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Abstract

High-resolution mass spectrometry (HRMS) enables rapid chemical annotation via accurate mass measurements and
matching of experimentally derived spectra with reference spectra. Reference libraries are generated from chemical
standards and are therefore limited in size relative to known chemical space. To address this limitation, in silico
spectra (i.e., MS/MS or MS2 spectra), predicted via Competitive Fragmentation Modeling-ID (CFM-ID) algorithms,
were generated for compounds within the U.S. Environmental Protection Agency’s (EPA) Distributed Structure-
Searchable Toxicity (DSSTox) database (totaling, at the time of analysis, ~ 765,000 substances). Experimental spectra
from EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT) mixtures (n=10) were then used to evaluate the
performance of the in silico spectra. Overall, MS2 spectra were acquired for 377 unique compounds from the
ENTACT mixtures. Approximately 53% of these compounds were correctly identified using a commercial reference
library, whereas up to 50% were correctly identified as the top hit using the in silico library. Together, the reference
and in silico libraries were able to correctly identify 73% of the 377 ENTACT substances. When using the in silico
spectra for candidate filtering, an examination of binary classifiers showed a true positive rate (TPR) of 0.90
associated with false positive rates (FPRs) of 0.10 to 0.85, depending on the sample and method of candidate
filtering. Taken together, these findings show the abilities of in silico spectra to correctly identify true positives in
complex samples (at rates comparable to those observed with reference spectra), and efficiently filter large numbers
of potential false positives from further consideration.
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Introduction

The exposome was originally conceived as the sum of all
exposures encountered by an individual during their lifetime
[1]. Despite more than 10 years of dedicated research, the
exposome is not well-characterized for individuals or popula-
tions, owing (in part) to a lack of suitable monitoring tools.
Traditional exposure monitoring has relied on targeted analyt-
ical methods, developed and validated for specific high-
interest compounds. These methods have generally proven
impractical for exposome studies, where a goal is to charac-
terize previously unknown compounds that may be of even-
tual interest. Time and resource limitations simply prohibit the
development of enough targeted methods to cover the expanse
of the exposome.

Advancements in analytical and computational technolo-
gies have enabled a shift from targeted monitoring methods
to non-targeted analysis (NTA) methods. High-resolution
mass spectrometers (HRMS), utilizing Orbitrap and quadru-
pole time-of-flight (Q-TOF) mass analyzers, now provide the
combination of resolution, sensitivity, and speed needed to
support NTA studies. Whereas targeted methods only monitor
specific compounds during data acquisition, HRMS instru-
ments generate data with sufficient quality that compound
selection/identification can be performed at later stages of
analysis, without reliance on pre-conceived chemical target
lists. The confidence in eventual chemical identifications de-
pends, in part, on the experimental HRMS data available for
analysis. Accurate mass and isotope pattern data may enable
chemical characterization at the molecular formula level,
whereas tandem fragmentation data (i.e., MS/MS or MS2
spectra) may enable characterization at the structure level
[2]. Highly confident identifications are generally those in
which experimental MS2 data are matched to reference MS2
data contained within a well-curated library (with confirma-
tion ultimately requiring use of a chemical standard).
Numerous reference libraries exist (e.g., mzCloud,
MassBank, NIST) and enable confident identifications in
NTA studies; these range from proprietary vendor-generated
libraries to public repositories reflecting the collaborative ef-
forts of many contributors. Recent reviews highlight the
breadth of these MS2 reference libraries, which include spec-
tra for up to tens of thousands of compounds [3—5]. Compared
with chemical listings within ChemSpider and PubChem
(numbering in the millions), however, these libraries cover
only a small fraction of potential chemicals of interest [6, 7].

Chemical coverage within reference libraries is unlikely to
change dramatically in the near future; the requirement for
chemical synthesis followed by MS analysis is rate-limiting
in the growth of said libraries. To address this challenge, re-
searchers have turned to computational approaches, wherein
computer-generated spectra (or fragment ions) are the basis
for comparison against experimental data. Using these in
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silico approaches, library coverage is limited only by the size
of the database from which the predictions are based.

A variety of approaches currently exist for spectra/fragment
prediction and comparison. Approaches like MS-Finder and
Mass Frontier use specific fragmentation rules to predict MS2
spectra for database compounds [8]. An inherent limitation of
this approach is a bias towards compounds for which the
known rules apply. Other approaches like MetFrag and
MAGMA use combinatorial fragmentation. Here, rather than
predicting spectra for a given compound, each bond of that
compound is systematically broken in silico to yield possible
molecular fragments. Experimental fragment ions are then
matched against possible molecular fragment ions to generate
a weighted score for that compound [9—11].

Molecular fingerprinting is another computational
technique, and is being utilized by ChembDistiller and
CSI:FingerID. With this approach, predictive analysis is per-
formed on experimental data [12—14]. Specifically, fragment
ions within an experimental spectrum are used to predict spe-
cific structural features (i.e., substructures) of the unknown
compound, which together yield a “fingerprint” for that com-
pound. The predicted fingerprint for the unknown compound
is compared with discrete fingerprints for database com-
pounds to yield a list of scored matches. Recent reviews
highlight the merits and limitations of these computa-
tional approaches for the analysis of experimental MS2
data [3, 15, 16].

