation (under the usual generalized linear model regu-

larity conditions). Without addressing the endogeneity problem, the Xu would be captured by

the error term leading to a correlation between the explanatory variables and the error.

As in the linear case, to tackle this endogeneity problem, we have to find some observed

instrumental variables W that account for the unobserved confounders Xu. The endogenous

variables can be related to these instruments and the observed explanatory variables by a set of

auxiliary equations

xes ¼ hsðXoαos þWsαwsÞ þ ξus; s ¼ 1; . . . ; Se ð23Þ

where xes is the s-th column vector of Xe, hs(�) is the response function, Ws is a n� SIVs
matrix

of IVs available for xes and αos and αws are So × 1 and SIVs
� 1 vectors, respectively, of unknown

coefficients. The number of elements in W must be equal or greater than the numbers of

endogenous regressors and there is at least one instrument in W for each endogenous regres-

sor. The error term ξus in this model contains information about the unobserved confounders.

The instrumental variables Ws in Eq (23) have to fulfill the following conditions:

(a). being associated with xes conditional on Xo

(b). being independent of the response variable y conditional on the other covariates and the

unobserved confounders in the true model, that is, Xo, Xe, Xu

(c). being independent of the unobserved confounders Xu.
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Terza et al. [50] propose the following procedure to estimate the models in Eqs (21) and

(23):

(a). First stage: Get the estimates α̂os and α̂ws for s = 1, . . ., Se from the auxiliary Eq (23) via a

consistent estimation strategy. One could use maximum likelihood estimation for GLMs

here, but nonlinear least squares is also possible. Define

ξ̂us ¼ xes � hðXoα̂os þWsα̂wsÞ for s ¼ 1; . . . ; Se: ð24Þ

(b). Second stage: Estimate β̂e, β̂o, β̂X̂u
via a GLM or a nonlinear least squares method from

EðyjXe;Xo; Ξ̂uÞ ¼ hðXeβe þ Xoβo þ Ξ̂uβX̂u
Þ; ð25Þ

where Ξ̂u is a matrix containing ξ̂us from the first stage as column vectors.

The intuition behind this procedure is that Ξ̂u contains information on the unobserved

confounders if the instruments fulfill the above mentioned requirements. Though Ξ̂u is not an

estimate for the effect of the unobserved confounder on the response variable, its contained

information can be used to get corrected estimates for the endogenous variable. Since we are

eventually interested in βe and not βu, we only need the Ξ̂u as a quantity containing informa-

tion about Xu to account for the presence of these unobserved confounders [51].

A.2.2 Instrumental variables in generalized additive models (GAM): Marra and Radice

[51] extend the 2SRI approach to also cover generalized additive models, that allow for nonlin-

ear effects of the explanatory variables on the response variable. A generalized additive model

has the following form

y ¼ hðηÞ þ ε; EðεjXe;Xo;XuÞ ¼ 0; ð26Þ

where Xe ¼ ðX
�

e ;X
þ

e Þ, Xo ¼ ðX
�

o;X
þ

o Þ, and Xu ¼ ðX
�

u;X
þ

u Þ with matrices containing discrete

variables denoted by � and continuous ones by +. We summarize the discrete parts of the

explanatory variables Xe, Xo, and Xu into X� and the continuous parts into X+, that is,

X� ¼ ðX�e ;X
�

o;X
�

uÞ for discrete variables and Xþ ¼ ðXþe ;X
þ

o ;X
þ

u Þ for continuous variables. The

linear predictor η is represented by

η ¼ X�β� þ
XL

l¼1

flðx
þ

l Þ; ð27Þ

where β� is a vector of unknown regression coefficients and fl are unknown smooth functions

of L continuous variables xþl . These continuous variables can be modeled, for example, by

using penalized splines [23]. Since we cannot observe X�u and Xþu , we get inconsistent estimates

for all regression coefficients. Provided that suitable instrumental variables can be identified,

we can model the endogenous variables with the following set of auxiliary regressions

xes ¼ hsðZ
�

sα
�
s þ

XJs

j¼1

fjðz
þ

js ÞÞ þ ξus; ð28Þ

where Z�s ¼ ðX
�

o;W
�

s Þ with corresponding coefficients α�s and Zþs ¼ ðX
þ

o ;W
þ

s Þ, where Zþs is

composed of zþjs ; j ¼ 1; . . . ; Js: Instrumental variables meeting the same requirements men-

tioned above are again denoted by Ws. The smooth functions fj for the Js continuous variables
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zþjs include continuous observed variables and continuous instruments. Despite the notation, fl
in (27) and fj (28) generally are different functions.

