Skip to main content
. 2020 Jan 17;12(1):75. doi: 10.3390/pharmaceutics12010075

Table 3.

Regression analysis for particle size (Y1), encapsulation efficiency (EE) (Y2), and loading capacity (LC) (Y3) using the two-way interaction model (linear vs quadratic) based on the effect of the amount of solid lipid (X1), liquid lipid (X2), and surfactant (X3).

Size-Y1 EE-Y2 LC-Y3
Coeff. p-Value Coeff. p-Value Coeff. p-Value
Intercept 284.917 0.000 80.208 0.000 2.058 0.000
X1 30.833 0.031 −1.492 0.318 −0.311 0.009
X12 −6.438 0.239 0.852 0.394 0.003 0.906
X2 16.500 0.097 −2.817 0.131 −0.345 0.007
X22 −2.438 0.595 −0.685 0.477 −0.044 0.164
X3 −30.167 0.032 −3.033 0.116 −0.075 0.122
X32 −1.563 0.727 3.977 0.037 0.105 0.035
X1 X2 −4.250 0.627 −0.900 0.613 0.065 0.236
X1 X3 18.500 0.132 −4.725 0.090 −0.103 0.119
X2 X3 −7.500 0.421 6.950 0.045 0.175 0.046
R2 0.976 0.975 0.994

Interaction terms are represented by more than one factor (i.e., X1X2, X1X3, and X2X3) and quadratic relationships are represented by higher-order terms (i.e., X12, X22, and X32). Statistically significant parameters (p-value < 0.05 with a 95% confidence interval) are highlighted in bold.