Competitive Fragmentation Modeling-ID (CFM-ID) is an
approach wherein experimental MS2 spectra are searched and
scored against predicted spectra based on similarity [17, 18].
CFM-ID algorithms are trained on experimental data and used
to discover fragmentation rules and eventual predictive
models for MS2 spectra. Relative to previously described
computational approaches, CFM-ID exists in a middle
ground; predicted spectra are more complex than those based
on specific fragmentation rules, while avoiding the explosion
of fragmentation possibilities from combinatorial methods.
CFM-ID further predicts peak intensities, which can be incor-
porated into spectral similarity searches and match scores. The
source code for CFM-ID is publicly available, allowing for
incorporation into in-house databases. Predictions can thus be
pre-processed on the entirety of a chemical database, reducing
computational time during actual searching of experimental
data.

With several computational approaches available, numer-
ous performance comparisons have been conducted in recent
years [11, 13, 17]. Unsurprisingly, results have varied from
assessment to assessment, as the tested data sets have differed
from one study to the next. To address this challenge, the
Critical Assessment of Small Molecule Identification
(CASMI) contest was founded in 2012 with the goal of en-
abling a more accurate comparison between methods. For
each CASMI contest, an MS-based data set of challenge
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compounds unknown to the participants was made publicly
available for examination [19, 20]. Specifically, previously
acquired MS2 spectra (with accompanying metadata, in some
instances) for individual compounds were shared for blinded
evaluation. Results for each completed contest year have been
compiled and are available online (http://casmi-contest.org),
along with the challenge data sets, allowing for additional
testing of new/refined computational approaches.

The data sets and results available through CASMI are an
excellent resource for evaluating specific computational tools
and in silico libraries. Since the CASMI contests were focused
on evaluating spectra of individual compounds, a logical ex-
tension is to consider many spectra from a complex mixture as
part of a performance evaluation. Along these lines, EPA’s
Non-Targeted Analysis Collaborative Trial (ENTACT) was
launched in 2016 to evaluate the current status and landscape
of NTA approaches, from data acquisition through results pro-
cessing, with a focus on xenobiotic compounds in complex
mixtures [21, 22]. Ten ENTACT mixtures were ultimately
prepared, encompassing over 1200 chemical substances from
EPA’s Toxicity Forecaster (ToxCast) library, and sent to par-
ticipating labs for analysis. Much like CASMI, participants
were allowed freedom in the selection of NTA approaches.
While initially blinded, labs were eventually informed of the
contents of each mixture to enable self-evaluation.

Within EPA’s Office of Research and Development (ORD),
initial analysis of the ENTACT mixtures has been performed

Experimental Acquisition

ENTACT Mixtures
(10 total)

and results of self-evaluation reported [23]. The purpose of the
current article is to describe the incorporation of CFM-ID
predicted spectra into the existing EPA workflow, and to eval-
uate overall method performance using the ENTACT mixture
data. CFM-ID was selected for this investigation given the
availability of the source code and its documented perfor-
mance in previous CASMI contests. This article describes
(1) workflows for processing and searching experimental
MS2 spectra against CFM-ID predicted spectra; (2) ap-
proaches for utilizing CFM-ID search scores in NTA
workflows; (3) assessment of CFM-ID performance on
ENTACT mixture compounds; and (4) comparison of refer-
ence library performance vs. CFM-ID library performance.
This analysis serves as the initial proof-of-concept for adding
CFM-ID predictions to an established NTA workflow. Future
analyses that utilize this addition will benefit from increased
library coverage and enhanced confidence in compound
identifications.

Methods

Figure 1 displays the overall NTA workflow utilized in our
analyses of the ENTACT mixtures. This workflow outlines
the main components of data acquisition and processing (left),
as well as database generation and matching (center). It further
lists the confidence levels associated with each type of match

Database/Library Matching

Database

DSSTox Database

(MS-Ready Structures)

LC-MS
(ESI+, ESI-)

MS1 Acquisition

MS2 Exported .mgf Files

MS2 Acquisition .d files

Prior NTA Workflow

Fig. 1 Overall workflow for data acquisition and compound
identification. Sections outlined in blue show aspects of the workflow
previously implemented for the analysis of ENTACT mixtures. The
section outlined in purple shows additions to the workflow that involve

ENTACT Mixtures
(MS-Ready Structures)

ENTACT Mixtures
(MS-Ready Mass Lists)

ENTACT Mixtures
(MS-Ready Formula Lists)

CFM-ID Database

(Predicted MS2 Spectra)

Reference MS2 Library
(11,324 Compounds)

B Aadition to NTA Workflow

Identification Confidence

Level 5

Level 4

Level 3

Level 2a

matching experimental MS2 spectra with CFM-ID predicted spectra.
Identification confidence levels [2] for each match of experimental data
to a corresponding database/library entry are shown alongside the speci-
fied match in the workflow
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(right). Our previously reported results for the ENTACT mix-
tures were based on matching feature data to mass lists, for-
mula lists, and reference MS2 libraries (highlighted in blue)
[23]. The current examination incorporates searching against
CFM-ID predicted spectra (highlighted in purple).

