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Abstract: The voltage-gated potassium channel Kv1.5, which mediates the cardiac ultra-rapid
delayed-rectifier (IKur) current in human cells, has a crucial role in atrial fibrillation. Therefore,
the design of selective Kv1.5 modulators is essential for the treatment of pathophysiological conditions
involving Kv1.5 activity. This review summarizes the progress of molecular structures and the
functionality of different types of Kv1.5 modulators, with a focus on clinical cardiovascular drugs and
a number of active natural products, through a summarization of 96 compounds currently widely used.
Furthermore, we also discuss the contributions of Kv1.5 and the regulation of the structure-activity
relationship (SAR) of synthetic Kv1.5 inhibitors in human pathophysiology. SAR analysis is regarded
as a useful strategy in structural elucidation, as it relates to the characteristics that improve compounds
targeting Kv1.5. Herein, we present previous studies regarding the structural, pharmacological, and
SAR information of the Kv1.5 modulator, through which we can assist in identifying and designing
potent and specific Kv1.5 inhibitors in the treatment of diseases involving Kv1.5 activity.
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1. Introduction

The voltage-gated potassium channel Kv1.5, which mediates the cardiac ultra-rapid delayed-rectifier
(IKur) current in cells [1], is an attractive familial atrial fibrillation (AF) type 7 drug target, because it is
selectively expressed in the atria but not in the ventricles of human cells [2]. AF is the most common
cardiac arrhythmia facing physicians, afflicting 13% of men and 11% of women over 85 years of age.
In atrial tissue from AF donors, the inhibition of IKur extends the repolarization phase of the atrial cardiac
action potential, thereby providing desirable antiarrhythmic effects without the risk of drug-induced
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torsade de pointes. It is noteworthy that loss-of-function Kv1.5 mutations are associated with AF, and
many companies are currently exploring IKur modulators for the treatment of AF [3].

The Kv1.5 protein is encoded by the KCNA5 gene with a length of 602 amino acids in mice
(Unitprot Entry: Q61762) and rat (Unitprot Entry: P19024) sequences and 613 amino acids in the human
sequence (Unitprot Entry: P22460). According to the Basic Local Alignment Search Tool (BLAST)
result, the sequence of Kv1.5 is similar to homology targets Kv1.1, Kv1.2, and Kv1.3 in most regions,
whereas differences mainly occur toward the start and end terminals of the sequence (see Figure 1C,D).
The Kv1.5 channel belongs to the shaker-type voltage-gated K+ channel family, and it comprises four
pore-forming α-subunits, each containing six transmembrane segments, named S1–S6 [4,5]. A pore
region is formed between the pore helix and S6 domain of each subunit, which contains the selectivity
filter through which K+ ions flow across the plasma membrane [6,7]. Currently, the structure of the
Kv1.5 protein is still awaiting identification; however, alanine-scanning mutagenesis and homologous
modeling studies provide us with some amino acids, including Thr479, Ile502, Val505, Ile508, and
Val512, which reside within the deep pore (Thr479-Val481) and lower S6 (Cys500-Val512) regions as
putative binding sites for open-channel blockers [8–13] (Figure 1B). This not only helps us to understand
the drug targets more comprehensively, but also saves time with regard to the development of potential
clinical candidates in the future. From this perspective, we highlight recent advances in the discovery
of small molecules as modulators of Kv1.5, and we discuss the structure-activity relationship (SAR)
studies of currently used synthetic Kv1.5 inhibitors.
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listed. (B) Homologous model of Kv1.5 (Q61672) with 67.2% similarity for the Kv1.5 sequence, obtained
from the SWISS-MODEL database; some of the residues are slightly different from those published in
previous research. (C) Basic Local Alignment Search Tool (BLAST) result of KCNA5_HUMAN (P22460),
obtained from the NCBI BLAST+ database. (D) Sequence alignment ofKCNA1_HUMAN (Q09470),
KCNA3_HUMAN (P22001), KCNA2_HUMAN (P16389), and KCNA5_HUMAN (P22460), acquired
from the ESPript database.

2. Summarization of Models and Mechanisms of Kv1.5 Modulators

To date, various kinds of Kv1.5 modulators have been disclosed, herein, we summarize the
molecular structures and functionality of different types of Kv1.5 modulators with their chemical
structure as follows (Table 1, Figure 2). As shown in Table 1, the existing Kv1.5 modulators can be
divided into four categories: clinical cardiovascular drugs (1–14), other clinical drugs (15–28), drugs in
development (29–37), and natural products (38–56). With the development of pharmacology, more
and more experiment models including rats, HEK cells, CHO cells, Xenopus laevis oocytes, and Ltk-

cells have been used to evaluate the effect of Kv1.5 channel modulators; the parameters containing
mRNA expression, IKur, effective refractory period (ERP), and action potential duration (APD) were
utilized to reveal the improvement degree of AF. In principle, the Kv1.5 modulators can lengthen the
time course of ERP and APD to protect heart from the harm of AF.

Although the structure of Kv1.5 protein has not been characterized yet, current researches provide
information for the development of Kv1.5 inhibitors according to fragment-based drug design and
structure-based drug design. In regard to the design of Kv1.5 inhibitor, for the instance of the
typical candidate vernakalant, in the pharmacophore model, hydrogen bond receptor, hydrogen bond
donor, and hydrophobic groups should be present in the structure (Figure 2A) to play a role in the
transmembrane effect to interact with the Kv1.5 channel. From the potential binding domain of
vernakalant in Kv1.5 [8,14] (Figure 2B), we can see that the positively charged moiety bound in the
cationophilic inner pore (mainly formed by electron-donating residues including alanine, leucine, and
valine) formed a cationic “blocking particle” causing a block of the potassium channel; additionally, the
uncharged dimethoxyphenyl moiety of a vernakalant has a tendency to bind in hydrophobic subunit
interfaces including residues Ile 502 and Val 505. Functionally important residue isoleucine I502 in
the inner helix S6 is exposed into the subunit interface of the pore module rather than into the inner
pore. It is worth noting that mutations of Ile 502 decrease the potency of vernakalant, flecainide, and
AVE0118, which are the ligands with a long hydrophobic tail in the side chain of the structure.

It seems that the introduction of heterocyclic rings including pyrrole (vernakalant, bepridil,
clemizole, and BMS-394136) and piperdine (lobeline, CD-160130, bupivacaine, paroxetine, and
donepezil) is important because these moieties usually influence the acidification conditions of the
molecules, in which a potentially protonated and thus positively charged drug may enter deeply into
the channel pore in a voltage-dependent way [15].
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As a result of the definite curative effects and pharmacokinetic parameters proved by clinical
trials, conventional drugs in new use trends seem to be a feasible way to develop new therapy.
Multiple cardiovascular drugs not designed for targeting Kv1.5 have shown Kv1.5 inhibitory effect
including quinidine (9) and diltiazem (10), however, the selectivity of these compounds on Kv1.5 still
needs to be investigated.

As for other clinical drugs, CNS agents include: donepezil (15), which is generally used as an
anti-Alzheimer’s agent; paroxetine (16), fluoxetine (17), and sertraline (18), which are usually used
as antidepressant agents; and bupivacaine (23), propofol (24), midazolam (25), tolbutamide (26), and
benzocaine (27), which are utilized as anesthetic agents. hERGs (human ether-à-go-go-related genes) are
widely associated with CNS diseases [16–18], thus it is not strange that active CNS agents can effectively
modulate Kv1.5 according to the homology of the protein. Especially the neurotransmitter acetylcholine,
which is an important substance that modulates the acetylcholine-activated K+ current [19], however,
only the piperidine type acetylcholine inhibitor donepezil showed significant inhibitory effect on Kv1.5,
the same phenomenon was not present in another inhibitor tacrine [15], suggesting the selectivity of
the binding site of Kv1.5.

Generally, Kv1.5 drugs in development are not going smoothly. The projects listed in Table 1
have been discontinued till now. Effectiveness, toxicity, and druggability should be taken into account
at this stage. Persistence of investigation in this field is necessary because the listed compound
like AZD-7009 (30) can not only alleviate the suffering of patients from intermittent AF but also
plays a role in relieving durative AF which continues to attack for more than 48 h [20]. The major
voltage-gated K+ channels expressed in the vasculature are Kv1.2, Kv1.5, Kv2.1, and Kv7.4/7.5 [21].
Kv1.3, another Shaker-related family voltage-gated K+ channel, is closely related to the hERG channels
regulated by Kv1.1 [22], which are the important targets influencing the prolongation of Q band to
the end of T band (QT) syndrome and torsade pointes attributed to the gain-of-function mutations of
clinical candidates whose details are being requested by drug regulatory authorities. Limitations in
the ability of high-throughput screening methods to monitor the complex behavior of hERG have
restricted the discovery of activators. It is noteworthy that some inhibitors of Kv1.5 channels listed
in Table 1 are not specific voltage-gated K+ channels for Kv1.5, and some of which also block Kv1.3
channels (e.g., 4-aminopiridine (2), nifedipine (6), diltiazem (10), tetraethylammonium (11), propofol
(24) [23], resveratrol (52) [24], and correolide (55)). Application of these drugs may result in side
effects related to the inhibition of Kv1.3 channels like immune suppression, thus more attention
should be paid to the toxicity to hERG-related targets of Kv1.5 developing candidates. Additionally,
in the field of immunization [25], nuclear factor erythroid 2-related factor (Nrf2)-induced oxidative
stress-inducible protein 1/p62 enhances the inhibition of pulmonary arterial Kv1.5 channels under
acute hypoxia, and the 1/p62-Kv1.3-integrin axis provides novel insight into the molecular mechanisms
underlying redox-regulated cell signaling in stress-induced biological responses, which broaden future
potential directions.

