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We study the manifestation of the Nernst effect in the Corbino
disk subjected to the normal external magnetic field and to the
radial temperature gradient. The Corbino geometry offers a pre-
cious opportunity for the direct measurement of the magnetization
currents that are masked by kinetic contributions to the Nernst
current in the conventional geometry. The magnetization currents,
also referred to as the edge currents, are independent on the con-
ductivity of the sample which is why they can be conveniently
described within the thermodynamic approach. They can be related
to the Landau thermodynamic potential for an infinite system. We
demonstrate that the observable manifestation of this, purely ther-
modynamic, Nernst effect consists in the strong oscillations of the
magnetic field measured in the center of the disk as a function
of the external field. The oscillations depend on the temperature
difference at the edges of the disk. Dirac fermions and 2D elec-
trons with a parabolic spectrum are characterized by oscillations of
different phase and frequency. We predict qualitatively different
power dependencies of the magnitude of the Nernst signal on the
chemical potential for normal and Dirac carriers.
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A Corbino disk represents one of the most important experi-
mental designs for studies of transport effects in solids (1).

In contrast to the Hall bar geometry (2), in a Corbino disk the
Lorentz force induced by a magnetic field normal to the plane
of the structure is not compensated by the induced electrostatic
force. The Lorentz force gives rise to circular edge currents that
can be studied through the magnetization generated by them (3).
These currents are usually referred to as magnetization or dia-
magnetic currents (4). They are governed by the gradient of the
magnetization in a sample and are formally independent of the
electric conductivity henceforth. In classical language they arise
because of the reflection of carriers circulating on their cyclotron
orbits from the inner and the outer edges of the disk (5–7). In
the range of classically strong magnetic fields, the magnetization
currents exhibit oscillations with a periodicity governed by the
resonances between Fermi and Landau energy levels (8). These
oscillations can be studied, e.g., by measuring the magnetic field
induced by edge currents in the center of the disk.

The Hall effect in the Corbino geometry has been studied
in both classical (9) and quantum (10) limits. In contrast, the
most important thermomagnetic effect, namely the Nernst effect,
remains poorly explored in the disk geometry. The Nernst effect
(11) consists in the induction of an electric current by a combined
action of the crossed external magnetic field and the tempera-
ture gradient. It may be considered as a heat counterpart of the
Hall effect. Recently, the giant Nernst or Nernst–Ettingshausen
effects have been observed in graphene (12, 13), in pseudogap
phase of quasi–two-dimensional high-temperature superconduc-
tors (14–17), in conventional superconducting films being in the
fluctuation regime (18, 19).

Generally speaking, the Nernst signal consists of two con-
tributions: the kinetic one and the thermodynamic one. The
former is governed by the conductivity of the sample and the
derivative of chemical potential of the carriers over temperature.

The latter is related to the stationary magnetization currents
induced by the temperature gradient: I th

N = c
(
∂mz
∂T

)
∆T (where

mz (T ) is the magnetization per square of the disk). This relation
was initially obtained by Obraztsov for the Hall bar geome-
try more than 50 y ago (4). It is worthwhile to mention that
this problem has been readdressed in almost every decade (20–
25) due to its importance for the quantum Hall effect, the
Nernst–Ettinghausen effect in fluctuating superconductors, and
the anomalous thermospin effect in the low-buckled Dirac mate-
rials, etc. The existence of magnetization currents is crucial for
the validity of such fundamental properties of thermomagnetic
coefficients as the Onsager relations as well as the third law of
thermodynamics (4, 25, 26). Yet, their existence and importance
for the Nernst effect often have been neglected (for instance ref.
27 and discussion in ref. 28) or even denied (29–31).

The Corbino geometry offers a unique opportunity for the
observation of the purely thermodynamic contribution to the
Nernst effect generated exclusively by magnetization currents.
Indeed, in the regime of classically strong magnetic fields, if the
chemical potential of the electron gas in the disk lies between the
Landau quantization levels, the electric current does not propa-
gate between the inner and outer edges of the disk, and one can
safely neglect the kinetic part of the Nernst response. In the same
regime, in the presence of the magnetic field and temperature
gradient, the contribution of the edge currents remains signifi-
cant, so that the total circular current in the sample is dominated
by magnetization currents.