Sample preparation and data acquisition

Sample preparation and analysis procedures have been previ-
ously described [23]. Briefly, a total of 1269 unique sub-
stances were spiked across ten separate synthetic mixtures
(labelled 499 through 508), with each mixture receiving be-
tween 95 and 365 substances. Each mixture was analyzed via
liquid chromatography/mass spectrometry (LC/MS), utilizing
an Agilent 1290 Infinity II LC coupled to an Agilent 6530B
accurate mass quadrupole time-of-flight (Q-TOF) mass spec-
trometer with a Dual AJS ionization source. An Agilent
ZORBAX Eclipse Plus C8 column (2.1 x 50 mm, 1.8 pum)
was used along with mobile phases consisting of
0.4 mM ammonium formate buffer in water and metha-
nol. MS1 and MS2 data were collected in a scan range
0f 100-1000 m/z in both positive and negative ionization modes.
Reference solution consisting of purine, hexakis(1H,1H,3H-
tetrafluoropropoxy)phosphazene, and trifluoroacetic acid
(TFA) was infused into the source during the course of the run
for auto-correction of mass drift. MS2 data were acquired using
Auto MS2 acquisition with the following settings: 3 max pre-
cursors per cycle, minimum threshold 3000 counts, scan
rate 4 spectra/second. MS2 exclusion lists were generat-
ed to exclude ions corresponding to the reference solu-
tion from selection for fragmentation. MS2 inclusion
lists were generated to increase preference for ions cor-
responding to substances previously observed using MS1 da-
ta. Each sample was acquired three times to generate MS2
data, with each acquisition collecting at one of the three colli-
sion energy (CE) levels: 10, 20, or 40 V.

Chemical substance database

EPA’s Distributed Structure-Searchable Toxicity (DSSTox)
Database is a public chemistry resource containing data on
(at the time of analysis) ~ 765,000 chemical substances and
serves as the foundation for EPA’s CompTox Chemicals
Dashboard, hereafter referred to as the Dashboard (https://
comptox.epa.gov/dashboard) [24, 25]. Each chemical
substance within DSSTox is identified by a unique DSSTox
substance identifier (DTXSID) and is also mapped to a “MS-
Ready” structure corresponding to the form that would be
observed by MS analysis. “MS-Ready” structures are identi-
fied by DSSTox chemical identifiers (DTXCID) [26]. The
entirety of the 1269 unique ENTACT mixture substances is
registered within DSSTox, with unique DTXSIDs and associ-
ated MS-Ready DTXCIDs.

@ Springer

Substance selection for MS2 matching

In a previous analysis of the ENTACT mixtures, initial sub-
stance identification was performed without the use of indi-
vidual reference standards. Thus, for any given spiked sub-
stance, determination of presence vs. absence could not be
made with absolute certainty (i.e., Schymanski et al. level 1)
[23]. Features that could be linked to spiked substances with
enough diagnostic evidence (e.g., MS1 and MS2 data corrob-
orating an identification at the “probable structure” level [2])
were classified as “passes,” indicating that there was
strong evidence of their presence. The set of “pass”
substances, spanning all ten mixtures, was the basis
for all analyses in the current study. Specifically, these
“pass” substances were first used to generate lists of
expected monoisotopic masses, considering only [M+
H]* and [M-H] ion species for positive and negative
ESI modes, respectively. These lists of expected masses
were then searched (with a 10-ppm accuracy window)
against MS2 precursor ion lists to identify “pass” sub-
stances for which MS2 data were acquired.

Reference library preparation

Reference MS2 spectra were contained in Agilent Personal
Compound Database and Library (PCDL) format. Six
Agilent PCDLs (i.e., Environmental water screening,
Pesticides, Forensic toxicology, Veterinary drugs, Metlin,
and Extractables and leachables) were combined and used
for the current analysis. Experimental MS2 data [23] were
searched against the composite PCDL using Agilent
MassHunter Qualitative Analysis (version B.08) software
with forward and reverse scoring thresholds of 0 and 20, re-
spectively. All matches were manually reviewed to increase
confidence in compound identifications.

Compound information from each of the six PCDLs was
exported using Agilent PCDL Manager software. Specifically,
compound name, formula, mass, CAS number, and number of
MS?2 spectra were exported for all compounds in each PCDL.
This list of compounds was filtered for those containing at
least one MS2 spectrum, and then batch searched by CAS
number on the Dashboard to retrieve a DTXSID for each
compound in the PCDLs. MS-Ready DTXCIDs were then
retrieved for each compound by querying a DSSTox MS-
Ready mapping file. In some cases, a PCDL compound was
not able to be mapped to a DTXSID/DTXCID, either due to
the compound not being registered in DSSTox or due to an
incorrect CAS number preventing a mapping. PCDL com-
pounds were compared against the ENTACT mixture com-
pounds by MS-Ready DTXCID to estimate the approximate
coverage of ENTACT mixture compounds within the
searched PCDLs.
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In silico library preparation

In silico MS2 spectra were computed for the majority of MS-
Ready structures in DSSTox using the publicly available
CFM-ID 2.0 algorithms [17]. Predictions were based on
electrospray ionization, in positive and negative modes, at
three CE levels (10, 20, and 40 V). Briefly, SMILES strings
for MS-Ready structures in DSSTox were input into the CFM-
ID prediction source code (http://sourceforge.net/projects/
cfim-id) with pre-trained parameters. Resulting predicted spec-
tra were then linked with MS-Ready structure metadata such
as DTXCID, molecular formula, and monoisotopic mass. The
resulting database of CFM-ID predicted spectra is hereafter
referred to as the “CFM-ID database™ [27].