A variety of natural products have been proven to modulate Kv1.5, but the exploration of novel
skeleton could be helpful for the current dilemma. Among the isolated compounds, the main types
are terpenoids (38–41), alakaloids (42–47), and flavonoids (48–50). Terpenoids are widely reported
to inhibit potassium channels [26–28], however, the stability and difficulty in preparation because of
the lack of a fluorescence group and the abundance in chiral carbon are worth worrying about in the
development. Alkaloids, as well as polypeptides like kaliotoxin (54) and toxins from marine animals
like tetrodotoxin, have been disclosed to inhibit ion channel activity, but the toxicity of these types
of compounds is also concerning; after all, hERG toxicity has attracted the attention of the FDA and
drugs like bepridil have been withdrawn because of their toxicity [29]. Bioactive flavonoids are also
proven to modulate the Kv1.5 channel; among them is quercetin (50), a minor compound and activator
of Kv1.5, with the tendency of developing flavonoids and phenols as health care products or food
additives.This class of compounds may play a role in the daily prevention against Kv1.5 disease.
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3. Synthetic Kv1.5 Inhibitors and SAR Investigations

In this section we collated information about chemical synthesis, pharmacological properties, and
SAR investigations in the published literature from 2003 to 2019 and summarized them in a timeline.
The previous work was briefly introduced in the description ofthe potential synthetic derivatives and
chemical structure of compounds, and the SAR studies are listed in the corresponding figures in the
perspective of medicinal chemistry. As we can see, multiple scaffolds include 5-methoxypsoralen
(60,68), tetrahydroindolone (62–65), benzopyran sulfonamides (70–72), dihydropyrazolopyrimidine
(73,81), and phenylquinazoline (90–92). Compounds (86–88) have been reported to be effective in
inhibiting Kv1.5, suggesting potential future directions for investigations about Kv1.5 inhibitors.
It is noteworthy that research from Bristol-Myers Squibb has contributed greatly with data about
pharmacology and pharmacokinetics of active compounds in blocking Kv1.5, increasing the possibility
that we can conquer the diseases targeting Kv1.5.
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Table 1. Active Kv1.5 modulators.

No. Name CAS Status Model Mechanism Ref.

Clinical Cardiovascular Drugs

1
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distance in the steady state. 

[37] 

86384-10-3 - Ltk- cells

Inhibiting hKv1.5 current with Kdvalue
of 4.4 µM, showing time-dependent and

dose-dependent manners
simultaneously.

[36]
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O O
OH

N
H

 

Propafenone 

54063-53-5 Approved Ltk- cells 
Inhibiting hKv1.5 current with Kdvalue of 9.2 μM, showing 

time-dependent and dose-dependent manners simultaneously. 
[36] 

8 
 

5-Hydroxy-propafenone 

86384-10-3 - Ltk- cells 
Inhibiting hKv1.5 current with Kdvalue of 4.4 μM, showing 

time-dependent and dose-dependent manners simultaneously. 
[36] 

9 

 

Quinidine 

56-54-2 
Approved, 

investigation
al 

HEK cells 
Producing a voltage-dependent block between +30 and +120 

mV (Kd at +60 mV = 7.2 μM) with an equivalent electrical 
distance in the steady state. 

[37] 56-54-2 Approved, investigational HEK cells

Producing a voltage-dependent block
between +30 and +120 mV (Kd at +60

mV = 7.2 µM) with an equivalent
electrical distance in the steady state.

[37]
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10 

 

Diltiazem 

42399-41-7 
Approved, 

investigation
al 

CHO cells 

Blocking hKv1.5 channels, in a frequency-dependent manner 
exhibiting a biphasic dose-response curve (IC50: 4.8 nM and 
42.3 μM) by binding to the open and inactivated state of the 

channels. 

[38] 

11 
 

Tetraethylammonium 

66-40-0 

Experimenta
l, 

investigation
al 

BT-474 breast 
cancer cell 

Blocking hKv1.5 channels in a delayed rectifier manner. [39] 

12 

 

Clofilium 

68379-03-3 - CHO cells 
Inhibiting hKv1.5 current with concentration-dependent 
acceleration of the apparent channel inactivation in both 

outside-out and inside-out patches.  
[40] 

42399-41-7 Approved, investigational CHO cells

Blocking hKv1.5 channels, in a
frequency-dependent manner exhibiting
a biphasic dose-response curve (IC50: 4.8
nM and 42.3 µM) by binding to the open

and inactivated state of the channels.

[38]
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10 

 

Diltiazem 

42399-41-7 
Approved, 

investigation
al 

CHO cells 

Blocking hKv1.5 channels, in a frequency-dependent manner 
exhibiting a biphasic dose-response curve (IC50: 4.8 nM and 
42.3 μM) by binding to the open and inactivated state of the 

channels. 

[38] 

11 
 

Tetraethylammonium 

66-40-0 

Experimenta
l, 

investigation
al 

BT-474 breast 
cancer cell 

Blocking hKv1.5 channels in a delayed rectifier manner. [39] 

12 

 

Clofilium 

68379-03-3 - CHO cells 
Inhibiting hKv1.5 current with concentration-dependent 
acceleration of the apparent channel inactivation in both 

outside-out and inside-out patches.  
[40] 

66-40-0 Experimental,
investigational BT-474 breast cancer cell Blocking hKv1.5 channels in a delayed

rectifier manner. [39]

12

Biomolecules 2020, 10, 10 9 of 41 

9 
 

No. Name CAS Status Model Mechanism Ref. 

10 

 

Diltiazem 

42399-41-7 
Approved, 

investigation
al 

CHO cells 

Blocking hKv1.5 channels, in a frequency-dependent manner 
exhibiting a biphasic dose-response curve (IC50: 4.8 nM and 
42.3 μM) by binding to the open and inactivated state of the 

channels. 

[38] 

11 
 

Tetraethylammonium 

66-40-0 

Experimenta
l, 

investigation
al 

BT-474 breast 
cancer cell 

Blocking hKv1.5 channels in a delayed rectifier manner. [39] 

12 

 

Clofilium 

68379-03-3 - CHO cells 
Inhibiting hKv1.5 current with concentration-dependent 
acceleration of the apparent channel inactivation in both 

outside-out and inside-out patches.  
[40] 68379-03-3 - CHO cells

Inhibiting hKv1.5 current with
concentration-dependent acceleration of

the apparent channel inactivation in
both outside-out and inside-out patches.

[40]

13
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13 
 

Chromanol 293B 

163163-23-3 - CHO cells 
Blocking hKv1.5 current stereoselectivity, the results showed 

that (-)-[3R, 4S] was more potent than the (-)-enantiomer. 
[41] 

14 

 

Bepridil 

64706-54-3 
Approved, 
withdrawn 

HEK cells 
Inhibiting the hKv1.5 channel current with IC50 value of 6.6 

μM. 
[42] 

Other Clinical Drugs 

15 

 

Donepezil 

120014-06-4 Approved HEK cells 

Resulting in a rapid and reversible block of Kv1.5 currents 
(IC50: 72.5 μM) with a significant delay in the duration of 
activation and deactivation, and the outer mouth region 

proved to be the target site. 

[15] 

163163-23-3 - CHO cells
Blocking hKv1.5 current stereoselectivity,
the results showed that (-)-[3R, 4S] was

more potent than the (-)-enantiomer.
[41]
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13 
 

Chromanol 293B 

163163-23-3 - CHO cells 
Blocking hKv1.5 current stereoselectivity, the results showed 

that (-)-[3R, 4S] was more potent than the (-)-enantiomer. 
[41] 

14 

 

Bepridil 

64706-54-3 
Approved, 
withdrawn 

HEK cells 
Inhibiting the hKv1.5 channel current with IC50 value of 6.6 

μM. 
[42] 

Other Clinical Drugs 

15 

 

Donepezil 

120014-06-4 Approved HEK cells 

Resulting in a rapid and reversible block of Kv1.5 currents 
(IC50: 72.5 μM) with a significant delay in the duration of 
activation and deactivation, and the outer mouth region 

proved to be the target site. 

[15] 

64706-54-3 Approved, withdrawn HEK cells Inhibiting the hKv1.5 channel current
with IC50 value of 6.6 µM. [42]

Other Clinical Drugs

15
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13 
 

Chromanol 293B 

163163-23-3 - CHO cells 
Blocking hKv1.5 current stereoselectivity, the results showed 

that (-)-[3R, 4S] was more potent than the (-)-enantiomer. 
[41] 

14 

 

Bepridil 

64706-54-3 
Approved, 
withdrawn 

HEK cells 
Inhibiting the hKv1.5 channel current with IC50 value of 6.6 

μM. 
[42] 

Other Clinical Drugs 

15 

 

Donepezil 

120014-06-4 Approved HEK cells 

Resulting in a rapid and reversible block of Kv1.5 currents 
(IC50: 72.5 μM) with a significant delay in the duration of 
activation and deactivation, and the outer mouth region 

proved to be the target site. 

[15] 120014-06-4 Approved HEK cells

Resulting in a rapid and reversible block
of Kv1.5 currents (IC50: 72.5 µM) with a

significant delay in the duration of
activation and deactivation, and the
outer mouth region proved to be the

target site.

[15]
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16 

 

Paroxetine 

61869-08-7 
Approved, 

investigation
al 

CHO cells 
Slowing the deactivation time course, resulting in a tail 

crossover phenomenon when the tail currents, recorded in the 
presence and absence of paroxetine, were superimposed. 

[43] 

17 
 

Fluoxetine 

54910-89-3 
Approved, 

vet 
approved 

Human Pulmonary 
Artery Smooth 
Muscle Cells  

Protecting against big endothelin-1 induced anti-apoptosis and 
rescued Kv1.5 channels in human pulmonary arterial smooth 

muscle cells. 
[44] 

18  

Sertraline 

79617-96-2 Approved CHO cells 

Reducing Kv1.5 whole-cell currents in a reversible dose-
dependent manner and accelerating the decay rate of 

inactivation of Kv1.5 currents without modifying the kinetics 
of current activation. 

[45] 

61869-08-7 Approved, investigational CHO cells

Slowing the deactivation time course,
resulting in a tail crossover phenomenon
when the tail currents, recorded in the

presence and absence of paroxetine,
were superimposed.

[43]
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16 

 

Paroxetine 

61869-08-7 
Approved, 

investigation
al 

CHO cells 
Slowing the deactivation time course, resulting in a tail 

crossover phenomenon when the tail currents, recorded in the 
presence and absence of paroxetine, were superimposed. 

[43] 

17 
 

Fluoxetine 

54910-89-3 
Approved, 

vet 
approved 

Human Pulmonary 
Artery Smooth 
Muscle Cells  

Protecting against big endothelin-1 induced anti-apoptosis and 
rescued Kv1.5 channels in human pulmonary arterial smooth 

muscle cells. 
[44] 

18  

Sertraline 

79617-96-2 Approved CHO cells 

Reducing Kv1.5 whole-cell currents in a reversible dose-
dependent manner and accelerating the decay rate of 

inactivation of Kv1.5 currents without modifying the kinetics 
of current activation. 

[45] 

54910-89-3 Approved, vet approved Human Pulmonary Artery
Smooth Muscle Cells

Protecting against big endothelin-1
induced anti-apoptosis and rescued

Kv1.5 channels in human pulmonary
arterial smooth muscle cells.