Below we calculate the magnetization currents of carriers
characterized by parabolic or Dirac energy dispersion relations
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(32) in a Corbino disk subjected to a radial temperature gra-
dient and a strong magnetic field B applied normally to the
plane. Specifically, we analyze the magnetic field Bind induced
by these currents in the center of the disk that can be experimen-
tally measured, e.g., by a SQUID magnetometer (33, 34). For
the recent experimental work on the measurement of the Hall
conductivity in Corbino geometry by a sensible magnetometer
we refer the reader to ref. 35. We show that this field experi-
ences pronounced unharmonic oscillations as a function of the
external field B . These oscillations are dominated by an interplay
of two competing factors. The background contribution to the
induced magnetic field that exists at zero temperature gradient
is proportional to the second (for normal carriers) or third (for
Dirac fermions) power of the chemical potential. At low temper-
atures, the chemical potential exhibits a characteristic saw-tooth
oscillatory dependence on the magnetic field that is well known
(36, 37). The second contribution to the magnetization, propor-
tional to the difference of temperatures at the inner and the
outer edges of the disk, is governed by the differential entropy
per particle dependence on the external magnetic field (38). It
can be calculated knowing the density of electronic states in
the system for given temperature and magnetic field (39, 40).
The difference of the values of the induced magnetic field Bind

measured for the opposite signs of the temperature variation
between inner and outer edges of the disk is no more sensitive
to the background effect and allows for extracting the contribu-
tion induced by the temperature gradient, i.e., the Nernst effect.
The shape and the period of Nernst current oscillations in the
Corbino geometry carry precious information on the type of
carriers and on the trajectories of topologically protected edge
currents. The universal link between the Nernst current and the
induced magnetization established in this work offers a power-
ful tool for the experimental studies of transport phenomena
in 2D crystals.

The Relation between the Edge Current and Thermodynamic
Potential in the Corbino Geometry
The edge currents in Corbino geometry can be related to the
thermodynamic potential of the system based on very generic
thermodynamic consideration. Indeed, let us start from consid-
eration of a homogeneous metallic disk of the radius R, placed in
a thermal reservoir of temperature T and subjected to the mag-
netic field H normal to the plane of the disk. The contribution to
the thermodynamic potential dependent on the induced current
can be written as

ΩH =
1

c

∫
j (r) A (r) dV , [1]

where A is the vector potential. Consequently, the current can be
expressed as

j(r) =
c

hS

(
∂ΩH

∂A

)
, [2]

with S =πR2 being the area of the disk and h its height. Assum-
ing that the radius of the disk is much larger than the magnetic
length, one can choose the vector potential in the Landau gauge,
A = (0,Hx ) that yields for total current flowing through the disk

J =
c

SH

∫ R

0

∂ΩH

∂x
dx =

c

SH
ΩH (T ). [3]

From Fig. 1A one can see that the current is concentrated only
in the vicinity of the edge of the disk.

Now one can represent the Corbino disk (ring) as the large
disk of the radius R2 from which a smaller disk of the radius R1

is cut out. As a result, the total current flowing along the edges

A

B

Fig. 1. (A) The schematic showing the edge currents flowing in a Corbino
disk subjected to an external magnetic field normal to its plane and to a
radial temperature gradient. (B) The schematic showing the edge currents
flowing in a conducting strip subjected to an external magnetic field normal
to its plane.

is given by the difference between the outer and internal edge
currents. Both currents are defined by the same Eq. 3, taken
with different areas of the disk. Accounting for the temperature
difference between the edges, one can finally obtain

Jtot =
c

H

[
Ω(T2)

S2
− Ω(T1)

S1

]
. [4]

The derivation above is based on classical arguments that may
seem contradictory to the quantum nature of Landau diamag-
netism. This is why in the following section we reproduce the
final expression for the current (Eq. 3) in the framework of a
quantum mechanical approach.

The Microscopic Approach to Calculation of Edge Currents
The Eigenvalue Problem. Let us consider now the Corbino disk
with the inner edge radius R1 and the outer edge radius R2

subjected to the magnetic field H applied normally to the disk
plane in a microscopic approach. We are interested here in the
regime of classically strong magnetic fields, where the energy
separation between the neighboring Landau levels exceeds their
broadening, yet remains small with respect to the Fermi energy,
max {T ,Γ}� ~ωc�EF , where T is temperature, Γ is the
Dingle temperature, ωc is the cyclotron frequency, and EF is
the Fermi energy. In what concerns the requirements for the
disk geometry, we assume that R1,R2,R2−R1� lB , where the
magnetic length is lB =

√
~c/|e|H .