In silico library matching

Fig. S1 (see Electronic Supplementary Material, ESM) de-
scribes the workflow for searching ENTACT MS2 spectra
against the CFM-ID database (source code used for in silico
library matching, scoring, and processing of results is avail-
able at https://github.com/NTA-Code/cfmid). Acquired MS2
spectra were first exported from Agilent .d files in MGF
format, and then processed using a custom script written in
the Python programming language. Processing of MGF files
was performed to improve data formatting and to de-duplicate
MS2 spectra. Regarding de-duplication, any single chemical
feature with an associated precursor mass may generate mul-
tiple MS2 spectra during acquisition. The spectrum with the
highest signal was considered most representative of the
chemical feature for spectral matching purposes. Thus, for a
given precursor mass, the spectrum with the highest sum in-
tensity of ions was retained for analysis. Once MS2 spectra
were processed, the Python script searched the CFM-ID data-
base for all candidate compounds (as identified by MS-Ready
DTXCID) within a 10-ppm mass window of each MS2 spec-
trum precursor mass, considering only [M+H]" and [M-H]
ion species for positive and negative modes, respectively.
The Python script then scored predicted spectra (for CE 10,
20, and 40 V) for all candidates against the experimental MS2
spectrum using a dot-product algorithm [28] with a fragment
mass window of 0.02 Da, with scores ranging from 0 to 1.
Once scores were generated for candidate compounds,
three approaches for using the scores were evaluated
(Fig. 2). In approach 1, only the score of the CFM-ID spec-
trum with the same CE level as the experimental spectrum was
used. In approach 2, scores for CFM-ID spectra at all three CE
levels were summed as a new score. In approach 3, scores for
CFM-ID spectra at all CE levels were summed as a new score,
and these new scores were summed across all experimental
CE levels. Scores from each approach were used to rank
ENTACT mixture compounds against other candidate com-
pounds for each MS2 spectrum. Scores were also used to

generate percentile and quotient values for all candidate com-
pounds, with quotient values defined as the score of the can-
didate compound divided by the maximum score amongst all
candidate compounds for a given experimental MS2
spectrum.

Only MS2 spectra corresponding to “pass” ENTACT mix-
ture compounds were evaluated by CFM-ID library matching.
For each MS2 spectrum, the ENTACT mixture compound
represents a true positive (TP) and the remaining candidate
compounds represent potential false positives (FP). When a
cutoff filter is applied to CFM-ID results based on either a
percentile or quotient value, the ENTACT mixture compound
is considered either a potential TP (if above the cutoff value)
or a false negative (FN; if below the cutoff value). Other
candidate compounds which are above the cutoff value are
considered potential FPs, and those below the cutoff value
are considered true negatives (TN). Examples of cutoff filter-
ing of CFM-ID results are shown in Fig. S2 (see ESM). True
positive rates (TPRs) and false positive rates (FPRs) were
calculated using the following equations:

TP
TPR = ——
TP + FN
FP + TN

To identify an optimal threshold for candidate filtering,
cutoff values were incremented throughout the entire range
by hundredths of the value range (i.e., percentile cutoffs were
setto 0, 1, 2 ... 100; quotient cutoffs were set to 0, 0.01, 0.02
... 1). At each level, TP, FP, TN, and FP counts were tallied
and used to calculate TPR and FPR. Receiver operating char-
acteristic (ROC) curves were then generated, using TPR and
FPR values, for the global ENTACT data set (i.c., all ten
mixtures). Using the global curves, the percentile value and
quotient value that would result in a minimum TPR of 0.90
were determined. These global percentile and quotient cutoffs
were applied to each ENTACT mixture’s results to calculate
the mixture-specific TPR and FPR based on the global cutoff.
The mixture-specific TPRs and FPRs ultimately serve as per-
formance metrics for the proposed methods.

Some NTA workflows base predicted library matching on
monoisotopic mass queries, whereas others restrict the candi-
date compound set to those matching a specific formula (de-
duced from MSI spectra or other orthogonal methods). All
procedures described in the “In silico library matching” sec-
tion were performed separately based either on monoisotopic
mass queries or on mass queries followed by formula filtering
(where the MS-Ready formula of all candidates was forced to
match that of the “pass” substance). It is noteworthy that, for
this investigation of ENTACT mixtures, a single formula was
previously assigned to each “pass” substance with a high level
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Fig. 2 Three approaches for utilizing CFM-ID scores. Each combination
of experimental spectrum vs. CFM-ID predicted spectrum generates a
unique score via the dot-product algorithm, designated by a unique letter
assignment. In approach 1, only one score is generated at the designated

of confidence. Formula assignments for features in true un-
known samples are subject to considerably larger error rates.
Thus, results of our formula-based analysis represent a “best
case scenario” and yield the smallest expected FPRs.
Nevertheless, comparison of results based on mass vs. formu-
la queries will help establish best practices and performance
targets for predicted library matching protocols.

Results
Reference library matching

For a given ENTACT compound, identification via reference
library matching requires that the compound is ionizable (giv-
en the experimental source conditions), selected for MS2 ac-
quisition, and present in the reference library. As described
above, our previous analysis of the ENTACT mixtures yielded
a list of “pass” substances that were identified with sufficient
diagnostic evidence; this list of substances (ESM Table S1)
represents the starting point for the current evaluation. It is
noteworthy that certain substances were included in multiple
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collision energy (CEv where CEcxpcrimcmal= CEin silico)- In approaCh 2,
scores from all three CE;;, gjjico levels are summed. In approach 3, scores
are summed across all three CEj, giico levels, and then across all three
CEexpen'mental levels

mixtures as part of the ENTACT design to help evaluate meth-
od reproducibility [21, 23]. For the purposes of this analysis,
the focus of which was to evaluate performance of in silico
library matching across a broad range of substances, each
substance was ultimately evaluated only once even if it was
acquired in multiple mixtures. Initial results (vide infra), how-
ever, are provided without de-duplication to preserve statistics
specific to each individual ENTACT mixture.