[44]
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16 

 

Paroxetine 

61869-08-7 
Approved, 

investigation
al 

CHO cells 
Slowing the deactivation time course, resulting in a tail 

crossover phenomenon when the tail currents, recorded in the 
presence and absence of paroxetine, were superimposed. 

[43] 

17 
 

Fluoxetine 

54910-89-3 
Approved, 

vet 
approved 

Human Pulmonary 
Artery Smooth 
Muscle Cells  

Protecting against big endothelin-1 induced anti-apoptosis and 
rescued Kv1.5 channels in human pulmonary arterial smooth 

muscle cells. 
[44] 

18  

Sertraline 

79617-96-2 Approved CHO cells 

Reducing Kv1.5 whole-cell currents in a reversible dose-
dependent manner and accelerating the decay rate of 

inactivation of Kv1.5 currents without modifying the kinetics 
of current activation. 

[45] 79617-96-2 Approved CHO cells

Reducing Kv1.5 whole-cell currents in a
reversible dose-dependent manner and

accelerating the decay rate of
inactivation of Kv1.5 currents without

modifying the kinetics of current
activation.

[45]
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19 

 

Cortisone 

53-06-5 Approved Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current with IC50 

value of 50.2 μM. 
[46] 

20 

 

Hydrocortisone 

50-23-7 
Approved, 

vet 
approved 

Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current with IC50 

value of 33.4 μM. 
[46] 

21 

 

Spironolactone 

52-01-7 Approved Male Wistar rats 
Shorting the APD90(action potential duration) and increasing 

the expression of Kv1.5. 
[47] 

53-06-5 Approved Xenopus oocytes
Suppressing the amplitude of Kv1.5

channel current with IC50 value of 50.2
µM.

[46]
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19 

 

Cortisone 

53-06-5 Approved Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current with IC50 

value of 50.2 μM. 
[46] 

20 

 

Hydrocortisone 

50-23-7 
Approved, 

vet 
approved 

Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current with IC50 

value of 33.4 μM. 
[46] 

21 

 

Spironolactone 

52-01-7 Approved Male Wistar rats 
Shorting the APD90(action potential duration) and increasing 

the expression of Kv1.5. 
[47] 

50-23-7 Approved, vet approved Xenopus oocytes
Suppressing the amplitude of Kv1.5

channel current with IC50 value of 33.4
µM.

[46]
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19 

 

Cortisone 

53-06-5 Approved Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current with IC50 

value of 50.2 μM. 
[46] 

20 

 

Hydrocortisone 

50-23-7 
Approved, 

vet 
approved 

Xenopus oocytes 
Suppressing the amplitude of Kv1.5 channel current with IC50 

value of 33.4 μM. 
[46] 

21 

 

Spironolactone 

52-01-7 Approved Male Wistar rats 
Shorting the APD90(action potential duration) and increasing 

the expression of Kv1.5. 
[47] 52-01-7 Approved Male Wistar rats

Shorting the APD90(action potential
duration) and increasing the expression

of Kv1.5.
[47]
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22 

 

Celecoxib 

169590-42-5 
Approved, 

investigation
al 

Ltk- cells 
Blocking hKv1.5 channels with an IC50 of 26.2 μM for the peak 
current and 5.5 μM for the current at the end of a 250 ms pulse 

to +60 mV.  
[48] 

23 

 

Bupivacaine 

38396-39-3 
Approved, 

investigation
al 

Ltk- cells 
Blocking the opening of hKv1.5 channels stereoselectivity; the 
results showed the Kd value for R(+)-enantiomer (4.1 μM) was 

six-fold more potent than the S(-)-enantiomer (27.3 μM).  

[49,50
] 

24  

Propofol 

2078-54-8 

Approved, 
investigation

al, vet 
approved 

CHO cells 
Inducing a time-dependent decline of the hKv1.5 current (IC50: 

62.9 μM) during depolarizing steps and slowing the time 
course of tail current decay upon repolarization.  

[4] 

169590-42-5 Approved, investigational Ltk- cells

Blocking hKv1.5 channels with an IC50
of 26.2 µM for the peak current and 5.5
µM for the current at the end of a 250 ms

pulse to +60 mV.

[48]
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22 

 

Celecoxib 

169590-42-5 
Approved, 

investigation
al 

Ltk- cells 
Blocking hKv1.5 channels with an IC50 of 26.2 μM for the peak 
current and 5.5 μM for the current at the end of a 250 ms pulse 

to +60 mV.  
[48] 

23 

 

Bupivacaine 

38396-39-3 
Approved, 

investigation
al 

Ltk- cells 
Blocking the opening of hKv1.5 channels stereoselectivity; the 
results showed the Kd value for R(+)-enantiomer (4.1 μM) was 

six-fold more potent than the S(-)-enantiomer (27.3 μM).  

[49,50
] 

24  

Propofol 

2078-54-8 

Approved, 
investigation

al, vet 
approved 

CHO cells 
Inducing a time-dependent decline of the hKv1.5 current (IC50: 

62.9 μM) during depolarizing steps and slowing the time 
course of tail current decay upon repolarization.  

[4] 

38396-39-3 Approved, investigational Ltk- cells

Blocking the opening of hKv1.5 channels
stereoselectivity; the results showed the
Kd value for R(+)-enantiomer (4.1 µM)

was six-fold more potent than the
S(-)-enantiomer (27.3 µM).

[49,
50]
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22 

 

Celecoxib 

169590-42-5 
Approved, 

investigation
al 

Ltk- cells 
Blocking hKv1.5 channels with an IC50 of 26.2 μM for the peak 
current and 5.5 μM for the current at the end of a 250 ms pulse 

to +60 mV.  
[48] 

23 

 

Bupivacaine 

38396-39-3 
Approved, 

investigation
al 

Ltk- cells 
Blocking the opening of hKv1.5 channels stereoselectivity; the 
results showed the Kd value for R(+)-enantiomer (4.1 μM) was 

six-fold more potent than the S(-)-enantiomer (27.3 μM).  

[49,50
] 

24  

Propofol 

2078-54-8 

Approved, 
investigation

al, vet 
approved 

CHO cells 
Inducing a time-dependent decline of the hKv1.5 current (IC50: 

62.9 μM) during depolarizing steps and slowing the time 
course of tail current decay upon repolarization.  

[4] 2078-54-8 Approved, investigational,
vet approved CHO cells

Inducing a time-dependent decline of
the hKv1.5 current (IC50: 62.9 µM)

during depolarizing steps and slowing
the time course of tail current decay

upon repolarization.

[4]

25
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25 
 

Midazolam 

59467-70-8 Approved HEK cells 
Inhibited Kv1.5 current (IC50: 17 μM) without influence on the 

half-maximal activation voltage of Kv1.5 channels. 
[51] 

26  

Tolbutamide 

64-77-7 
Approved, 

investigation
al 

Insulin-secreting 
(INS-1) cells 

Activating Kv1.5 channel and the activation of secretion can be 
counteracted by an excessive stimulation of Kv channels in 

INS-1 cells which shorten the Ca2+ signal and confine the 
insulin secretion. 

[52] 

27  

Benzocaine 

94-09-7 Approved Ltk- cells 
Blocking hKv1.5 channels in a voltage-dependent manner and 

modifying the voltage-dependence of channel activation. 
[53] 

Drugs in Development 

59467-70-8 Approved HEK cells
Inhibited Kv1.5 current (IC50: 17 µM)

without influence on the half-maximal
activation voltage of Kv1.5 channels.

[51]
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25 
 

Midazolam 

59467-70-8 Approved HEK cells 
Inhibited Kv1.5 current (IC50: 17 μM) without influence on the 

half-maximal activation voltage of Kv1.5 channels. 
[51] 

26  

Tolbutamide 

64-77-7 
Approved, 

investigation
al 

Insulin-secreting 
(INS-1) cells 

Activating Kv1.5 channel and the activation of secretion can be 
counteracted by an excessive stimulation of Kv channels in 

INS-1 cells which shorten the Ca2+ signal and confine the 
insulin secretion. 

[52] 

27  

Benzocaine 

94-09-7 Approved Ltk- cells 
Blocking hKv1.5 channels in a voltage-dependent manner and 

modifying the voltage-dependence of channel activation. 
[53] 

Drugs in Development 

64-77-7 Approved, investigational Insulin-secreting (INS-1)
cells

Activating Kv1.5 channel and the
activation of secretion can be
counteracted by an excessive

stimulation of Kv channels in INS-1 cells
which shorten the Ca2+ signal and

confine the insulin secretion.

[52]
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25 
 

Midazolam 

59467-70-8 Approved HEK cells 
Inhibited Kv1.5 current (IC50: 17 μM) without influence on the 

half-maximal activation voltage of Kv1.5 channels. 
[51] 

26  

Tolbutamide 

64-77-7 
Approved, 

investigation
al 

Insulin-secreting 
(INS-1) cells 

Activating Kv1.5 channel and the activation of secretion can be 
counteracted by an excessive stimulation of Kv channels in 

INS-1 cells which shorten the Ca2+ signal and confine the 
insulin secretion. 

[52] 

27  

Benzocaine 

94-09-7 Approved Ltk- cells 
Blocking hKv1.5 channels in a voltage-dependent manner and 

modifying the voltage-dependence of channel activation. 
[53] 

Drugs in Development 

94-09-7 Approved Ltk- cells

Blocking hKv1.5 channels in a
voltage-dependent manner and

modifying the voltage-dependence of
channel activation.

[53]

Drugs in Development
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28 

 

Clemizole hydrochloride 

1163-36-6 

 

Phase 2 
Clinical 

HEK cells 
Decreasing IKs and human Kv1.5 channel current at doses of 3 

and 10 μM at voltages ranging from –14.3 to +34.7 mV. 
[54] 

29 

 

AVE-1231 

767334-89-4 
Phase 1 

discontinued 
CHO cells 

Inhibiting hKv1.5 current with IC50 value of 3.6 μM, blocking 
early atrial K+ channels, and prolonging atrial refractoriness 

with no effects on electrocardiography intervals and 
ventricular repolarization. 

[55] 

30 

AZD-7009 

864368-79-6 
Phase 2 

discontinued 
CHO cells 

Blocking hKv1.5 current with IC50 value of 27 μM with a slight 
decrease at higher frequency. 

[56] 

1163-36-6 Phase 2 Clinical HEK cells

Decreasing IKs and human Kv1.5
channel current at doses of 3 and 10 µM
at voltages ranging from –14.3 to +34.7

mV.