Marra and Radice [51] propose the following procedure for the 2SRI estimator within the

generalized additive models context:

(a). First stage: Get estimates of α�s and fj for s = 1, . . ., Se from the auxiliary Eq (28) using a

GAM method. Define

ξ̂us ¼ xes � hsðZ
�

s α̂
�
s þ

XJs

j¼1

f̂ jðz
þ

js ÞÞ for s ¼ 1; . . . ; Se: ð29Þ

(b). Second stage: Estimate

EðyjXe;Xo; Ξ̂uÞ ¼ hsðX
�

eβ
�

e þ X�oβ
�

o þ
XJ

j¼1

fjðx
þ

jeoÞ þ
XSe

s¼1

fsðξ̂usÞÞ; ð30Þ

where xþjeo; j ¼ 1; . . . ; J; are column vectors of Xþeo ¼ ðX
þ

e ;X
þ

o Þ:

In this procedure, fsðξ̂usÞ accounts for the influence of unmeasured confounders Xu, and we

get thus consistent estimates for the observed and the endogenous variables. The set of models

in (29) and (30) can be fitted by using one of the GAM packages in R, for example. In simula-

tion studies, Marra and Radice [51] show good performance of the estimates if the instruments

are strong.

A.2.3 Instrumental variables and GAMLSS: The IV estimation procedure for generalized

linear models and generalized additive models can now be transferred to the GAMLSS context.

In these models, the response y follows a parametric distribution with K distributional parame-

ters ϑ = (ϑ1, . . ., ϑK)0 and density

pðyjXo;Xe;XuÞ ¼ pðyjWðXo;Xe;XuÞÞ ð31Þ

For each of the parameters, a regression specification

Wk ¼ hkðZ
WkÞ ð32Þ

is assumed, where ZWk is the regression predictor. For each of the predictors ηWk considered

over all n observations, we assume a semiparametric, additive structure

ηWkðXo;Xe;XuÞ ¼ X�β�;Wk þ
XL

l¼1

f Wkl ðx
þ

l Þ ð33Þ

Using the same notation as above, the only difference between the Eqs (27) and (33) is that the

predictors are now specific for each of the K parameters of the response distribution. Note that

the predictors do not have to include the same variables, though the indexes are dropped here

for notational simplicity.

If Xe and Xu are correlated, then Xe is endogenous and estimating (33) without considering

Xu leads to inconsistent estimates due to omitted variable bias.

We propose a similar procedure for GAMLSS as the one Marra and Radice [51] developed

for GAMs:

(a). First stage: Same as for the GAM procedure.
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(b). Second stage: Instead of a GAM, estimate a GAMLSS with density pðyjXe;Xo; Ξ̂uÞ and

predictors

ηWk ¼ X�eβ
�;Wk
e þ X�oβ

�;Wk
o þ

XJ

j¼1

f Wkj ðxþjeoÞ þ
XSe

s¼1

f Wks ðξ̂usÞ: ð34Þ

Wooldridge [54] has shown that the 2SRI estimator can be used to model pðyjXe;Xo; Ξ̂uÞ in

the second step once models for E(xes|Xo, Ws), s = 1, . . ., Se, are estimated and the ξ̂us are

calculated.

To apply Wooldridge’s insights to our case, assume we can derive control functions Cs(Xo,

xes, Ws), s = 1, . . ., Se, such that

pðXujXo; xes;WsÞ ¼ pðXujCsðXo; xes;WsÞÞ: ð35Þ

Here, Cs(�) acts as a sufficient statistic to take account of the endogeneity. For example, if

xesjXo;Ws � NðηWkðXo;WsÞ;σ
2
esÞ; ð36Þ

then

ξu ¼ xes � Z�sα
�
s þ

XJs

j¼1

fjðz
þ

js Þ ð37Þ

is an appropriate control function in the sense that assumption (35) holds. In this case, includ-

ing the first-stage residuals ξ̂u in the second stage, as described in the IV procedures above, is

justified. The control function approach is also adopted, for instance, in Blundell and Powell

[55] for binary responses and continuous regressors. Instead of using splines in the first stage,

they rely on simpler kernel estimators but advocated the use of more sophisticated methods.