Overall, 44% of spiked ENTACT substances were classi-
fied with a “pass” rating (Table 1). Certain ENTACT mixtures
(e.g., 507 and 508) had a very low proportion of “pass” com-
pounds owing, in part, to a high number of spiked isomers that
could not be resolved even with MS2 data. Out of 845 total
“pass” compounds, 500 (59%) were included in the composite
PCDL (including reference MS2 data), 453 (54%) had ac-
quired MS2 data, and 300 (36%) had both reference and ac-
quired MS2 data (Table 1). Ultimately, 246 of these 300
“pass” compounds were correctly identified with a level 2a
designation [2]. Thus, an 82% success rate was observed
when considering “pass” compounds with both experimental
and reference MS2 data (n =300). A 54% success rate, how-
ever, was observed when considering all “pass” compounds
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Table 1 Numbers of spiked ENTACT substances meeting specific research criteria

Mixture Spiked Passes Passes in PCDL' Passes w/ MS2 Passes in PCDL Passes matched
substances and w/ MS2 by PCDL

499 95 46 28 37 23 18

500 95 19 14 14 11 7

501 95 47 28 34 25 23

502 95 58 42 22 17 15

503 185 103 59 67 43 34

504 185 103 55 68 41 34

505 365 224 128 64 44 40

506 365 195 114 113 74 61

507 95 19 13 14 9 7

508 364 31 19 20 13 7

Total 1939 845 500 453 300 246

% of total NA 44% 26% 23% 15% 13%

% of passes NA NA 59% 54% 36% 29%

! Composite “Personal Compound Database and Library” (PCDL) containing compounds from six individual Agilent PCDLs (i.e., Environmental water
screening, Pesticides, Forensic toxicology, Veterinary drugs, Metlin, and Extractable and leachables)

with experimental MS2 data (n =453), regardless of whether
they were in the composite PCDL.

In silico library matching
Evaluation by collision energy

Regarding the use of in silico spectra for compound identifi-
cation, initial goals of this evaluation were to determine
whether 1:1 matching (i.e., one experimental spectrum vs.
one in silico spectrum) is best performed at a common CE
level, and whether a specific CE level (10, 20, or 40 V data)
would stand out as yielding the best results. To achieve these
goals, MS2 spectra for “pass’” compounds were scored against
their respective CFM-ID spectra at all three CE levels. As
shown in Fig. S3 (see ESM), the highest match scores (where
CEcxperimental = CEin silico) Were generally observed at a CE of
10 V, followed by those observed at 20 V and 40 V. These
results likely reflect (1) the presence and matching of intact
precursor ions at lower CE levels and (2) greater spectral com-
plexity and number of fragments (with some below the exper-
imental mass range) at higher CE levels.

Fig. S4 (see ESM) shows, at each CEgxperimental for €ach
“pass” compound, the quotient of the CFM-ID score when
CEexperimental = CEin silico Vs. the CFM-ID score when
CEcxperimental 7 CEin sitico- For each comparison group (n = 6),
the estimated median value was significantly greater than 1
(Wilcoxon signed-rank test; p < 0.0001 in all cases), reflecting
higher CFM-ID scores when CEcxperimental = CEin sitico- NOt
surprisingly, median quotients were highest when the

CEcxperimental and CEiy silico Were most dissimilar (e.g.,
10V sore/40Veore). Examination of the range of quotients
shows that, for some “pass” compounds, the CFM-ID scores
were over 1000 times higher when CExperimental = CEin sitico
vs. when CEcyperimental 7 CEin silico- In other cases, however,
the CFM-ID scores were up to 100 times lower when
CEcxperimental = CEin sitico- These results highlight the potential
value in utilizing in silico spectra at non-matching CE levels
as part of a composite score. The value of such a proposition is
examined below via scoring approaches 2 and 3.

Evaluation by scoring method

Three different scoring approaches were compared (Fig. 2),
with scores based on (1) 1:1 matching between experimental
and in silico spectra (where CEcxperimental = CEin silico); (2) 1:3
matching with summation across three CFM-ID match scores
for a given experimental spectrum; and (3) summation of
scores across all possible combinations (n = 9) of experimen-
tal vs. in silico spectra. Each approach was evaluated for all
“pass” compounds across all ten ENTACT mixtures.
Distributions of ranks for “pass” compounds amongst all
candidate compounds retrieved from the CFM-ID database
are given in Table 2 (without formula filtering) and Table 3
(with formula filtering). For approaches 1 and 2, the best re-
sults were observed when CEyperimental = 20 V. Results using
approach 3 were very comparable to the best results from
approaches 1 and 2. Overall, when database matching was
performed without formula filtering (Table 2), the spiked com-
pound was ranked as the top candidate up to 38% of the time,
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within the top 5 candidates up to 60% of the time, and within
the top 20 candidates up to 79% of the time. Using approach 3,
the spiked compound ranked in the 81st percentile of all can-
didate compounds, on average, when considering CFM-ID
match scores.

As expected, results were markedly better, regardless of the
scoring approach, when implementing formula filtering as part
of candidate ranking (Table 3). Again, results for approach 3
were very similar to those for approaches 1 and 2 when
CEcxperimentat = 20 V. This time, however, the spiked compound
was ranked as the top candidate up to 50% of the time, within
the top 5 candidates up to 71% of the time, and within the top
20 candidates up to 85% of the time. On average, using ap-
proach 3, the spiked compound was in the 84th percentile of all
candidate CFM-ID match scores. Individual results for each
“pass” compound (without and with formula filtering), includ-
ing the CFM-ID rank of the TP along with number of total
candidate compounds, are shown in Fig. S5 (see ESM).