[54]
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28 

 

Clemizole hydrochloride 

1163-36-6 

 

Phase 2 
Clinical 

HEK cells 
Decreasing IKs and human Kv1.5 channel current at doses of 3 

and 10 μM at voltages ranging from –14.3 to +34.7 mV. 
[54] 

29 

 

AVE-1231 

767334-89-4 
Phase 1 

discontinued 
CHO cells 

Inhibiting hKv1.5 current with IC50 value of 3.6 μM, blocking 
early atrial K+ channels, and prolonging atrial refractoriness 

with no effects on electrocardiography intervals and 
ventricular repolarization. 

[55] 

30 

AZD-7009 

864368-79-6 
Phase 2 

discontinued 
CHO cells 

Blocking hKv1.5 current with IC50 value of 27 μM with a slight 
decrease at higher frequency. 

[56] 

767334-89-4 Phase 1 discontinued CHO cells

Inhibiting hKv1.5 current with IC50
value of 3.6 µM, blocking early atrial K+

channels, and prolonging atrial
refractoriness with no effects on

electrocardiography intervals and
ventricular repolarization.

[55]

30
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28 

 

Clemizole hydrochloride 

1163-36-6 

 

Phase 2 
Clinical 

HEK cells 
Decreasing IKs and human Kv1.5 channel current at doses of 3 

and 10 μM at voltages ranging from –14.3 to +34.7 mV. 
[54] 

29 

 

AVE-1231 

767334-89-4 
Phase 1 

discontinued 
CHO cells 

Inhibiting hKv1.5 current with IC50 value of 3.6 μM, blocking 
early atrial K+ channels, and prolonging atrial refractoriness 

with no effects on electrocardiography intervals and 
ventricular repolarization. 

[55] 

30 

AZD-7009 

864368-79-6 
Phase 2 

discontinued 
CHO cells 

Blocking hKv1.5 current with IC50 value of 27 μM with a slight 
decrease at higher frequency. 

[56] 864368-79-6 Phase 2 discontinued CHO cells
Blocking hKv1.5 current with IC50 value
of 27 µM with a slight decrease at higher

frequency.
[56]
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31 

 

BMS-394136 

343246-73-1 
Phase 1 

discontinued 
Mouse fibroblast 

L929 cells 

Showing excellent activity in blocking Kv1.5 (IC50: 0.05 μM) 
and very good selectivity over hERG, sodium, and L-type 

calcium ion channels. 
[57] 

32 

 

BMS-919373 

1272353-82-8 
Phase 1 

discontinued 
Mammalian L-929 

cells 

Blocking hKv1.5 current with IC50 value of 0.05 μM with an 
acceptable in vitroselectivity and liability profile and a good 

pharmacokinetic profile across species. 
[58] 

33 

 

MK-0448 

875562-81-5 
Phase 1 

discontinued 
HK2BN9 cells 

Blocking Kv1.5 current in an expression system and 
concentration-dependently elevated the plateau phase of atrial 

action potentials (APs). 
[59] 

343246-73-1 Phase 1 discontinued Mouse fibroblast L929 cells

Showing excellent activity in blocking
Kv1.5 (IC50: 0.05 µM) and very good
selectivity over hERG, sodium, and

L-type calcium ion channels.

[57]
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31 

 

BMS-394136 

343246-73-1 
Phase 1 

discontinued 
Mouse fibroblast 

L929 cells 

Showing excellent activity in blocking Kv1.5 (IC50: 0.05 μM) 
and very good selectivity over hERG, sodium, and L-type 

calcium ion channels. 
[57] 

32 

 

BMS-919373 

1272353-82-8 
Phase 1 

discontinued 
Mammalian L-929 

cells 

Blocking hKv1.5 current with IC50 value of 0.05 μM with an 
acceptable in vitroselectivity and liability profile and a good 

pharmacokinetic profile across species. 
[58] 

33 

 

MK-0448 

875562-81-5 
Phase 1 

discontinued 
HK2BN9 cells 

Blocking Kv1.5 current in an expression system and 
concentration-dependently elevated the plateau phase of atrial 

action potentials (APs). 
[59] 

1272353-82-8 Phase 1 discontinued Mammalian L-929 cells

Blocking hKv1.5 current with IC50 value
of 0.05 µM with an acceptable

in vitroselectivity and liability profile
and a good pharmacokinetic profile

across species.

[58]
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31 

 

BMS-394136 

343246-73-1 
Phase 1 

discontinued 
Mouse fibroblast 

L929 cells 

Showing excellent activity in blocking Kv1.5 (IC50: 0.05 μM) 
and very good selectivity over hERG, sodium, and L-type 

calcium ion channels. 
[57] 

32 

 

BMS-919373 

1272353-82-8 
Phase 1 

discontinued 
Mammalian L-929 

cells 

Blocking hKv1.5 current with IC50 value of 0.05 μM with an 
acceptable in vitroselectivity and liability profile and a good 

pharmacokinetic profile across species. 
[58] 

33 

 

MK-0448 

875562-81-5 
Phase 1 

discontinued 
HK2BN9 cells 

Blocking Kv1.5 current in an expression system and 
concentration-dependently elevated the plateau phase of atrial 

action potentials (APs). 
[59] 875562-81-5 Phase 1 discontinued HK2BN9 cells

Blocking Kv1.5 current in an expression
system and concentration-dependently

elevated the plateau phase of atrial
action potentials (APs).

[59]

34 XEN-D0103
(Undisclosed structure) 1410180-16-3 Phase 2 discontinued CHO cells

Prolongating action potential duration
(APD) and suppressed APs at high

stimulation rates in sinus rhythm (SR)
and paroxysmal AF (pAF) tissue.

[60]
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34 
XEN-D0103 

(Undisclosed structure) 
1410180-16-3 

Phase 2 
discontinued 

CHO cells 
Prolongating action potential duration (APD) and suppressed 

APs at high stimulation rates in sinus rhythm (SR) and 
paroxysmal AF (pAF) tissue. 

[60] 

35 

 

LY294002 

154447-36-6 
Experimenta

l 
CHO cells 

Acting directly on hKv1.5 currents as an open channel blocker 
with key interacting residues located in the pore region (Thr 

480, Arg 487) and the S6 segment (Ile 502, Ile 508, Leu 510, Val 
516). 

[9] 

36 

SSR149744C 

752253-75-1 - CHO cells 
Inhibiting several potassium currents including IKr, IKs, IK(ACh), 

and IKv1.5 at doses of 0.01–30 μM. 
[61] 

37 

 

CD-160130 

1034194-07-4 - HEK cells 
Inhibiting hKv1.5 current slightly when specially blocked by 

the Kv11.1 channel. 
[62] 

154447-36-6 Experimental CHO cells

Acting directly on hKv1.5 currents as an
open channel blocker with key

interacting residues located in the pore
region (Thr 480, Arg 487) and the S6
segment (Ile 502, Ile 508, Leu 510, Val

516).

[9]
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34 
XEN-D0103 

(Undisclosed structure) 
1410180-16-3 

Phase 2 
discontinued 

CHO cells 
Prolongating action potential duration (APD) and suppressed 

APs at high stimulation rates in sinus rhythm (SR) and 
paroxysmal AF (pAF) tissue. 

[60] 

35 

 

LY294002 

154447-36-6 
Experimenta

l 
CHO cells 

Acting directly on hKv1.5 currents as an open channel blocker 
with key interacting residues located in the pore region (Thr 

480, Arg 487) and the S6 segment (Ile 502, Ile 508, Leu 510, Val 
516). 

[9] 

36 

SSR149744C 

752253-75-1 - CHO cells 
Inhibiting several potassium currents including IKr, IKs, IK(ACh), 

and IKv1.5 at doses of 0.01–30 μM. 
[61] 

37 

 

CD-160130 

1034194-07-4 - HEK cells 
Inhibiting hKv1.5 current slightly when specially blocked by 

the Kv11.1 channel. 
[62] 

752253-75-1 - CHO cells
Inhibiting several potassium currents

including IKr, IKs, IK(ACh), and IKv1.5 at
doses of 0.01–30 µM.

[61]

37
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34 
XEN-D0103 

(Undisclosed structure) 
1410180-16-3 

Phase 2 
discontinued 

CHO cells 
Prolongating action potential duration (APD) and suppressed 

APs at high stimulation rates in sinus rhythm (SR) and 
paroxysmal AF (pAF) tissue. 

[60] 

35 

 

LY294002 

154447-36-6 
Experimenta

l 
CHO cells 

Acting directly on hKv1.5 currents as an open channel blocker 
with key interacting residues located in the pore region (Thr 

480, Arg 487) and the S6 segment (Ile 502, Ile 508, Leu 510, Val 
516). 

[9] 

36 

SSR149744C 

752253-75-1 - CHO cells 
Inhibiting several potassium currents including IKr, IKs, IK(ACh), 

and IKv1.5 at doses of 0.01–30 μM. 
[61] 

37 

 

CD-160130 

1034194-07-4 - HEK cells 
Inhibiting hKv1.5 current slightly when specially blocked by 

the Kv11.1 channel. 
[62] 1034194-07-4 - HEK cells Inhibiting hKv1.5 current slightly when

specially blocked by the Kv11.1 channel. [62]

Natural Products Type
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Natural Products Type  

38 

 

Debromoaplysiatoxin A 

2334247-91-3 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of 6.94 μM. [63] 

39 

 

Debromoaplysiatoxin B 

2334247-94-6 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of 0.30 μM. [63] 

2334247-91-3 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of
6.94 µM. [63]
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Natural Products Type  

38 

 

Debromoaplysiatoxin A 

2334247-91-3 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of 6.94 μM. [63] 

39 

 

Debromoaplysiatoxin B 

2334247-94-6 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of 0.30 μM. [63] 2334247-94-6 Terpenoid CHO cells Blocking Kv1.5 with an IC50 value of
0.30 µM. [63]
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40 

 

Resiniferatoxin 

57444-62-9 Terpenoid C6 glioma cells  
Inhibiting the hKv1.5 current in time and dose-dependent 

manners. 
[64] 

41 

 

Torilin 

13018-10-5 Terpenoid Ltk- cells 

Inhibiting the hKv1.5 current in time- and voltage-dependent 
manners, with an IC50 value of 2.51 μM at +60 mV accelerated 
the inactivation kinetics of the hKv1.5 channel and slowed the 
deactivation kinetics of the hKv1.5 current, resulting in a tail 

crossover phenomenon. 