We use here the thermodynamic approach to the Nernst effect
developed in refs. 4 and 8. Namely, we describe the system by the
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Gibbs thermodynamic potential

Ω =−2kT
∑
α

ln
[
1 + e

µ−εα
kT

]
, [5]

where εα are the eigenvalues, and the summation is performed
over the complete set of the quantum numbers {α}, and µ (T )
is the chemical potential of the electron gas, coinciding with
the Fermi energy at zero temperature. The spin degeneracy of
the electron gas under study is postulated, which results in the
appearance of the factor 2 in Eq. 5. In the case corresponding
to the 2D gas of free electrons (2DEG) subjected to a magnetic
field, the electronic Hamiltonian has the familiar Landau form
(the specifics of carriers having a Dirac dispersion are discussed
later)

Ĥ =− ~2

2m

d2

dx2
+

mω2
c

2
(x − x0)2, [6]

with ωc = |e|H / (mc). The set of quantum numbers is α=
{x0,n}, where x0 = l2Bky is the x coordinate of the center of the
electron cyclotron orbit, ky is the tangential component of the
electron momentum (schematic in Fig. 1A), and n is the index
of the energy quantization level in the potential induced by the
magnetic field (with the minimum at the point x0).

The rule for summation over eigenvalues in Eq. 5 takes a form

∑
α

. . .=
|e|H
c

Ly

2π~

∫ ∞
−∞

dx0

∞∑
n=0

. . . , [7]

where Ly is the linear dimension of the system along the edge.
The Shrödinger equation with the Hamiltonian 6 and the spe-

cific boundary conditions Wα (0)=Wα (Lx )= 0 [Teller’s model
(5)] determine the spectrum εα and the set of eigenfunctions:

ĤWα(x ) = εαWα (x ). [8]

The latter turn out to be the Weber functions Wα (x )(41), while
the electron eigenenergies in the vicinity of the edge x = 0 can be
approximated by

εα = ~ωc

{
(n + 1

2
) + 2n

√
πn!

( x0
lB

)2n+1 exp
[
− x2

0

l2B

]
, x0� lB

2(n + 3
4
)− 2 (2n+1)Γ(n+1/2)

πn!
( x0
lB

), x0 . lB
, [9]

(we note that similar expressions were obtained in ref. 6, while
some errors in the coefficients and the erroneous factor of “2”
in the exponential function are present in that work). The upper
line in [9] corresponds to the cyclotron orbits centered far from
the edges (x0� lB ). The energy spectrum for these states coin-
cides with the Landau one with an exponential accuracy. The
lower line in [9] describes the energy spectrum for the states
whose orbits are centered close to the border (x0 . lB ). The dou-
bling of the cyclotron frequency that appears in the first term is
due to the supplementary quantum confinement of carriers in a
half-parabolic potential that appears due to their reflection from
the boundary.

The Edge Currents Calculated from the First Principles. We consider
a macroscopic Corbino disk and assume that the curvature of the
edges can be safely neglected on the length scale of the cyclotron
orbits (Fig. 1B). In this case, one can calculate the edge currents
starting from the exact quantum mechanical expression for the
charge flow in a pure quantum state α (6, 42):

jyα(x , x0) =−|e|ωc

Ly
(x − x0)W 2

α (x ). [10]

The full current Jtot is obtained by summing jyα over all
eigenstates {α} of the problem, accounting for the occupation
numbers f (εα) = [exp ((εα−µ)/kT )+ 1]−1 and integrating over
the width of the disk:

Jtot =

∫ Lx

0

∑
α

jyα (x , x0)f (εα)dx

=−m |e|ω
2
c

π~

∞∑
n=0

∞∫
−∞

dx0f [εn (x0),T ]

Lx∫
0

dx (x − x0)W 2
α (x ).

[11]

One can relate the integral over x in Eq. 11 to the derivative of
the eigenenergy over x0, employing the Feynman theorem (42),∫ Lx

0

dx (x − x0)W 2
α(x − x0) =

1

mω2
c

∂εα
∂x0

, [12]

that results in

Jtot =−|e|
π~

∞∑
n=0

∞∫
−∞

d

dx0
ln

[
1 + exp

(
µ(T )− εn (x0)

kT

)]
dx0. [13]

We underline that far from the edges of the disk the elec-
tron energy levels (9) coincide with the Landau levels with an
exponential accuracy; i.e., in this domain x̃0 . x .Lx − x̃0 the
derivative ∂εα/∂x0 = 0. The value x̃0 can be estimated by
imposing the phenomenological requirement (6):(

∂εα
∂x0

)
x0=x̃0

= 0.