Regarding approaches 1 and 2, where a single experimental
spectrum is considered at one defined CEcyperimentat, perfor-
mance results generally favor the use of CE =20 V (Tables 2
and 3). A comparative analysis for approach 1, however,
shows benefit of considering all three CE results (Fig. 3a).
Specifically, out of 325 unique compounds identified (without
formula filtering) as being within the top 20 CFM-ID hits (at
one or more CE), 279 were identified at CE=20 V and 46
were not identified at CE =20 V (Fig. 3a). Using approach 3,
298 unique compounds were correctly identified as being
within the top 20 CFM-ID hits. Approach 3 coverage
exceeded that of approach 1 by 31 compounds when CE =
10 V, 19 compounds when CE=20 V, and 83 compounds
when CE=40 V (Fig. 3b). Considering these findings, com-
posite scoring via approach 3 was used for all remaining eval-
uations of in silico MS2 spectra.

Evaluation of filtering criteria

ROC curves in Fig. 4a show relationships between TPRs and
FPRes, at various percentile and quotient cut-points, when can-
didates from the CFM-ID database were matched to experi-
mental spectra using precursor mass or predicted formula. In
general, results based on quotient cutoffs (in pink) are superior
to those based on percentile cutoffs (in green). That is, a lower
FPR is associated with a given TPR when using a quotient
cutoff at a pre-defined test increment. This result is a function
of the right-skewed distribution of quotient values vs. the uni-
form distribution of percentile values (ESM Fig. S6). As ex-
pected, results based on formula matching (solid) are superior
to those based on precursor mass matching (dotted). This re-
sult reflects the smaller number of candidate compounds when
implementing a formula filter.

As shown in Fig. 4a, a global TPR of 0.90 (horizontal gray
dashed line) yielded percentile-based FPRs (green vertical
dotted lines) of 0.67 (by mass) and 0.36 (by formula), and
quotient-based FPRs (pink vertical dotted lines) of 0.57 (by
mass) and 0.32 (by formula). This global TPR of 0.90 is as-
sociated with percentile cutoff values of 32 (by mass) and 38
(by formula), and quotient cutoff values of 0.13 (by mass) and
0.18 (by formula). Figure 4b shows distributions of TPR and
FPR values for individual ENTACT mixtures based on these
four cutoff values; these distributions highlight expected
ranges of TPRs and FPRs when using the CFM-ID database
to investigate unknowns in individual samples. Overall, indi-
vidual mixture TPRs ranged from 0.72 to 1.0, and FPRs
ranged from 0.10 to 0.85. Interestingly, more variability in
FPRs was observed in analyses utilizing quotient cutoffs.
Thus, FPRs are generally expected to be lower, on average,
using quotient cutoffs, but more consistent using percentile
cutoffs.

Table 2 CFM-ID results for
ENTACT mixture compounds

across three scoring approaches
(Fig. 2). Candidate compounds
from the CFM-ID database were
limited to those having an MS-
Ready monoisotopic mass
matching (within 10 ppm) that of
the known (spiked) substance

No. of compounds scored
Number of true positives
Top hit
Within top 5
Within top 20
Percentage of true positives
Top hit
Within top 5
Within top 20

Average percentile for true positives

Average quotient for true positives

Approach 1 Approach 2 Approach 3
CEcxperimental 10 20 40 10 20 40 e
CEin silico 10 20 40 D) D) b)) b))

363 368 360 363 368 360 377

102 129 93 100 139 100 129
187 219 162 188 221 162 224
267 279 215 275 283 213 298

28% 35% 26% 28% 38% 28% 34%
52% 60% 45% 52% 60% 45% 59%
74% 76% 60% 76% 77% 59% 79%
77th 81st 72nd 78th 82nd 73rd 81st
0.67 0.62 0.45 0.64 0.65 0.47 0.69

#Sum of three CEs
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Table 3 CFM-ID results for

ENTACT mixture compounds Approach 1 Approach 2 Approach 3
across three scoring approaches

(Fig. 2). Candidate compounds CEexperimental 10 20 40 10 20 40 ¥?

from the CFM-ID database were CEin silico 10 20 40 DY 3 D) D)

limited to those having an MS-
Ready formula matching that of
the known (spiked) substance

No. of compounds scored
Number of true positives
Top hit
Within top 5
Within top 20
Percentage of true positives
Top hit
Within top 5
Within top 20

Average percentile for true positives

Average quotient for true positives

363 368 360 363 368 360 377

159 178 123 171 180 128 188
239 250 194 243 252 194 268
284 291 232 295 292 232 321

44% 48% 34% 47% 49% 36% 50%
66% 68% 54% 67% 68% 54% 1%
78% 79% 64% 81% 79% 64% 85%
82nd 83rd 76th 83rd 84th 77th 84th
0.77 0.73 0.57 0.77 0.75 0.59 0.79

#Sum of three CEs

Comparison of performance across reference
and in silico libraries

Figure 5 shows a comparison of de-duplicated “pass” com-
pounds (n =377) that were correctly identified by PCDL ref-
erence library matching (n=199) vs. CFM-ID database
matching (with formula filtering, n = 188). When considering
only the top hit from library matching, 88 compounds (23%)
were identified only using the composite PCDL, 111 com-
pounds (29%) were identified using both the composite
PCDL and the CFM-ID database, and 77 compounds (20%)
were identified using only the CFM-ID database. One hun-
dred one (27%) compounds were not identified as the top hit
using either the composite PCDL or the CFM-ID database.
Ultimately, 53% of “pass” substances were correctly identified
by the composite PCDL, and 50% were correctly identified as
the top hit using the CFM-ID database. Percentile and
quotient-based cutoffs can be used to increase the potential
TPR (up to 100%), but at the expense of increasing FPR, as
described above. The implementation of cutoff values is at the
discretion of the investigator, who must carefully consider the

overall objectives of the research study when deciding on a
selection strategy.

