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Abstract

The hippocampus plays a critical role in goal-directed navigation. Across different environments, 

however, hippocampal maps are randomized, making it unclear how goal locations could be 

encoded consistently. To address this question, we developed a virtual reality task with shifting 

reward contingencies to distinguish place vs reward encoding. In mice performing the task, large-

scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only 

active near reward, yet whose activity could not be explained by sensory cues or stereotyped 

reward anticipation behavior. Across different virtual environments, most cells remapped 

randomly, but reward encoding consistently arose from a single pool of cells, suggesting they 

formed a dedicated channel for reward. These observations represent a significant departure from 

the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding 

properties, and provide a new candidate for the cellular basis of goal memory in the hippocampus.
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1. Introduction

The hippocampus is crucial for many kinds of spatial memory (D’Hooge & De Deyn, 2001; 

Lalonde, 2002; Burgess et al., 2002), and in particular learning to navigate to an unmarked 

goal location (Morris et al., 1990; Rodríguez et al., 2002; Dupret et al., 2010). Consistent 

with this role, individual hippocampal neurons exhibit spatially-modulated activity fields, or 

place fields, that encode the animal’s current location (O’Keefe, 1976), and collectively 

form a map-like representation of space (O’Keefe & Nadel, 1978). These observations 

suggest hippocampal maps might serve to identify goal locations, but such a role seems 

incompatible with other aspects of hippocampal coding.

Many neurons in the hippocampus are highly specific to the features of each environment 

(Muller & Kubie, 1987; Anderson & Jeffery, 2003; Leutgeb et al., 2005; McKenzie et al., 

2014; Rubin et al., 2015), and across different environments the map is essentially 

randomized (Leutgeb et al., 2005). While context-specific representations are likely 

beneficial for episodic memory (Burgess et al., 2002), they seem poorly suited to guide goal-

directed navigation. In each new environment, any downstream circuit sampling from the 

population would need to learn a new, idiosyncratic code to localize the goal.
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A potential solution for providing a context-invariant representation of the goal would be a 

specialized pool of cells (Burgess & O’Keefe, 1996). If they existed, such cells would not 

track place per se, but the goal itself, similar to the encoding of other abstract categories 

(Quiroga et al., 2005; Lin et al., 2007). Across different contexts, cells from the same 

population would be active near the goal, even while the rest of the hippocampal ensemble 

remapped. If such cells provided information to other brain regions, they would likely be 

present in the output layers of the hippocampal formation, CA1 and the subiculum (van 

Strien et al., 2009). And if they reflected a signal that influenced perception and behavior, 

the timing of their activity would likely be correlated with the onset of motor activity related 

to goal approach (Mello et al., 2015).

It remains unclear, however, whether such dedicated goal cells exist (Poucet & Hok, 2017). 

Although the presence of a goal can alter hippocampal activity in many respects (Ranck, 

1973; Gothard et al., 1996; Hollup et al., 2001; Hok et al., 2007; Dupret et al., 2010; 

McKenzie et al., 2013, 2014; Danielson et al., 2016; Sarel et al., 2017), and in some cases 

activity is correlated with goal approach behaviors (Ranck, 1973; Rosenzweig et al., 2003; 

Sarel et al., 2017), it has not been demonstrated that any neurons are specialized for being 

active near goals, or that goal-encoding is found in the same cells across different 

environments. Moreover, adding a goal to an environment typically introduces a host of 

associated sensory and behavioral features, such as visual or olfactory cues, or stereotyped 

motor behavior on approach to the goal or after reaching it. These associated features create 

a fundamental ambiguity: alterations to hippocampal activity might simply reflect the 

constellation of sensorimotor events near the goal (Deshmukh & Knierim, 2013; Deadwyler 

& Hampson, 2004; Aronov et al., 2017) rather than serving to identify the goal itself.

To test for the existence of specialized goal-encoding cells, we designed a virtual reality task 

in which activity near a goal location could be compared across multiple environments, and 

also dissociated from confounding sensory and motor events. Because any cells encoding the 

goal would likely be a small population (Hollup et al., 2001; Dupret et al., 2010; Dombeck 

et al., 2010; van der Meer et al., 2010; Danielson et al., 2016), and because previous studies 

have reported low yield from electrode recordings in the subiculum (Sharp, 1997; Kim et al., 

2012), optical imaging was used to record activity in transgenic mice expressing the calcium 

indicator GCaMP3 (Rickgauer et al., 2014). Mice learned to identify goals at multiple 

locations within the same or different environments, and the activity of thousands of 

individual neurons was tracked to identify whether any seemed specialized for being active 

near goals.