[65] 

57444-62-9 Terpenoid C6 glioma cells Inhibiting the hKv1.5 current in time and
dose-dependent manners. [64]

41
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40 

 

Resiniferatoxin 

57444-62-9 Terpenoid C6 glioma cells  
Inhibiting the hKv1.5 current in time and dose-dependent 

manners. 
[64] 

41 

 

Torilin 

13018-10-5 Terpenoid Ltk- cells 

Inhibiting the hKv1.5 current in time- and voltage-dependent 
manners, with an IC50 value of 2.51 μM at +60 mV accelerated 
the inactivation kinetics of the hKv1.5 channel and slowed the 
deactivation kinetics of the hKv1.5 current, resulting in a tail 

crossover phenomenon. 

[65] 13018-10-5 Terpenoid Ltk- cells

Inhibiting the hKv1.5 current in time-
and voltage-dependent manners, with

an IC50 value of 2.51 µM at +60 mV
accelerated the inactivation kinetics of

the hKv1.5 channel and slowed the
deactivation kinetics of the hKv1.5
current, resulting in a tail crossover

phenomenon.

[65]
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42 

 

Guanfu base A 

1394-48-5 Alkaloid Guinea pigs 
Blocking I-Kv1.5 slightly with a ratio of 20.6% at a dosage of 

200 μM. 
[66] 

43 
 

Lobeline 

90-69-7 Alkaloid HEK cells 

Accelerating the decay rate of Kv1.5 inactivation, decreased 
the current amplitude at the end of the pulse in a 

concentration-dependent manner with an IC50 value of 15.1 
μM. 

[67] 

44 

 

Ajmaline 

4360-12-7 Alkaloid Xenopus oocytes 
Inhibiting Kv1.5 with an IC50 of 1.70 μM in Xenopus 

expression system, resulting in a mild leftward shift of Kv1.5 
activation curve. 

[68] 

1394-48-5 Alkaloid Guinea pigs Blocking I-Kv1.5 slightly with a ratio of
20.6% at a dosage of 200 µM. [66]

43
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42 

 

Guanfu base A 

1394-48-5 Alkaloid Guinea pigs 
Blocking I-Kv1.5 slightly with a ratio of 20.6% at a dosage of 

200 μM. 
[66] 

43 
 

Lobeline 

90-69-7 Alkaloid HEK cells 

Accelerating the decay rate of Kv1.5 inactivation, decreased 
the current amplitude at the end of the pulse in a 

concentration-dependent manner with an IC50 value of 15.1 
μM. 

[67] 

44 

 

Ajmaline 

4360-12-7 Alkaloid Xenopus oocytes 
Inhibiting Kv1.5 with an IC50 of 1.70 μM in Xenopus 

expression system, resulting in a mild leftward shift of Kv1.5 
activation curve. 

[68] 

90-69-7 Alkaloid HEK cells

Accelerating the decay rate of Kv1.5
inactivation, decreased the current

amplitude at the end of the pulse in a
concentration-dependent manner with

an IC50 value of 15.1 µM.

[67]

44

Biomolecules 2020, 10, 10 20 of 41 

20 
 

No. Name CAS Status Model Mechanism Ref. 

42 

 

Guanfu base A 

1394-48-5 Alkaloid Guinea pigs 
Blocking I-Kv1.5 slightly with a ratio of 20.6% at a dosage of 

200 μM. 
[66] 

43 
 

Lobeline 

90-69-7 Alkaloid HEK cells 

Accelerating the decay rate of Kv1.5 inactivation, decreased 
the current amplitude at the end of the pulse in a 

concentration-dependent manner with an IC50 value of 15.1 
μM. 

[67] 

44 

 

Ajmaline 

4360-12-7 Alkaloid Xenopus oocytes 
Inhibiting Kv1.5 with an IC50 of 1.70 μM in Xenopus 

expression system, resulting in a mild leftward shift of Kv1.5 
activation curve. 

[68] 4360-12-7 Alkaloid Xenopus oocytes

Inhibiting Kv1.5 with an IC50 of 1.70 µM
in Xenopus expression system, resulting

in a mild leftward shift of Kv1.5
activation curve.

[68]

45

Biomolecules 2020, 10, 10 21 of 41 

21 
 

No. Name CAS Status Model Mechanism Ref. 

45 

 

Papaverine 

58-74-2 Alkaloid Ltk- cells 
Blocking hKv1.5 channels and native hKv1.5 channels in a 

concentration-, voltage-, state-, and time-dependent manner. 
[69] 

46 

 

Tetrahydropalmatine 

2934-97-6 Alkaloid HEK cells 
Blocking Kv1.5 currents dose-dependently with an IC50 value 

of 53.2 μM inhibited the delayed rectifier effect of Kv1.5 
resulting in a potential left shift of the inactivation curve. 

[70] 

47 

 

Aconitine 

302-27-2 Alkaloid 
Xenopus laevis 

oocytes 
Producing a voltage-, time-, and frequency-dependent 

inhibition of Kv1.5 (IC50: 0.796 μM). 
[71] 

58-74-2 Alkaloid Ltk- cells

Blocking hKv1.5 channels and native
hKv1.5 channels in a concentration-,
voltage-, state-, and time-dependent

manner.

[69]
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45 

 

Papaverine 

58-74-2 Alkaloid Ltk- cells 
Blocking hKv1.5 channels and native hKv1.5 channels in a 

concentration-, voltage-, state-, and time-dependent manner. 
[69] 

46 

 

Tetrahydropalmatine 

2934-97-6 Alkaloid HEK cells 
Blocking Kv1.5 currents dose-dependently with an IC50 value 

of 53.2 μM inhibited the delayed rectifier effect of Kv1.5 
resulting in a potential left shift of the inactivation curve. 

[70] 

47 

 

Aconitine 

302-27-2 Alkaloid 
Xenopus laevis 

oocytes 
Producing a voltage-, time-, and frequency-dependent 

inhibition of Kv1.5 (IC50: 0.796 μM). 
[71] 

2934-97-6 Alkaloid HEK cells

Blocking Kv1.5 currents
dose-dependently with an IC50 value of
53.2 µM inhibited the delayed rectifier
effect of Kv1.5 resulting in a potential

left shift of the inactivation curve.

[70]

47
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45 

 

Papaverine 

58-74-2 Alkaloid Ltk- cells 
Blocking hKv1.5 channels and native hKv1.5 channels in a 

concentration-, voltage-, state-, and time-dependent manner. 
[69] 

46 

 

Tetrahydropalmatine 

2934-97-6 Alkaloid HEK cells 
Blocking Kv1.5 currents dose-dependently with an IC50 value 

of 53.2 μM inhibited the delayed rectifier effect of Kv1.5 
resulting in a potential left shift of the inactivation curve. 

[70] 

47 

 

Aconitine 

302-27-2 Alkaloid 
Xenopus laevis 

oocytes 
Producing a voltage-, time-, and frequency-dependent 

inhibition of Kv1.5 (IC50: 0.796 μM). 
[71] 302-27-2 Alkaloid Xenopus laevis oocytes

Producing a voltage-, time-, and
frequency-dependent inhibition of Kv1.5

(IC50: 0.796 µM).
[71]

48
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48 

 

Myricetin 

529-44-2 Flavonoid HEK cells 
Inhibiting Ikur and the expression of hKv1.5 in a dose-, time-, 

and frequency-dependent manner. 
[72] 

49 
 

Trimethylapigenin 

5631-70-9 Flavonoid HEK cells 

Suppressing hKv1.5 current in HEK 293 cell line (IC50: 6.4 μM) 
and the ultra-rapid delayed rectify K+ current IKur in human 

atrial myocytes (IC50: 8.0 μM) by binding to open channels in a 
use- and frequency-dependent manner. 

[73] 

50 

 

Quercetin 

117-39-5 Flavonoid 
Xenopus 

laevisoocytes 
Activating hKv1.5 channels (EC50: 37.8 μM) by interacting with 

key residue Ile 502 in S6 region. 
[74] 

529-44-2 Flavonoid HEK cells
Inhibiting Ikur and the expression of

hKv1.5 in a dose-, time-, and
frequency-dependent manner.

[72]

49
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48 

 

Myricetin 

529-44-2 Flavonoid HEK cells 
Inhibiting Ikur and the expression of hKv1.5 in a dose-, time-, 

and frequency-dependent manner. 
[72] 

49 
 

Trimethylapigenin 

5631-70-9 Flavonoid HEK cells 

Suppressing hKv1.5 current in HEK 293 cell line (IC50: 6.4 μM) 
and the ultra-rapid delayed rectify K+ current IKur in human 

atrial myocytes (IC50: 8.0 μM) by binding to open channels in a 
use- and frequency-dependent manner. 

[73] 

50 

 

Quercetin 

117-39-5 Flavonoid 
Xenopus 

laevisoocytes 
Activating hKv1.5 channels (EC50: 37.8 μM) by interacting with 

key residue Ile 502 in S6 region. 
[74] 

5631-70-9 Flavonoid HEK cells

Suppressing hKv1.5 current in HEK 293
cell line (IC50: 6.4 µM) and the

ultra-rapid delayed rectify K+ current
IKur in human atrial myocytes (IC50: 8.0
µM) by binding to open channels in a

use- and frequency-dependent manner.

[73]
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48 

 

Myricetin 

529-44-2 Flavonoid HEK cells 
Inhibiting Ikur and the expression of hKv1.5 in a dose-, time-, 

and frequency-dependent manner. 
[72] 

49 
 

Trimethylapigenin 

5631-70-9 Flavonoid HEK cells 

Suppressing hKv1.5 current in HEK 293 cell line (IC50: 6.4 μM) 
and the ultra-rapid delayed rectify K+ current IKur in human 

atrial myocytes (IC50: 8.0 μM) by binding to open channels in a 
use- and frequency-dependent manner. 

[73] 

50 

 

Quercetin 

117-39-5 Flavonoid 
Xenopus 

laevisoocytes 
Activating hKv1.5 channels (EC50: 37.8 μM) by interacting with 

key residue Ile 502 in S6 region. 
[74] 117-39-5 Flavonoid Xenopus laevisoocytes

Activating hKv1.5 channels (EC50: 37.8
µM) by interacting with key residue Ile

502 in S6 region.
[74]

51
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51 
 

Acacetin 

480-44-4 Flavonoid HEK cells 
Blocking open hKv1.5 channels by binding to their S6 domain 

influenced by the interaction of V505A, I508A, and V512A. 
[75] 

52 
 

Resveratrol 

501-36-0 Phenol Human PASMCs 
Reducing the expression of Kv1.5 mRNA to reverse 

monocrotaline-induced pulmonary vascular and cardiac 
dysfunction. 