Discussion

Targeted methods have long been the gold standard for chem-
ical analysis. As such, they have been implemented in a wide
number of scientific fields where chemical detection and/or
quantitation is critical. The focused nature of targeted analyt-
ical methods has proven limiting in discovery research fields,
where chemicals of eventual interest may not yet be known.
NTA methods seek to address this shortcoming by enabling
discovery and identification of unknown chemicals and
informing follow-up targeted investigations.

Confidence in chemical identifications is a function of the
experimental information available [2]. As the amount of in-
formation supporting an identification increases, the ambigu-
ity surrounding that identification decreases, resulting in more
confident annotations. Targeted methods produce data at the
highest confidence level, as they utilize chemical standards for

CEIOAppmach 1 . CEZOAppmach 1

CEI10

CE40approach 1

'Approach 1

CE40

B CE20, Approsch 3

'Approach 1

Fig. 3 Number of “pass” compounds within the top 20 CFM-ID hits using approach 1 at CE=10V vs. 20 V vs. 40 V (a). Number of “pass” compounds
within the top 20 CFM-ID hits using approach 3 vs. approach 1 at CE =10, 20, or 40 V (b)
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Fig. 4 ROC curves (a) for ENTACT mixture data (all “pass” compounds
from all ten mixtures) when using percentile and quotient cutoff values,
and when filtering the CFM-ID database matches by mass or molecular
formula. A global TPR of 0.90 (horizontal gray dashed line) results in
percentile-based FPR values (green vertical dotted lines) of 0.67 (by

which reference MS1, MS2, and chromatographic data can be
acquired. NTA methods can benefit from these reference data
to the extent that they have been previously acquired and
stored in a usable format. Six Agilent PCDLs were used in
this analysis as the source of reference MS2 data for matching;
the composite of these PCDLs included 11,324 unique com-
pounds with reference MS2 spectra. The ten ENTACT mix-
tures contained a total of 1269 unique substances, of which
610 (48%) were contained within the composite PCDL. The
other 52% of compounds represent a “blind spot” in the ref-
erence libraries searched. Clearly, in silico predicted spectra
are needed to enable MS2 matching for compounds not cap-
tured in empirical libraries. At the time of analysis, CFM-ID
predicted spectra were available for ~765,000 unique
DSSTox compounds, representing a > 60-fold increase in
search space over the composite PCDL. Given the obvious

PCDL CFM-ID

111

88 77

101

"Pass" Compounds

Fig. 5 Comparison of “pass” compounds (n =377) correctly identified
by reference library matching (using a composite Agilent PCDL) vs.
CFM-ID database matching (when filtering by molecular formula)

@ Springer

mass) and 0.36 (by formula), and quotient-based FPR values (pink verti-
cal dotted lines) of 0.57 (by mass) and 0.32 (by formula). Distributions
(b) of true positive rates (TPRs) and false positive rates (FPRs) across
individual ENTACT mixtures (n = 10) when selecting cutoff values based
on a global TPR of 0.90 (from a)

advantage of size, careful evaluation of performance is re-
quired to ensure proper use and maximum benefit of these
predicted spectra.

Experimental MS2 data for ENTACT mixture compounds
were collected and CFM-ID spectra predicted at three CE
levels (10, 20, and 40 V). The specificity of CE level when
matching experimental and predicted spectra was evaluated
across all ten ENTACT mixtures. The highest CFM-ID scores
were observed when CEcyperimental = CEin sitico (ESM Fig. S4).
Furthermore, the best performance, in terms of compound
ranking, was generally observed when CE=20 V (Tables 2
and 3). For some compounds, however, it was more advanta-
geous to acquire and match spectra at CE=10 or 40 V
(Fig. 3a). This is most likely due to variability in com-
pound lability, where different compounds have distinct
optimal CE levels needed to generate a spectrum with
fragment ions in high abundance. For an NTA workflow
where the compounds are unknown, the recommended
practice is to acquire experimental MS2 data at all three
CE levels in order to capture suitable spectra on the
widest range of compounds.

It is difficult to anticipate, for a given compound of interest,
whether scoring/ranking results at one CE should be preferred
over another. Thus, aggregated scoring approaches were eval-
uated wherein summed scores were considered across multi-
ple CEs (Fig. 2). It was generally observed that the quality of
matching results increased with the amount of data consid-
ered, in terms of both experimental and predicted spectra.
Specifically, scoring results from approaches 2 and 3 were
shown to surpass those from approach 1 at each individual
CE (Tables 2 and 3, and Fig. 3b). Approach 3 tended to yield
the best overall results and was therefore the basis for perfor-
mance evaluations regarding TPR and FPR. Moving forward,
when using the CFM-ID database as a screening-level tool, we



In silico MS/MS spectra for identifying unknowns: a critical examination using CFM-ID algorithms and ENTACT... 1313

recommend an aggregated approach wherein each experimen-
tal spectrum is compared with all three CE levels of predicted
spectra (i.e., approach 3).

Utilizing CFM-ID results from approach 3 (based on mass
matching (2)), 34% of the 377 ENTACT mixture compounds
were identified as the best matching compound. This result is
comparable to those reported from the 2016 CASMI contest,
in which 12 to 34% of correct candidates were identified as the
best matching compound [20]. In certain cases, sub-optimal
performance of CFM-ID may reflect dissimilarities in struc-
tures between compounds used to train CFM-ID and those
included in ENTACT [27]. A re-training of the CFM-ID
models with an expanded set of compounds has the potential
to improve scoring and ranking results for the ENTACT mix-
ture compounds. Future work will examine the extent to
which re-trained models can better identify ENTACT com-
pounds (and potentially other xenobiotics) amongst other can-
didate chemicals.