One can see from Eq. 9 that x̃0∼ lB
√

2n + 1, which is nothing
but the radius of the cyclotron orbit at the nth Landau level.
Having this in mind, the integration in [13] can be restricted to
the vicinity of the edges of the sample: ]−∞, x̃0], [Lx − x̃0,∞ [.
The contribution to the current from the bulk region tends to
zero (Fig. 1).

The Corbino Disk with Differently Heated Edges. To study the
Nernst effect we assume that the inner (outer) edge of the
disk is kept at equilibrium with the thermal bath of the tem-
perature T1 (T2). We assume that the temperature gradient is
small enough, so that on the scale of the order of x̃0 it can be
neglected. In this case the full circular current is determined by
the difference of two edge currents,

Jtot = J (T1)− J (T2), [14]

where

J (T ) =−|e|kT
π~

∞∑
n=0

ln

[
1 + exp

(
µ(T )− εn (x̃0 (n))

kT

)]
. [15]

Since the sum in [15] is determined by its upper limit, one can
use the expression for εn (x̃0 (n)) from the upper line of Eq. 9.
Neglecting the exponentially small second term, we reproduce
the result discussed in [7]:

J(T )≈−|e|kT
π~

∞∑
n=0

ln

[
1 + exp

(
µ(T )− ~ωc (n + 1/2)

kT

)]
. [16]

Eqs. 14–16 describe the total current induced by the exter-
nal magnetic field in the Corbino geometry. The chemical
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potential µ (B ,T , ρ) depends on the magnetic field, tempera-
ture, and the carrier concentration ρ. Comparing Eq. 16 with
the thermodynamic potential calculated for the Landau energy
spectrum (Eqs. 5–7)

ΩL(T ) =−2kT
|e|H
c

S

2π~

×
∞∑

n=0

ln

[
1 + exp

(
µ(T )− ~ωc (n + 1/2)

kT

)]
,

[17]

one finds the universal relation which was first derived by
Obraztsov in ref. 4:

J (T ,H ,µ) =
c

HS
ΩL (T ,H ,µ). [18]

Let us stress that the sign in Eq. 18 is a matter of convention:
In the chosen form it corresponds to the direction of the current
flowing along the internal edge of the ring.

The problem of calculation of the Gibbs potential in the pres-
ence of a homogeneous magnetic field was considered long ago
in relation to the de Haas–van Alphen oscillations. The corre-
sponding expression can be easily obtained from [17]. In the
limit of low temperatures kT�µ (T ), the exponential term in
the argument of the logarithmic function strongly exceeds unity.
The expression for the current thus reduces to

J 2DEG(T ,µ) =− |e|
π~2

µ2 (T )

2ωc
. [19]

In the case of graphene characterized by the linear dispersion of
Dirac carriers, the Landau quantization leads to the appearance
of a nonequidistant energy spectrum (En =±

√
2n~|e|Bv2

F/c),
in which case the summation in Eq. 15 results in

J gr(T ,µ) =− c

H

|µ(T )|3

3π~2v2
F

, [20]

where vF is the Fermi velocity.

The Nernst Oscillations in 2DEG and Graphene
Oscillations of the Edge Currents. The local chemical poten-
tial µ(T1,2,H ) at the edge of the disk as a function of the
temperature and magnetic field is defined by the equation

1

S

∂ΩL (T ,H ,µ)

∂µ

∣∣∣∣
H ,T1,2

=−ρ. [21]

Here ρ is the concentration of carriers.
At low temperatures, in a system with a fixed carrier den-

sity the chemical potential can be presented as µ(T ,H ) =EF +
µ̃(T ,H ), where the oscillating part of the chemical potential µ̃ is
given by Eq. 21 (8, 32, 37). This equation that is implicit for µ̃ can
be solved analytically only at T = 0 (43), while at finite tempera-
tures one needs to resort to the numerical analysis. In the case of
weak smearing of the Landau levels µ̃ turns out to be of the order
of ~ωc . However, if Γ approaches ~ωc/(2π), the value of µ̃ expo-
nentially decays (37). In this case the approximate expression for
µ̃ both for a 2DEG of carriers having a parabolic dispersion and
for Dirac fermions in graphene can be written as