2. Results

2.1. Moving Reward Location Within One Environment

Mice were trained to traverse a virtual reality environment in an enclosure that allowed 

simultaneous two-photon imaging at cellular resolution (Harvey et al., 2009; Dombeck et al., 

2010; Domnisoru et al., 2013). The virtual environment was a linear track with a variety of 

wall textures and colors that provided a unique visual scene at each point (Figure 1B, Figure 

S1A). Like many studies of goal-directed navigation, the goal used here was a reward 

presented at a fixed point in the environment. Mice were water restricted, and when they 
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reached a certain location on the track (366 cm) a small water reward was delivered from a 

tube that was always present near the mouth. After the end of the track, the same pattern of 

visual features and reward delivery was repeated, creating the impression of an infinite 

repeating corridor.

While mice interacted with the virtual environment, optical recordings of neural activity 

were made in CA1 and subiculum (Figure 1a). As in other studies in real and virtual 

environments (O’Keefe & Nadel, 1978; Dombeck et al., 2010; Aronov & Tank, 2014), many 

neurons in both regions exhibited place fields, i.e. activity patterns that were significantly 

modulated by position on the track (see Table 1). The activity location of each spatially-

modulated cell was summarized by the center of mass (COM) of its activity averaged across 

trials.

The COMs of spatial fields were distributed throughout most of the track at uniform density 

(Muller et al., 1987; O’Keefe & Speakman, 1987), but an excess density was located near 

the reward, both when pooling all cells (Figure 1c) and considering CA1 and subiculum 

separately (Figure S1B). This enhancement of the representation near reward was consistent 

with previous studies in both real and virtual environments (Hollup et al., 2001; Dupret et 

al., 2010; Dombeck et al., 2010; Danielson et al., 2016), and it permitted subsequent 

experiments to characterize the cells composing the increased density.

Two possibilities were considered. First, the excess fields might have reflected an increased 

number of place fields, i.e. fields encoding a particular position on the track as defined by 

visual landmarks. Such fields might have formed at a higher rate near reward due to the 

salience of the location, increased occupancy time, or other factors (Hetherington & Shapiro, 

1997). Alternatively, the excess fields might have encoded a factor related to the reward, in 

which case they could be dissociated from the reward-adjacent environmental cues. To 

distinguish these possibilities, the reward was sometimes delivered at a different point on the 

track, alternating block-wise throughout the session (condition AendAmid, Figure 1d).

During reward location alternation sessions, many cells exhibited spatial fields (Table 1), 

and the fields of most cells remained in the same location. At the same time, the fields of 

some cells shifted to match the reward location. These two response types are illustrated for 

one session (Figure 1e): stable spatial fields were observed throughout the track (cells 1-3), 

while a separate population shifted to be consistently located near reward (cells 4-6).

Stability versus shifting to track the reward was a discrete difference. Of cells active near the 

reward during Aend (Figure 1f, black bracket), those with spatial fields during Amid tended to 

be active in one of two locations: either near the same part of the track (blue band), or near 

the reward location at 166 cm (purple band). This pattern was significantly bimodal (p < 

1e-5, Hartigan’s Dip Test), indicating that cells associated with reward formed a discrete 

subgroup, distinct from those remaining active near the same visual landmarks.

To identify response types in the entire population, field locations were compared for all 

cells with a spatial field in both contexts (Figure 1g). When the reward shifted, the fields of 

most cells either remained in the same location (blue arrow) or remapped randomly 

(background scatter), while a separate population shifted to be consistently active near 
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reward (purple arrow). The latter group will be referred to as “reward-associated cells”, and 

they composed 4.2% of cells with fields in both conditions, or 0.8% of all recorded cells. Of 

the remaining cells, five response types were observed: cells with no spatial field in either 

condition (46.8% of all recorded cells), cells with a field in Aend only (17.8%), cells with a 

field in Amid only (15.8%), cells with a field in both contexts that shifted by less than 50 cm 

(10.9%), and cells with a field in both contexts that remapped to new, apparently random 

locations (7.9%). These response types are consistent with the well-characterized physiology 

previously described in CA1, the subiculum, and throughout the hippocampal formation 

(Andersen et al., 2007) and they will be referred to as “place cells”. Against this backdrop, 

reward-associated cells stood out as a separate population, showing that at least some cells in 

the excess density were related to the reward rather than track position.