[76] 

53  

Decursin 

5928-25-6 Coumarin Ltk− cells 

Inhibiting hKv1.5 current in a concentration- and use-
dependent manner, with an IC50 value of 2.7 μM at +60 mV 
accelerated the inactivation kinetics of the hKv1.5 channel, 

resulting in a tail crossover phenomenon. 

[77] 

54 Kaliotoxin 145199-73-1 Polypeptide T cell Inhibiting hKv1.5 current in a dose-dependent manner. [64] 

480-44-4 Flavonoid HEK cells

Blocking open hKv1.5 channels by
binding to their S6 domain influenced by

the interaction of V505A, I508A, and
V512A.

[75]

52

Biomolecules 2020, 10, 10 23 of 41 

23 
 

No. Name CAS Status Model Mechanism Ref. 

51 
 

Acacetin 

480-44-4 Flavonoid HEK cells 
Blocking open hKv1.5 channels by binding to their S6 domain 

influenced by the interaction of V505A, I508A, and V512A. 
[75] 

52 
 

Resveratrol 

501-36-0 Phenol Human PASMCs 
Reducing the expression of Kv1.5 mRNA to reverse 

monocrotaline-induced pulmonary vascular and cardiac 
dysfunction. 

[76] 

53  

Decursin 

5928-25-6 Coumarin Ltk− cells 

Inhibiting hKv1.5 current in a concentration- and use-
dependent manner, with an IC50 value of 2.7 μM at +60 mV 
accelerated the inactivation kinetics of the hKv1.5 channel, 

resulting in a tail crossover phenomenon. 

[77] 

54 Kaliotoxin 145199-73-1 Polypeptide T cell Inhibiting hKv1.5 current in a dose-dependent manner. [64] 

501-36-0 Phenol Human PASMCs

Reducing the expression of Kv1.5
mRNA to reverse

monocrotaline-induced pulmonary
vascular and cardiac dysfunction.

[76]
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51 
 

Acacetin 

480-44-4 Flavonoid HEK cells 
Blocking open hKv1.5 channels by binding to their S6 domain 

influenced by the interaction of V505A, I508A, and V512A. 
[75] 

52 
 

Resveratrol 

501-36-0 Phenol Human PASMCs 
Reducing the expression of Kv1.5 mRNA to reverse 

monocrotaline-induced pulmonary vascular and cardiac 
dysfunction. 

[76] 

53  

Decursin 

5928-25-6 Coumarin Ltk− cells 

Inhibiting hKv1.5 current in a concentration- and use-
dependent manner, with an IC50 value of 2.7 μM at +60 mV 
accelerated the inactivation kinetics of the hKv1.5 channel, 

resulting in a tail crossover phenomenon. 

[77] 

54 Kaliotoxin 145199-73-1 Polypeptide T cell Inhibiting hKv1.5 current in a dose-dependent manner. [64] 

5928-25-6 Coumarin Ltk− cells

Inhibiting hKv1.5 current in a
concentration- and use-dependent

manner, with an IC50 value of 2.7 µM at
+60 mV accelerated the inactivation

kinetics of the hKv1.5 channel, resulting
in a tail crossover phenomenon.

[77]

54 Kaliotoxin 145199-73-1 Polypeptide T cell Inhibiting hKv1.5 current in a
dose-dependent manner. [64]
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55 

 

Correolide 

190017-00-6 
Nor-

triterpenoid 
CHO cells 

Inhibiting Kv1.5 with an IC50 of 1.77 μM and influenced by the 
mutations T480A, V505A, I508A, as well as V516A. 

[78] 

56  

Taurine 

107-35-7 Amino acid Male Wistar rats Down-regulating the mRNA expression level of Kv1.5. [79] 

 

190017-00-6 Nor-triterpenoid CHO cells
Inhibiting Kv1.5 with an IC50 of 1.77 µM
and influenced by the mutations T480A,

V505A, I508A, as well as V516A.
[78]
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55 

 

Correolide 

190017-00-6 
Nor-

triterpenoid 
CHO cells 

Inhibiting Kv1.5 with an IC50 of 1.77 μM and influenced by the 
mutations T480A, V505A, I508A, as well as V516A. 

[78] 

56  

Taurine 

107-35-7 Amino acid Male Wistar rats Down-regulating the mRNA expression level of Kv1.5. [79] 

 

107-35-7 Amino acid Male Wistar rats Down-regulating the mRNA expression
level of Kv1.5. [79]
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In 2003, Peukert and co-workers [80] synthesized a series of ortho-disubstituted bisaryl compounds
as blockers of the Kv1.5 channel. Among the derivatives, the most potent compounds 57 (IC50: 0.7 µM)
and 58 (IC50: 0.16 µM) inhibited the Kv1.5 channel with sub-micromolar half-blocking concentrations
and displayed three fold selectivity over Kv1.3 and no significant effect on the hERG channel and
sodium currents (Figure 3).
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In 2004, Peukert et al. [81] synthesized several anthranilic amides as novel blockers of the Kv1.5
channel. The most hopeful analogue 59 showed moderate Kv1.5 inhibition (IC50: 0.7 µM) with good
oral bioavailability, however, no significant effect on the IKr current of 59 was detected (Figure 4).

Biomolecules 2020, 10, 10 18 of 34 

 

In 2003, Peukert and co-workers [80] synthesized a series of ortho-disubstituted bisaryl 
compounds as blockers of the Kv1.5 channel. Among the derivatives, the most potent compounds 57 
(IC50: 0.7 μM) and 58 (IC50: 0.16 μM) inhibited the Kv1.5 channel with sub-micromolar half-blocking 
concentrations and displayed three fold selectivity over Kv1.3 and no significant effect on the hERG 
channel and sodium currents (Figure 3). 

 
Figure 3. Biphenyl derivatives. 

In 2004, Peukert et al. [81] synthesized several anthranilic amides as novel blockers of the Kv1.5 
channel. The most hopeful analogue 59 showed moderate Kv1.5 inhibition (IC50: 0.7 μM) with good 
oral bioavailability, however, no significant effect on the IKr current of 59 was detected (Figure 4). 

 

Figure 4. Anthranilic amides. 

Inspired from the precursor 5-methoxypsoralen isolated from Rutagraveolens, Schmitz and 
colleagues [82] prepared a series of phenoxyalkoxypsoralen analogues and evaluated their voltage-
gated ion channel blocker potency. The most potent and “druglike” compound of this series, 5-(4-
phenoxybutoxy) psoralen (PAP-1, 60), blocks Kv1.3 in a use-dependent manner, with a Hill 
coefficient of 2 and an EC50 of 2 nM, by preferentially binding to the C-type inactivated state of the 
channel. PAP-1 is 23 fold selective over Kv1.5, 33–125 fold selective over other Kv1 family channels, 
and 500–7500 fold selective over Kv2.1, Kv3.1, Kv3.2, Kv4.2, hERG, calcium-activated K channels, Na, 
Ca, and Cl channels. PAP-1 does not exhibit cytotoxic or phototoxic effects, is negative in the Ames 
test, and affects cytochrome P450-dependent enzymes only at micromolar concentrations (Figure 5). 

OO O

O

O

Prolongation or ruduction of the 
linker decreacses the activity

Substitution: etherification
promotes the Kv1.3 inhibition but 
reduces the Kv1.5 inhibition

60

Presence of C=C bond is not 
critical for the Kv1.5 inhibition

Prolongation of substitution 
weakens the activity

 

Figure 5. Phenoxyalkoxypsoralen analogues. 

Figure 4. Anthranilic amides.

Inspired from the precursor 5-methoxypsoralen isolated from Rutagraveolens, Schmitz and
colleagues [82] prepared a series of phenoxyalkoxypsoralen analogues and evaluated their
voltage-gated ion channel blocker potency. The most potent and “druglike” compound of this
series, 5-(4-phenoxybutoxy) psoralen (PAP-1, 60), blocks Kv1.3 in a use-dependent manner, with a Hill
coefficient of 2 and an EC50 of 2 nM, by preferentially binding to the C-type inactivated state of the
channel. PAP-1 is 23 fold selective over Kv1.5, 33–125 fold selective over other Kv1 family channels,
and 500–7500 fold selective over Kv2.1, Kv3.1, Kv3.2, Kv4.2, hERG, calcium-activated K channels, Na,
Ca, and Cl channels. PAP-1 does not exhibit cytotoxic or phototoxic effects, is negative in the Ames
test, and affects cytochrome P450-dependent enzymes only at micromolar concentrations (Figure 5).

Biomolecules 2020, 10, 10 18 of 34 

 

In 2003, Peukert and co-workers [80] synthesized a series of ortho-disubstituted bisaryl 
compounds as blockers of the Kv1.5 channel. Among the derivatives, the most potent compounds 57 
(IC50: 0.7 μM) and 58 (IC50: 0.16 μM) inhibited the Kv1.5 channel with sub-micromolar half-blocking 
concentrations and displayed three fold selectivity over Kv1.3 and no significant effect on the hERG 
channel and sodium currents (Figure 3). 

 
Figure 3. Biphenyl derivatives. 

In 2004, Peukert et al. [81] synthesized several anthranilic amides as novel blockers of the Kv1.5 
channel. The most hopeful analogue 59 showed moderate Kv1.5 inhibition (IC50: 0.7 μM) with good 
oral bioavailability, however, no significant effect on the IKr current of 59 was detected (Figure 4). 

 

Figure 4. Anthranilic amides. 

Inspired from the precursor 5-methoxypsoralen isolated from Rutagraveolens, Schmitz and 
colleagues [82] prepared a series of phenoxyalkoxypsoralen analogues and evaluated their voltage-
gated ion channel blocker potency. The most potent and “druglike” compound of this series, 5-(4-
phenoxybutoxy) psoralen (PAP-1, 60), blocks Kv1.3 in a use-dependent manner, with a Hill 
coefficient of 2 and an EC50 of 2 nM, by preferentially binding to the C-type inactivated state of the 
channel. PAP-1 is 23 fold selective over Kv1.5, 33–125 fold selective over other Kv1 family channels, 
and 500–7500 fold selective over Kv2.1, Kv3.1, Kv3.2, Kv4.2, hERG, calcium-activated K channels, Na, 
Ca, and Cl channels. PAP-1 does not exhibit cytotoxic or phototoxic effects, is negative in the Ames 
test, and affects cytochrome P450-dependent enzymes only at micromolar concentrations (Figure 5). 