µ̃=

− ~ωc

π

∞∑
l=1

ψ(lλ)

l
sin

[
2πl

(
cS(EF )

2πe~B
+

1

2
+β

)]
exp

(
−2πlΓ

~ωc

)
,

[22]
where

ψ(z ) =
z

sinh z
, λ=

2π2kT

~ωc
, [23]

is the temperature factor, S(EF ) is the electron cyclotron orbit
area in the momentum space, and β is the topological part of
the Berry phase. In the case of a 2DEG characterized by a
parabolic dispersion of charge carriers, ε= p2/(2 m), the elec-
tron orbit area is S(EF ) = 2πmEF , and the trivial phase, β= 0.
In its turn, for the massless Dirac fermions, ε=±vFp, the area is
S(EF ) =πE2

F/v
2
F , while the cyclotron frequency depends on the

Fermi energy ωc = v2
F |e|H /(c|EF |). In contrast to the case of a

2DEG with a parabolic dispersion, for Dirac fermions the phase
becomes nontrivial, β= 1/2. All of the above is valid for the
range of classically strong magnetic fields, ~ωc�EF (we assume
that EF > 0).

Substituting Eq. 22 into Eqs. 19 and 20 one can find explicitly
the magnetic-field dependence of the edge currents

J (T ,H ) =− |e|
π~2

E2
F

ωc

[
η+

µ̃

EF

]
, [24]

with η= 1/2 for 2DEG and η= 1/3 for the Dirac electrons in
graphene, respectively.

Applying the above expression for the edge currents flowing in
the Corbino disk with differently heated inner and outer edges
one can find the sum of two edge currents as

Jtot(T1,T2) =
|e|
π~2

EF

ωc
[µ̃ (T2,H )− µ̃ (T1,H )]. [25]

In the case of a relatively small temperature difference ∆T =
T1−T2�T1 one can expand µ̃ and obtain the explicit de-
pendence of the oscillating total current on the magnetic field:

Jtot(T , ∆T ) =
|e|EF

π2~

(
∆T

T

) ∞∑
l=1

ψ′(lλ)

l

× sin

[
2πl

(
cS(EF )

2πe~B
+

1

2
+β

)]
exp

(
−2πlΓ

~ωc

)
.

[26]

The amplitude factor

ψ′(lλ) =
λl [λl coth(λl)− 1]

sinh(λl)
=

{
λl
3

[
1− 7

30
(λl)2

]
, λl� 1

2λl exp(−λl), λl� 1
,

[27]

is presented in Fig. 2A. In contrast to the conventional factor
ψ(lλ), it is a nonmonotonic function of temperature.

Note that the same function ψ′(lλ) appears in the expression
for the oscillating part of the Seebeck coefficient in an electron
gas subjected to a strong magnetic field (44).

The total edge current Jtot (T1,T2, ν) as a function of the
filling factor of a Landau level

ν=
π~cρ
eB

=

{ EF
~ωc

, 2DEG
cE2

F

~eHv2
F

, graphene
[28]

is plotted in Fig. 2B. One can see that the period of oscillations
for graphene is two times larger due to the valley degeneracy.
The phase of oscillations for graphene is shifted with respect to
2DEG. The sharp features correspond to the Fermi level cross-
ing by the Landau levels. Note that the shape of obtained current
oscillations shown in Fig. 2B resembles that of the thermoelectric
power coefficient for the 2DEG calculated in ref. 44.

We recall that all our calculations are performed within
the assumption of the smallness of the magnitude of the
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Fig. 2. (A) The dimensionless amplitude factor 27 plotted as a function of
temperature T measured in the units of ~ωc for three different values of l.
(B) The sum of two edge currents Jtot in µA as a function the Landau filling
factor ν that is introduced for the cases of 2DEG and graphene in main text.
The Fermi energy is assumed to be EF = 500 K and the level broadening Γ =

0.5 K. The cyclotron energy ~ωc = Ef/ν. Note that T1 > T2 for the blue curves
and T1 < T2 for the red ones. The direction of the temperature gradient
strongly affects the shape of the oscillations.