Assumption (35) does not hold in general if the model for the endogenous variable is non-

linear (first stage). However, as Terza et al. [50] and Marra and Radice [51] have shown, 2SRI

still works approximately. Wooldridge [54] recommended including ξ̂u nonlinearily and/or

interactions with Xe, Xo in (34) to improve the approximation. Furthermore, a simulation

study on different 2SRI settings suggested standardizing the variance of the first stage residuals

[56].

The procedure’s implementation is similar to the previous one. In the first stage, we esti-

mate a GAM model with one of the available software packages and the second stage is esti-

mated using gamlss. That is, while in the first stage the expected mean of the endogenous

variables conditional on the other explanatory variables and the instruments are modeled, the

distributional part comes only into play in the second stage. The reason is that our interest is

on the distribution of the response variable and the first stage serves only as an auxiliary model

to account for the endogeneity. In similar contexts, when combining two stage IV estimation

and expectile regression, Sobotka et al. [57] show in simulations that it is sufficient to focus on

the conditional means in the first stage. They also outline a bootstrap procedure that we mod-

ify to our case and is presented in Section B.3.

A.3 Regression discontinuity design. In the regression discontinuity design (RDD), see,

for example, [58] and [59] for introductions, a forcing variable Xi fully (sharp RDD) or partly

(fuzzy RDD) determines treatment assignment. We first consider the sharp RDD case and

adopt a common notation for the RDD, as used by Imbens and Lemieux [58], for example.

Let the treatment variable be Ti which equals 1 if Xi is bigger than some cutoff value c and 0 if
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Xi< c. Then, one is typically interested in the average treatment effect on the mean at the cut-

off value

tSRD ¼ lim
x#c

E½YijXi ¼ x� � lim
x"c

E½YijXi ¼ x�; ð38Þ

where Yi is the dependent variable of interest. The two quantities in (38) may be generally esti-

mated by fitting separate regression models for all or a range of data on both sides of the cutoff

value and calculating their predictions at the cutoff value. More precisely, the conditional

mean functions E[Yi|Xi, Xi> c] and E[Yi|Xi, Xi< c] are linked to a linear model via a continu-

ous link function (e.g., identity or logit link). Note that the full range of generalized linear

models is included in this formulation, so Yi may be binary, for instance. Hereby, the crucial

assumption is the continuity in the counterfactual conditional mean functions E[Yi(0)|Xi = x]

and E[Yi(1)|Xi = x], where Yi = Yi(0) if Ti = 0 and Yi = Yi(1) if Ti = 1. Provided that the assump-

tion holds, the limiting values in (38) can be replaced by the conditional mean functions evalu-

ated at the cutoff and differences in the conditional means can solely be attributed to the

treatment. Equally reasonable, one can assume continuity in the density functions p[Yi(0)|Xi =

x] and p[Yi(1)|Xi = x]. In this case, estimators from a wide range of models on many other

quantities of the distribution of Yi (aside from the mean) can be identified in the sharp RDD

framework. One example is given in Bor et al. [60] who model the hazard rate in a survival

regression. Frandsen et al. [61] derive quantile treatment effects within the RDD. Likewise, the

toolbox of GAMLSS can be applied in the sharp RDD. More specifically, assume Yi follows a

distribution that can be described by a parametric density p(Yi|ϑi1, . . ., ϑiK) where ϑi1, . . ., ϑiK
are K different parameters of the distribution. Then, in a simple linear model including only

the forcing variable, we can specify for each of these parameters an equation of the form

gkðWikÞ ¼ b
Wk
0
þ Xib

Wk
1
; i ¼ 1; . . . ;N; ð39Þ

on both sides of the cutoff, where gk is the link function.

The inclusion of further pre-treatment (baseline) covariates into the regression models of

choice on both side of the cutoffs has been deemed uncritical, as they are not supposed to

change the identification strategy of the treatment effect of interest, (see, e.g., [58, 59]). Rigor-

ous proofs in Calonico et al. [62] confirm that, under quite weak assumptions, it is indeed jus-

tified to adjust for covariates for the frequently used local polynomial estimators in the sharp

and fuzzy RDD.