OO O

O

O

Prolongation or ruduction of the 
linker decreacses the activity

Substitution: etherification
promotes the Kv1.3 inhibition but 
reduces the Kv1.5 inhibition

60

Presence of C=C bond is not 
critical for the Kv1.5 inhibition

Prolongation of substitution 
weakens the activity

 

Figure 5. Phenoxyalkoxypsoralen analogues. Figure 5. Phenoxyalkoxypsoralen analogues.



Biomolecules 2020, 10, 10 21 of 36

In 2006, Blass et al. [83] synthesized a cluster of (2-phenethyl-2H-1,2,3-triazol-4-yl) (phenyl)
methanone and examined for utility as Kv1.5 channel blockers for the treatment of atrial fibrillation.
The results showed that O substitution in the 4-position of the acetophenone-derived portion of the
scaffold is highly favored, and the most active compound 61 blockaded Kv1.5 for 99% at a concentration
of 1 µM (Figure 6).
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Fluxe and co-workers [84] synthesized multiple tetrahydroindolone-derived carbamates as potent
Kv1.5 blockers. The most promising analogues 62 and 63 exhibited the strongest Kv1.5 inhibitory effect
with IC50 values of 67 and 21 nM, respectively. They were also very selective over hERG (> 450 fold)
and L-type calcium channels (> 450 fold) (Figure 7).
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Figure 7. Tetrahydroindolone-derived carbamates.

Subsequently, Wu et al. [85] designed and synthesized tetrahydroindolone derived semicarbazones
as selective Kv1.5 blockers. Compounds 64 and 65 showed good selectivity for the blockade of Kv1.5
(IC50: 0.13 µM for two compounds), moreover, in an anesthetized pig model, compounds 64 and
65 increased atrial ERP by about 28% and 18%, respectively, in the right atrium without affecting
ventricular ERP (Figure 8).
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enantiomer of the diastereomerically pure racemic analog, exhibited significant atrial-selective effects
in an in vivo model (IC50: 150 nM) (Figure 9).Biomolecules 2020, 10, 10 20 of 34 
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Figure 9. Diisopropyl amide derivatives.

Trotter and co-workers [87] designed and synthesized a group of isoquinoline-3-nitriles as orally
Kv1.5 antagonists for the treatment of AF. The ethanolamide derivative 67 exhibited improved potency
(Kv1.5 HT-Clamp IC50: 60 nM), excellent selectivity versus hERG, and good pharmacokinetic properties.
Rat EP experiments confirmed that the compound potently increased ARP without significant effects
on AVRP− (Figure 10).
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Figure 10. Isoquinoline-3-nitriles.

In 2007, Eun et al. [88] synthesized multiple psoralen derivatives as hKvl.5 channel blockers.
Among them, compound 68 was the most potent in blocking hKv1.5 (IC50: 27.4 nM), much stronger than
the lead compound psoralen. Compound 68 accelerated the inactivation kinetics of the hKvl.5 channel
and slowed the deactivation kinetics of the hKv1.5 current resulting in a tail crossover phenomenon.
Compound 68 inhibited the hKvl.5 current in a use-dependent manner (Figure 11).
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Figure 11. Psoralen derivatives.

Jackson and co-workers [89] prepared several classes of thiazolidine-based Kv1.5 blockers.
The most promising analogue 69 derived from 3,4-dimethylacetophenone exhibited the strongest
inhibitory effect with an IC50 value of 69 nM (Figure 12).
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Figure 12. Thiazolidine derivatives.

Lloyd et al. [90] synthesized a series of benzopyran sulfonamides and determined Kv1.5 potassium
channel blocking effects. Among the productions, derivative 70 exhibited the most significant activity
(IC50: 57 nM), and a moderate inhibition (35%) of hERG at a concentration of 10 µM (Figure 13).
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Figure 13. Benzopyran sulfonamides.

In 2008, benzopyran sulfonamides derivatives were further investigated [91]. Compound 71 and
72 were considered as the most active derivatives in the two series of compounds with IC50 values
of 46 and 378 nM in the inhibition of current in a L-929 cell model, respectively. Additionally, at the
concentration of 1.0 µM, compound 72 displayed the most significant inbitory effect in the current of
L-929 cells with an inhibitory ratio of 89% (Figure 14).
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Figure 14. Thiazolidine derivatives.

Vaccaro and co-workers [90] synthesized a series of dihydropyrazolopyrimidine analogues as
Kv1.5 inhibitors. The most promising compound 73 showed the best potential in suppressing Kv1.5,
with inhibitory effects on hERG (69%) and INa

10 (42%) at a concentration of 10 µM (Figure 15).
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Figure 15. Dihydropyrazolopyrimidine derivatives.

In 2008, Gross and co-workers [92] synthesized aryl sulfonamido tetralin as a Kv1.5 inhibitor
according to the basis of previous work. Among the productions, compound 74 exhibited remarkable
Kv1.5 inhibitions with an IC50 value of 90 nM; in addition, moderate hERG inhibition was detected
at the dose of 10 µM (39%), indicating the potential for further development of clinical candidates
(Figure 16).
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Figure 16. Aryl sulfonamido tetralin derivatives.

According to the structure of marketed drugs amiodarone and vernakalant, Blass et al. [93]
synthesized a series of imidazolidinone derivatives as a potential treatment for atrial arrhythmia.
KVI-020/WYE-160020 (75) exhibited the efficacy in clinically relevant models of AF and mechanistic
models of the cardiac action potential with acceptable pharmacokinetic and pharmaceutical properties.
The pharmacology IC50 values for compound 75 in Kv1.5, hERG, Nav1.5, Cav1.3, Cav1.2, Kv1.1, Kv1.3,
and Kv4.3 were 0.48, 15.1, >30, 23.4, >30, 2.66, 1.41, and 3.87 µM in vitro, respectively (Figure 17).
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In 2010, Lloyd and co-workers [58] developed a series of pyrazolodihydropyrimidines as potent
and selective Kv1.5 blockers based on previous studies. The most promising analogue BMS-394136
(76) displayed excellent activity in blocking Kv1.5 (IC50: 50 nM) and very good selectivity over hERG,
sodium, and L-type calcium ion channels with good pharmacokinetic parameters (Figure 18).
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In 2012, Blass [94] prepared several heteroarylsulfonamides as Kv1.5 inhibitors. The active
analogues 77, 78 and 79 exhibited 100% inhibition of Kv1.5 using stably transfected HEK293 cells and
the FLIPR potassium ion channel assay, suggesting good potential for further investigation (Figure 19).
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Figure 19. SAR of heteroarylsulfonamides.

Finlay and colleagues [95] prepared several dihydropyrazolo[1,5-a]pyrimidine derivatives. Among
the synthetic compounds, compound 80 showed potential to be a selective IKur inhibitor with Kv1.5
IC50 of 0.15 µM and hERG with an IC50 value >10 µM. Furthermore, favorable pharmacokinetic
properties in rats and dogs of 80 were determined; compound 80 was identified with less than 1% GSH
adducts formation with an improved PK profile and equivalent PD efficacy to the lead compound
(Figure 20).
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Figure 20. SAR of dihydropyrazolo[1,5-a]pyrimidine derivatives.

In 2013, triazolo and imidazo were introduced into the active scaffold
dihydropyrazolopyrimidine [96]. Trifluoromethylcyclohexyl triazole analogue 81 was identified as
a potent and selective Kv1.5 inhibitor (IC50: 133 nM) with an acceptable PK and liability profile.
Compound 81 demonstrated an improved rat PK profile and was advanced to the rat PD model
(Figure 21).
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The compound 85 was well tolerated in rabbits with no signs of the CNS-like side effects observed 
for other Kv1.5 blockers (Figure 24). 

Figure 21. SAR of trifluoromethylcyclohexyl triazole analogues.

With the help of a pharmacophore model, Guo et al. [97] designed and synthesized a series of
indole derivatives as potent Kv1.5 inhibitors. The most promising compound 82 displayed significant
INa, HEK 293 hKv1.5, and CHO hERG inhibitory activities with IC50 values of 52.6, 0.51, and 418.35 µM,
respectively, which displayed remarkable selectivity and ameliorating effects on atrial effective
refractory period (AERP) and VERP (Figure 22).
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Figure 22. SAR of indole derivatives.

Olsson and co-workers [98] possessed design and pharmacological evaluation of multiple potential
hits targeting on Kv1.5. The compound 83 performed the best in vitro activity with Kv1.5 IC50 of
0.08 µM in diphenylphosphinic amide and diphenylphosphine oxide analogues (Figure 23). However,
both hERG and IKs active and remarkable safety in rats of compound 83 was detected and judged
unsuitable for in vivo testing; conversely, the derivative 84 was regarded as a hopeful compound for
further development with Kv1.5 IC50, IKs, Ceu20, and QTmax change values for 1.0 µM, >33%, 0.6 µM,
and <10%, respectively.

Biomolecules 2020, 10, 10 24 of 34 

 

 

Figure 21. SAR of trifluoromethylcyclohexyl triazole analogues. 

With the help of a pharmacophore model, Guo et al. [97] designed and synthesized a series of 
indole derivatives as potent Kv1.5 inhibitors. The most promising compound 82 displayed significant 
INa, HEK 293 hKv1.5, and CHO hERG inhibitory activities with IC50 values of 52.6, 0.51, and 418.35 
μM, respectively, which displayed remarkable selectivity and ameliorating effects on atrial effective 
refractory period (AERP) and VERP (Figure 22). 

 

Figure 22. SAR of indole derivatives. 

Olsson and co-workers [98] possessed design and pharmacological evaluation of multiple 
potential hits targeting on Kv1.5. The compound 83 performed the best in vitro activity with Kv1.5 
IC50 of 0.08 μM in diphenylphosphinic amide and diphenylphosphine oxide analogues (Figure 23). 
However, both hERG and IKs active and remarkable safety in rats of compound 83 was detected and 
judged unsuitable for in vivo testing; conversely, the derivative 84 was regarded as a hopeful 
compound for further development with Kv1.5 IC50, IKs, Ceu20, and QTmax change values for 1.0 
μM, >33%, 0.6 μM, and <10%, respectively. 

 

Figure 23. SAR of diphenylphosphinic amides and diphenylphosphine oxides. 