µ̃� ~ωc that implies a noticeable smearing of Landau levels
(Γ/k +T ∼ 1.5 K∼ ~ωc/(2πk)∼ 2 K). It is important to note
that this experimentally relevant limit allows us to demonstrate
the existence of unusual Nernst oscillations which appear due
to the imbalance of magnetization currents in the Corbino
geometry.

The Induced Magnetic Field and Its Oscillations in the Corbino
Geometry. The circular electric currents J (T1,2) along the
edges of the disk lead to the induction of the magnetic field
in the center of the disk Bind(T1,T2) =B1 +B2 with B1,2 =
±2πJ (T1,2)/cR1,2. This field constitutes a diamagnetic response

of the ring generated by the persistent currents that have a purely
thermodynamic nature

Bind(T1,T2) = η
|e|EF

~c

(
EF

~ωc

)(
1

R1
− 1

R2

)
+Bosc. [29]

The first term in Eq. 29 monotonously decreases with the
increase of the external magnetic field as a result of the reduc-
tion of the magnitude of the edge currents. The oscillating part
Bosc of the induced magnetic field for the specific cases of carriers
with parabolic and linear dispersions is given by

Bosc =
|e|EF

2π~c

∞∑
l=1

1

l

[
ψ [lλ(T1)]

R1
− ψ [lλ(T2)]

R2

]
× sin

[
2πl

(
cS(EF )

2πe~B
+

1

2
+β

)]
exp

(
−2πlΓ

~ωc

)
.

To exclude the background part of Bind that is independent of
the temperature gradient one can study the difference of the
induced fields ∆Bind(T1,T2) =Bind(T1,T2)−Bind(T2,T1). The
dependence of ∆Bind(T1,T2) on the filling factor is shown in
Fig. 3. The phase and magnitude of the oscillatory features cor-
responding to the resonances of Landau and Fermi levels are
strongly dependent on the temperature gradient in the studied
sample. The oscillations depend on the temperature difference
at the edges of the disk. Dirac fermions and 2D electrons with a

Fig. 3. The contribution to the induced magnetic field ∆Bind at the center
of the Corbino disk that is induced by a temperature gradient in nT plotted
as a function of the filling factor ν. Upper panel describes the 2DEG charac-
terized by a parabolic dispersion of charge carriers. Lower panel corresponds
to the case of graphene characterized by the linear dispersion of charge car-
riers. The blue curves are calculated with T1 = 1.3 K, T2 = 0.9 K and the red
curves correspond to T1 = 0.7 K, T2 = 0.3 K. The other parameters used in
this calculation are R1 = 100 µm, R2 = 110 µm, EF = 500 K, Γ = 0.5 K.
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parabolic spectrum are characterized by oscillations of different
phase and frequency. We predict qualitatively different power
dependencies of the magnitude of Nernst signal on the chemical
potential for normal and Dirac carriers.

Conclusions
We have demonstrated that the Corbino geometry offers a pre-
cious opportunity for the observation of the specific Nernst effect
having a purely thermodynamic nature. The effect is caused by
the imbalance of magnetization currents flowing along the inner
and outer edges of the Corbino disk maintained at different tem-
peratures. We demonstrate that the experimentally observable
manifestation of this thermodynamic Nernst effect consists in
the appearance of the specific oscillations of the magnetic field
measured in the center of the disk as a function of the exter-
nal field. The measurement should be done in the presence of a
temperature gradient between the inner and outer edges of the
disk. Subtracting the values of the magnetic field measured in
the center of the disk for opposite signs of the temperature gra-
dient, one should be able to extract the specific contribution of
the magnetization currents to the Nernst signal.

We have developed the microscopic model describing such an
oscillatory diamagnetic response of the Corbino disk made of
a normal metal and of graphene in the presence of the radial
temperature gradient. The total current exhibits oscillations cor-
responding to the resonances of Fermi and Landau levels in the

disk. The value and the direction of the radial temperature gra-
dient in the sample strongly affect the magnitude and the shape
of the oscillations in the dependence of the induced magnetic
field on the Landau filling factor. An experimental study of such
diamagnetic oscillations in the center of the Corbino disk would
allow for the high-precision measurement of the Nernst effect
that is expected to be of strongly different magnitude in graphene
and in normal metals. Such a study would also shed light on the
contribution of the diamagnetic currents to the Nernst effect that
has been a subject of debate for many years.

Materials and Methods
All data relevant to this work are contained in the text.
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