As the interest lies in estimating the treatment effect at the cutoff value, one critical question

in the RDD is on which data and in which specification the regressions on both sides of the

cutoff should be conducted. Global functions using all data typically need more flexibility and

include data far from the cutoff, whereas local estimators rely on a smaller sample size and

require the choice of an adequate sample. The apparently most popular approaches in the liter-

ature, namely those by Calonico et al. [63] and Imbens and Kalyanamaran [64], use local poly-

nomial regression (including the special case of local linear regression) and thus, a restricted

sample. The inherent bandwidth choice is done with respect to a minimized MSE of the esti-

mator for the average treatment effect on the mean. Based on this minimization criterion, a

cross-validation approach as originally described in Ludwig and Miller [65] and slightly

amended in Imbens and Kalyanamaran [64], is a valuable alternative. In principle, such a

cross-validation based bandwidth selection may be transferable to a local polynomial

GAMLSS. However, if relying on local estimates, we do not propose using one single band-

width but rather check the variability of the estimates for different bandwidths, as, for instance,

done in Imbens and Kalyanamaran [64]. Additional caution is advised with regard to the

diminished sample size resulting from local approaches, as the potentially quite complex
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GAMLSS require a moderate sample size. In general, we consider global approaches account-

ing for possibly nonlinear relationships (e.g., via penalized splines) at least as useful comple-

ments to local estimators. In any case, we strongly advocate the visual inspection of a

scatterplot displaying the forcing and the dependent variable as well as a careful diagnosis for

the estimated models, for example based on quantile residuals in the case of GAMLSS.

The extension to a fuzzy RDD, where the treatment variable Ti is only partially determined

by the forcing variable Xi, requires some new thinking, namely the idea of compliers. Let us

again assume that an individual is supposed to get the treatment if its value of the forcing vari-

able Xi is above a certain cutoff c. Then, a complier is an individual that complies with the ini-

tial treatment assignment, that is, an individual that would not get the treatment if the cutoff

was below Xi but that would get the treatment if the cutoff was higher than Xi. Commonly, the

interest now lies in the average treatment effect (on the mean) at the cutoff value for compliers

tFRD ¼
limx#c E½YjXi ¼ x� � limx"c E½YjXi ¼ x�

lim
x#c

PrðTi ¼ 1jXi ¼ xÞ � lim
x"c

PrðTi ¼ 1jXi ¼ xÞ
; ð40Þ

where the denominator now includes the probabilities of treatment at both sides near the cut-

off. The treatment effect in (40) is identified under the continuity assumption described above

for the sharp RDD and two additional assumptions:

(a). The probability of treatment changes discontinuously at the cutoff value.

(b). Individuals with Xi who would have taken the treatment if Xi< c would also take the

treatment if Xi> c and vice versa.

The first assumption ensures that the denominator in (40) does not equal zero (in the sharp

RDD, the denominator is by design equal to one). The second assumption, often called the

monotonicity assumption, implies that the initial treatment assignment does not have an unin-

tended effect. In other words, individuals do not become ineligible for the treatment or dis-

couraged from taking up the treatment exactly by the initial treatment assignment. We refer to

Imbens and Lemieux [58] for a detailed discussion on the average causal effect at the cutoff

value for compliers.

As in the sharp RDD, assuming the continuity assumption for the density functions p
[Yi(0)|Xi = x] and p[Yi(1)|Xi = x] to hold, the numerator in (40) may also contain differences in

other quantities aside from the conditional means. The probabilities in the denominator in

(40) can be estimated separately, for example via a logistic regression of the treatment variable

on the forcing variable, see also chapter 21 in [49]. All remaining considerations from the

sharp RDD carry over to the fuzzy case, indicating that GAMLSS can be applied both in the

sharp and the fuzzy RDD.

B Bootstrap inference

In the following, we first describe very generic bootstrapping strategies to obtain inferential

statements in the GAMLSS context (Section B.1). Peculiarities of the models discussed in this

paper are described in the Sections B.2–B.4. Practical recommendations for diagnosing boot-

strap estimates are given in B.5.