In 2014, the subsequent study was updated [99], and a series of lactam sulfonamide derivatives 
was prepared and the Kv1.5 inhibitory potency was evaluated. The most promising candidate 85 
inhibited Kv1.5 with an IC50 value of 0.21 μM and caused a marked increase in the atrium ERP with 
a Ceu20 of 0.35 μM, which was at the same order of magnitude as the IC50 value from the human cellular 
assay. The human hERG channel was blocked by compound 85 with an IC50 value of 30 μM, indicating 
a 140 fold margin of the hERG and Kv1.5 in vitro values. No measurable change was noted in the QT-
interval in the rabbit experiments, which also indicated a good margin to block of the hERG channel. 
The compound 85 was well tolerated in rabbits with no signs of the CNS-like side effects observed 
for other Kv1.5 blockers (Figure 24). 

Figure 23. SAR of diphenylphosphinic amides and diphenylphosphine oxides.

In 2014, the subsequent study was updated [99], and a series of lactam sulfonamide derivatives
was prepared and the Kv1.5 inhibitory potency was evaluated. The most promising candidate 85
inhibited Kv1.5 with an IC50 value of 0.21 µM and caused a marked increase in the atrium ERP with
a Ceu20 of 0.35 µM, which was at the same order of magnitude as the IC50 value from the human
cellular assay. The human hERG channel was blocked by compound 85 with an IC50 value of 30 µM,
indicating a 140 fold margin of the hERG and Kv1.5 in vitro values. No measurable change was noted
in the QT-interval in the rabbit experiments, which also indicated a good margin to block of the hERG
channel. The compound 85 was well tolerated in rabbits with no signs of the CNS-like side effects
observed for other Kv1.5 blockers (Figure 24).
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In 2016, Kajanus et al. [102] synthesized multiple isoindolinone compounds as Kv1.5 blockers. 
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Figure 24. SAR of lactam sulfonamides.

Johnson et al. [100] synthesized phenethylaminoheterocycles and assayed for inhibition of the Kv1.5
potassium ion channel as a potential approach to the treatment of atrial fibrillation. Combination of
the indazole with a cyclohexane-based template gave the most promising derivative 86 (Kv1.5 IC50:
138 nM) which demonstrated significant prolongation of AERP in the rabbit pharmacodynamic model
(Figure 25).
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Figure 25. SAR of phenethylaminoheterocycles.

Guo and colleagues [101] prepared a series of 1-aryloxyethyl piperazine derivatives as Kv1.5
potassium channel inhibitors. The most potent compound 87 exerted significant activity on hKv1.5
(IC50: 0.72 µM), balanced Log D, and permeability. In addition, comparable in vivo potency with sotalol
and dronedarone and remarkable safety in rats of compound 87 were detected as well (Figure 26).
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Figure 26. SAR of 1-aryloxyethyl piperazine derivatives.

In 2016, Kajanus et al. [102] synthesized multiple isoindolinone compounds as Kv1.5 blockers.
The most potent compounds 88 and 89 exhibited an inhibitory effect with the IC50 values of 0.4 and
0.7 µM on Kv1.5, respectively. The above-mentioned two compounds were found to have desirable
in vivo PK properties in a mouse model (Figure 27).
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Finlay and co-workers [103] explored phenylquinazoline derivatives as Kv1.5 inhibitors.
5-Phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine (90) was identified as a potent
and ion channel selective inhibitor (Kv1.5 IC50: 90 nM, hERG inhibition: 43% at 10 µM) with robust
efficacy in the pre-clinical rat ventricular effective refractory period (VERP) model and the rabbit atrial
effective refractory period (AERP) model (Figure 28).
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Figure 28. SAR of phenylquinazoline derivatives.

Subsequently in 2017, Gunaga et al. [58] modified the structure of 91 with a series of analogues
and evaluated the IKur inhibitory effect. 5-[5-Phenyl-4-(pyridin-2-ylmethylamino)-quinazolin-2-yl]
pyridine-3-sulfonamide (92) was identified as the lead compound in this series with good selectivity
over hERG (Kv1.5 IC50: 50 nM, hERG IC50: 1.9 µM). Compound 91 exhibited robust effects in rabbit and
canine pharmacodynamic models and an acceptable cross-species pharmacokinetic profile which was
then advanced as a clinical candidate. Further optimization of 91 to mitigate pH-dependent absorption
resulted in identification of the corresponding phosphoramide prodrug (92) with an improved solubility
and pharmacokinetic profile (Figure 29).
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According to the skeleton of Agelas alkaloids clathrodin, oroidin, and hymenidin, Zidar
and colleagues [104] synthesized multiple derivatives as inhibitors of the voltage-gated
potassium channels. The most potent inhibitor was (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,
5-dichloro-1H-pyrrole-2-carboxamide (93) with IC50 values between 1.4 and 6.1 mM against Kv1.3,
Kv1.4, Kv1.5, and Kv1.6 channels (Kv1.5 IC50: 6.1 µM) (Figure 30).

Biomolecules 2020, 10, 10 26 of 34 

 

Finlay and co-workers [103] explored phenylquinazoline derivatives as Kv1.5 inhibitors. 5-
Phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine (90) was identified as a potent 
and ion channel selective inhibitor (Kv1.5 IC50: 90 nM, hERG inhibition: 43% at 10 μM) with robust 
efficacy in the pre-clinical rat ventricular effective refractory period (VERP) model and the rabbit 
atrial effective refractory period (AERP) model (Figure 28). 

 

Figure 28. SAR of phenylquinazoline derivatives. 

Subsequently in 2017, Gunaga et al. [58] modified the structure of 91 with a series of analogues 
and evaluated the IKur inhibitory effect. 5-[5-Phenyl-4-(pyridin-2-ylmethylamino)-quinazolin-2-yl] 
pyridine-3-sulfonamide (92) was identified as the lead compound in this series with good selectivity 
over hERG (Kv1.5 IC50: 50 nM, hERG IC50: 1.9 μM). Compound 91 exhibited robust effects in rabbit 
and canine pharmacodynamic models and an acceptable cross-species pharmacokinetic profile which 
was then advanced as a clinical candidate. Further optimization of 91 to mitigate pH-dependent 
absorption resulted in identification of the corresponding phosphoramide prodrug (92) with an 
improved solubility and pharmacokinetic profile (Figure 29). 

 

Figure 29. SAR of phenylquinazoline sulfonamide derivatives. 

According to the skeleton of Agelas alkaloids clathrodin, oroidin, and hymenidin, Zidar and 
colleagues [104] synthesized multiple derivatives as inhibitors of the voltage-gated potassium 
channels. The most potent inhibitor was (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dichloro-1H-
pyrrole-2-carboxamide (93) with IC50 values between 1.4 and 6.1 mM against Kv1.3, Kv1.4, Kv1.5, and 
Kv1.6 channels (Kv1.5 IC50: 6.1 μM) (Figure 30). 

 

Figure 30. SAR of oroidin derivatives. 

Wolkenberg et al. [105] told the story of the development of prospective candidate MK-1832 (94) 
(Figure 31). Based on the structure of MK-0448, a cluster of derivatives were synthesized and tested 
the Kv1.5 inhibitory effect and in vivo and in vitro toxicity. MK-1832 (94) was considered to be the 

Figure 30. SAR of oroidin derivatives.

Wolkenberg et al. [105] told the story of the development of prospective candidate MK-1832 (94)
(Figure 31). Based on the structure of MK-0448, a cluster of derivatives were synthesized and tested



Biomolecules 2020, 10, 10 29 of 36

the Kv1.5 inhibitory effect and in vivo and in vitro toxicity. MK-1832 (94) was considered to be the
best derivative with pharmacological parameters including Kv1.5, Ikur, and Ikr(hERG) IC50 values for
29, 11 and 1.28 × 10 5 nM, respectively, and pharmacokinetic parameters including dog in vivo atrial
refractory period EC10 for 14 nM and threshold change in ventricular refractory period >25 µM.
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Recently, natural products with novel structural motif as a Kv1.5 inhibitor also gained progress
in this field. In the sequence of the isolation of compound debromoaplysiatoxin A (38) and
debromoaplysiatoxin B (39) [63], Tang and co-workers [14] identified other novel aplysiatoxin
derivatives from the marine cyanobacterium Lyngbya sp. Among them, compound oscillatoxin
E (96) with the hexane-tetrahydropyran of a spirobicyclic system skeleton exhibited the strongest Kv1.5
inhibition (IC50: 0.79 µM) in the CHO cells at an HP of -80 mV (Figure 33).
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4. Conclusions

Herein the target and the pharmacological properties with structural, pharmacological, and SAR
information of Kv1.5 modulators were discussed. Detailed descriptions of pharmacology parameters
and SAR studies provide an actionable path forward for medicinal chemists to optimize the structure
of Kv1.5 modulators. Further experiments should improve the PK and safety after the effectiveness
is proven. Design and development of potential and selective Kv1.5 modulators are important and
challenging tasks. Based on the existing pharmacophoric requirements and potential protein structure
parsed in the future, some novel effective Kv1.5 modulators may be designed and prepared [107,108].
However, gaps exist in the scientific studies on Kv1.5 modulators. Firstly, the selectivity of existing
Kv1.5 modulators remains to be investigated, and more specific modulators aiming at the Kv1.5 channel
are needed in the future. Secondly, from the point of application, the market of AF is relatively small,
and the sales condition of marked anti-AF agents is not satisfactory as a whole, thus more in-depth
pharmacological investigation of roles of Kv1.5 are required in the future. Moreover, the definite
structure of Kv1.5 protein is still vacant, difficulties and potential fallacy are still consistent in the
design of modulators only estimating by the pocket of homologous models.

SAR investigation is crucial for the development of novel promising clinical candidates. It is
anticipated that the information compiled in this review article not only updates researchers with the
recently reported pharmacology and SAR of Kv1.5 modulators, but also motivates them to design and
synthesize promising Kv1.5 modulators with improved medicinal properties.
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Abbreviations

AF Atrial fibrillation
BLAST Basic Local Alignment Search Tool
Ceu20 Unbound steady-state plasma concentration
CHO cells Chinese hamster ovary cells
CNS Central nervous system
EDGs Electron donating groups
EWGs Electron withdrawing groups
HEK cells Human embryonic kidney 293 cells
hERG Human ether-à-go-go-related gene
hKv1.5 channels Human Kv1.5 channels
Human PASMCs Human pulmonary arterial smooth muscle cells
IKur Cardiac ultra-rapid delayed-rectifier
IC50 50% inhibitory concentration
Ile Isoleucine
Nrf2 Nuclear factor erythroid 2-related factor
SAR Structure–activity relationship
Thr Threonine
Val Valine
VERP Ventricular effective refractory period
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