Reference libraries are created from empirical spectra and
generally yield matches with high accuracy. That is, the best
match from a reference library search is often the TP. Predicted
libraries are less accurate and, as such, do not always correctly
identify the TP as having the best match score. Utilizing results
from in silico library searching is therefore a balance between
TPR and FPR. Considering only the highest matching com-
pounds will limit the number of FPs, but at a greater risk of
missing a TP. A less-stringent cutoff allows for more potential
FPs, and also a higher likelihood of retaining the TP. The cutoff
threshold depends on the desired goal(s) of the analysis, wheth-
er retaining true compounds or eliminating false compounds is
of most importance. For this analysis, cutoffs based on percen-
tiles and quotients were evaluated, with candidate selection
based on mass matching, with or without additional formula
filtering. Our results show a preference for quotient-based cut-
offs, and for filtering candidate lists based on molecular for-
mula (Fig. 4a). Specifically, the lowest FPR is expected for a
given TPR when using a quotient-based cutoff and formula
filtering. Better performance using quotient values is attributed
to the skewed (i.e., right-tailed) distribution of quotient values
(vs. the uniform distribution of percentile values), where most
candidates have very low CFM-ID match scores, and fewer
have moderate to high scores (ESM Fig. S6). This allows for
more incorrect candidates to be correctly removed from con-
sideration at even a modest cut-point. Interestingly, wider dis-
tributions of FPRs were observed when using quotient-based
cutoffs vs. percentile-based cutoffs (Fig. 4b). This again stems
from the skewed distributions of quotient values and under-
scores the variable nature of FPRs when using quotient cutoffs.
More stable FPRs can be achieved with percentile-based cut-
offs; these FPRs are expected to be higher, however, when
aiming for a high TPR (~0.90).

In silico library matches are inherently less confident than
reference library matches. As such, in silico MS2 libraries are

not meant to replace reference libraries, but to enable supple-
mentary matching procedures [3, 16, 29]. Figure 5 shows that,
using either the reference library (composite PCDL) or the in
silico library (CFM-ID database), about half of the “pass”
compounds could be correctly identified as the top match.
Using both libraries, however, yielded 73% correct identifica-
tions. A hybrid approach is therefore highly desirable for the
most comprehensive and accurate analysis. For example, in a
hypothetical study, MS2 spectra could be matched to both the
reference and in silico libraries. Top matches based on the
reference library would not require additional support from
in silico match scores. Yet, these in silico match scores could
serve as the basis for quotient- or percentile-based cut-points.
These cut-points would then be used to filter unlikely candi-
dates retrieved from the CFM-ID database. The use of addi-
tional supporting information, such as retention time predic-
tions [30, 31] and metadata source counts [20, 32], has been
shown to improve NTA identifications; incorporation of these
data with CFM-ID ranking results could further improve can-
didate filtering, thus increasing the overall accuracy and per-
formance of the workflow. Future investigations will aim to
incorporate these various data streams into a unified
workflow, and to optimize filtering criteria for maximum
TPRs and minimum FPRs.

Since the time of this original analysis, EPA’s DSSTox
database has increased from ~ 765,000 to ~ 875,000 unique
substances; CFM-ID predictions have been generated for the
majority of these substances based on their associated “MS-
Ready” structures. The dynamic nature of in silico libraries is
a highly desirable feature when compared with reference li-
braries, which are relatively static due to the need for pure
standards. This dependence on standards is a significant draw-
back when investigating new and rapidly emerging chemicals
of concern, as the analyses are not able to keep up with the
analytes. In silico libraries can be generated at a much more
rapid pace, on both known and predicted structures (e.g., those
of expected metabolites and transformation products) within a
given database. EPA’s DSSTox database is freely available to
the public via the Dashboard (https://comptox.epa.gov/
dashboard) [24]. Future Dashboard development will
provide additional functionality to support HRMS-based
NTA workflows (i.e., retention time predictions, media occur-
rence data, experimental substructure filtering). Updates to the
CFM-ID processing and searching workflow are also being
explored, including aggregation of multiple experimental
spectra into a single spectrum (rather than selecting only the
spectrum of highest sum ion intensity), and implementation of
intensity threshold filters (for experimental and predicted
spectra) prior to CFM-ID matching/scoring. A prototype
web-based tool for searching an experimental spectrum
against the CFM-ID database has been developed and is un-
dergoing testing; users will see both the candidate results
returned for the spectrum as well as visualizations of the
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predicted vs. experimental spectrum (ESM Fig. S7). CFM-ID
batch searching is also being incorporated into existing NTA
workflows, with plans to publicly release a stand-alone web
service for processing of NTA data. Finally, implementation
of CFM-ID 3.0 algorithms (not available at the start of the
current project) will likely result in enhanced performance
based on an improved in silico library [33].

Conclusions

Confident identification of unknowns in NTA studies often
requires the use of reference library spectra. The relatively
modest size of existing reference libraries limits the number
of possible identifications for any given study. Use of in silico
fragmentation libraries can expand coverage into areas not
reached by reference libraries alone. Analyses of the
ENTACT mixture data show promising results for the perfor-
mance of in silico spectra towards aiding chemical identifica-
tion strategies. The expansion of NTA workflows to incorpo-
rate in silico spectra for > 800K DSSTox compounds will
enable more rapid and certain identifications of xenobiotics
and other emerging compounds.
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