B.1 General strategy. To fix ideas, assume without loss of generality that the quantity of

interest is denoted by θ and represents the marginal effect of the treatment at the means,

namely the treatment effect for an average individual on the Gini coefficient. We consider the

parametric bootstrap as the natural choice for a parametric model such as a GAMLSS, although

a nonparametric bootstrap is possible as well. The parametric bootstrap works as follows:
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(a). A GAMLSS is fitted to the dataset at hand including n observations. Therefore, n esti-

mated distributions for the dependent variable are obtained.

(b). A bootstrap sample is generated by drawing randomly one number from each of these

estimated distributions.

(c). The GAMLSS from the first step is re-estimated for the current bootstrap sample. For

treated and non-treated individuals, the conditional distributions at mean values for

other covariates are predicted. For these distributions, the respective Gini coefficients are

computed and their difference is calculated. This difference between the coefficients is

the estimated marginal effect of the treatment at means on the Gini coefficient and is

denoted by ŷb for the current bootstrap sample.

(d). The two preceding steps are repeated for many times, say B times.

From the resulting B bootstrap estimates ŷ1; . . . ; ŷB; bootstrap inference can be conducted

in different ways. One option is to perform a t-test based on the bootstrap variance

V̂ boot½ŷ� ¼
1

B � 1

XB

b¼1

ðŷb �
�̂
yÞ

2
ð41Þ

with
�̂
y ¼ 1

B

PB
b¼1
ŷb. To test for significance of the marginal effect of the treatment on the Gini,

the t-statistic

t ¼
ŷ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ boot½ŷ�

q ð42Þ

can be used, where ŷ may be the estimate for the marginal effect of the treatment from the

original sample or the mean of all bootstrap estimates.

Alternatively, a bootstrap percentile confidence interval can be computed. For instance, the

bounds of a possibly asymmetric 95% percentile bootstrap confidence interval are given by the

lower 2.5th and the upper 97.5th percentile of the B bootstrap estimates, ŷ1; . . . ; ŷB:Whereas

the idea and implementation of such a confidence interval are straightforward, generally more

bootstrap samples and thus, more computational power are required than in the case of using

bootstrapped standard errors as outlined above. More elaborate bootstrap confidence intervals

exist. Efron [66], for example, proposed a bias-corrected and accelerated method that we do

not discuss here. We refer to Efron and Tibshirani [67] and Chernick et al. [68] for more

details on parametric and nonparametric bootstrap methods as well as on different techniques

to derive bootstrap confidence intervals and p-values.

B.2 Bootstrap inference for grouped and panel data. For random effects panel data

models where individuals are observed over time and more generally for all random effects

models where individuals are grouped into clusters, one has to sample the random effects

from their assumed distribution in each bootstrap step first. The distributions for the depen-

dent variable for each individual can then be estimated and the bootstrap dependent variables

are drawn from the resulting distributions, corresponding to the first two steps described in

Section B.1.

A different approach to account for grouping structures are cluster-robust standard errors.

Cameron and Miller [69] give a comprehensive overview on cluster-robust inference, also

within the bootstrap machinery. As a method also applicable to nonlinear models, they pro-

pose a nonparametric pairs cluster bootstrap to obtain cluster-robust inference. Assume again
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that the aim is a significance statement on the marginal effect of the treatment at means on the

Gini coefficient and that the sample consists of G clusters or groups. Then, repeat the following

procedure B times:

(a). Resample G clusters (y1, X1), . . ., (yG, XG) with replacement from the G clusters in the

original sample, where (yg, Xg), g = 1, . . ., G, denote the vector of the dependent variable

and the matrix of the explanatory variables, respectively, for cluster g.

(b). Run the GAMLSS for the bootstrap sample obtained in step (a) and predict the respec-

tive conditional distributions at mean values for other covariates for treated and non-

treated individuals. For these distributions, the respective Gini coefficients are computed

and their difference is calculated. This difference between the coefficients is the estimated

marginal effect of the treatment at the means on the Gini coefficient and is denoted by ŷb

for the current bootstrap sample.

In complete analogy to our elaborations for non-clustered data, a bootstrap t-test can be

conducted with the denominator in (42) now based on the cluster-robust variance estimator

V̂ clu;boot½ŷ� ¼
c

B � 1

XB

b¼1

ðŷb �
�̂
yÞ

2
; ð43Þ

where
�̂
y ¼ 1

B

PB
b¼1
ŷb and c ¼ G

G� 1

N� 1

N� K is a finite sample modification with the number of esti-

mated model quantities denoted by K.

Alternatively, bootstrap percentile confidence intervals and tests can be constructed from

the bootstrap estimates, see the explanations in Section B.1.

B.3 Bootstrap inference for instrumental variables. Due to the stepwise approach in IV

methods, the estimation uncertainty arising from the first stage has to be accounted for in the

second stage. In order to draw inference for IV models, we propose the following procedure:

(a). Conduct a parametric bootstrap with Nb replications as described in B.1 for the first

stage model in Eq (28).

(b). With α̂ ½k�s ; k ¼ 1; . . . ;Nb; denoting all of the first stage estimates including the estimates

for the smooth functions f, calculate

x̂ ½k�es ¼ hðZsα̂
½k�
s Þ ð44Þ

and

ξ̂½k�us ¼ xes � x̂ ½k�es : ð45Þ

(c). For the distributional model in the second stage, replace ξ̂us with ξ̂ ½k�us and proceed as in

the general parametric bootstrap procedure described in B.1.

As an alternative to the parametric bootstrap in step 1, a nonparametric bootstrap approach

can be applied by drawing bootstrap samples from xes and Zs to get estimates α̂ ½k�s of the first

stage model.

Let the number of replicates in the second stage be Nd, yielding a total of Nb
� Nd replicates

for the estimates of interest in the second stage. This procedure can be computationally costly

if Nb or Nd are chosen to be large. See [51] for a computationally more efficient procedure

that assumes approximately normally distributed estimators in the first and second stage,

respectively.

Treatment effects beyond the mean

PLOS ONE | https://doi.org/10.1371/journal.pone.0226514 February 14, 2020 25 / 29

https://doi.org/10.1371/journal.pone.0226514


B.4 Bootstrap inference for RDD. Regressions in the sharp RDD require the estimation

of two GAMLSS in each bootstrap sample, namely one on each side of the cutoff value. In the

fuzzy RDD, each bootstrap step should also include the re-estimation of the models for the

probabilities of the treatment assignment which are chosen to estimate the quantities in the

denominator in (40). By doing so, the uncertainty of those estimates is included in the result-

ing standard errors or confidence intervals for the treatment effect of interest.

B.5 Recommendations for diagnosing bootstrap estimates. Irrespective of the impact

evaluation and bootstrap method chosen, but especially in the case of the pairs cluster boot-

strap, a thorough inspection of the estimated bootstrap statistics is advisable. If the resulting

distribution contains large outliers, one should carefully contemplate disusing or at least

amending the currently applied bootstrap procedure. Cameron and Miller [69] give a more

detailed guideline on diagnosing bootstrap estimates. In our example, the distribution of the

bootstrap estimates for the marginal effect of the treatment at the means on the Gini does

not reveal large outliers or severe skewness, as can be seen in the boxplot and the histogram

in S3 Fig.

The question arises of how many bootstrap samples should be generated. Common choices

such as B = 999 may be applied. Alternatively, inspecting graphically the convergence of the

estimated quantities for a growing number of bootstrap samples indicates whether the chosen

amount is sufficient. Exemplarily, S4 Fig shows the percentile interval bounds for the marginal

effects of the treatment on the Gini in the sample of ineligibles for increasing bootstrap repli-

cates. The chosen bootstrap sample size of B = 499 seems to be appropriate as a higher amount

of replicates would probably not change the results substantially.

Supporting information

S1 Fig. Estimated conditional distributions for an average eligible household.
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S2 Fig. Estimated conditional distributions for an average household.
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S3 Fig. Distribution of bootstrap estimates of ME on Gini.
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S4 Fig. Percentile interval bounds for ME on Gini for increasing bootstrap replicates.
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We thank Marion Krämer, Jörg Langbein, and David McKenzie for helpful comments on an

earlier draft and we are grateful for financial support from the Open Access Publication Funds

of the University of Goettingen.

Author Contributions

Conceptualization: Maike Hohberg.

Data curation: Peter Pütz.
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