An additional distinction can be made among reward-associated cells: some were active 

prior to reward delivery, and others were active at a location subsequent to the reward. While 

both might be relevant for navigation, cells active before reward are particularly noteworthy, 

since their activity could not be explained as a response to either visual cues or reward 

delivery and consumption. Instead, they must have been driven by an expectation signal that 

arose internally, encoding either a specific behavior or a cognitive state associated with 

reward anticipation, a distinction that will be considered below. In either case, reward-

associated cells with fields located prior to both rewards will be referred to as “reward-

predictive cells”, in the sense that their field locations consistently indicated where the 

reward would be delivered, even before it arrived. The name is not intended to suggest they 

necessarily play a role in memory or reward prediction tasks, though these possibilities will 

be considered. Among reward-associated cells, 34% were reward-predictive, 34% had fields 

located subsequent to both rewards, and the remainder had fields before one reward and after 

the other. Although reward-predictive cells did not seem to form a discretely different subset, 

in subsequent sections they will be singled out for consideration because their activity was 

most readily comparable to reward anticipation behavior.

2.2. Switching Between Two Environments

If reward-associated cells were truly specialized to encode reward, downstream circuits 

would likely benefit from those signals arising from same cell population in each 

environment. Contrary to the consistency this scheme requires, hippocampal representations 

seem to be largely randomized in different spatial contexts (Leutgeb et al., 2005, McKenzie 

et al., 2016; though see Rubin et al., 2015). We therefore asked whether reward-associated 

activity would be re-assigned to different cells in a new environment, or instead arise from 

the same population.

To distinguish these possibilities, a separate cohort of mice was trained on a new paradigm, 

condition AB (Figure 2A), in which mice alternated block-wise between the original track 

(track A), and a second, shorter track with distinct visual textures (track B, Figure S2A). On 

track B, reward was also delivered near the end, and on both tracks spatial fields occurred at 

increased density near reward (Figure S2B).

As mice alternated between tracks A and B, the fields of some cells shifted to different, 

apparently random locations, while others were consistently active near reward, indicating 
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that reward-associated cells formed a separate group. These two response types are 

illustrated for several cells in Figure 2b, and they were shown to be representative in several 

population-level analyses.

Across the tracks, most spatial fields shifted in a manner consistent with global remapping. 

Field locations (Figure 2d) spanned the complete range of possible shifts, and their density 

appeared approximately uniform, possibly excepting regions near reward. This effect was 

confirmed quantitatively by comparing to a previous study that observed global remapping 

and employed similar recording techniques (Danielson et al., 2016). That study found the 

average population vector correlation across two distinct physical treadmills was 0.22, while 

in the present study the equivalent value was 0.099 (95% confidence interval 0.094 to 

0.103). This comparison confirmed that switching between tracks A and B elicited global 

remapping, and provided further evidence that virtual environments are capable of 

reproducing much of the same hippocampal phenomenology that has been characterized 

using other methods (Harvey et al., 2009; Dombeck et al., 2010; Domnisoru et al., 2013; 

Aronov & Tank, 2014).

Despite random remapping among most neurons, reward-associated fields appeared to be 

produced by largely the same cells on both tracks. This was first apparent by comparing 

remapping in two subsets of cells (Figure 2c). While most place cells remapped to random 

locations (wide bracket, upper histogram), cells with a field near reward on track A tended to 

be active near reward on track B (narrow bracket, lower histogram).

To demonstrate this effect statistically, quantitative hypotheses were generated for how 

switching between tracks impacted field locations. The first hypothesis, H1, postulated that 

cell identities were randomly shuffled between the two conditions, though on each track 

there was still an increased field density near reward. Under H1, a given cell could, for 

example, contribute to the excess density of fields near reward in one environment, and then 

encode a random place on the track in the other environment. The second hypothesis, H2, 

postulated that cell identities were perfectly preserved. Under H2, reward-associated cells 

would continue to maintain fields near the reward on both tracks. Meanwhile, place cells 

would remap randomly, including to locations near the reward, but with the same probability 

as other parts of the track. Each of these hypotheses predicted a particular distribution for the 

density of field locations on the two tracks (Figure 2e). To account for a partial contribution 

of each hypothesis, a weighted combination of the H1 and H2 distributions was fit (see 

Methods).

The observed density of field locations (Figure 2f) exhibited an approximately uniform 

density every-where, except for an increased density at the intersection of reward locations. 

Notably, there was no increase in density along the reward lines as predicted by H1, 

suggesting the data were entirely accounted for by H2. This qualitative impression was 

confirmed by a numerical fit. Among cells composing the excess density, all remapped 

according to H2 (100.0%, 95% confidence interval 99.6%-100.0%). The same result was 

found when CA1 and subiculum were analyzed separately (Figure S2C). Reward-associated 

cells with a field on both tracks composed 4.4% of all recorded cells in CA1 and 5.7% in 

subiculum.
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The preceding analysis focused exclusively on cells with a spatial field on both tracks 

(“dual-track cells”). For cells with a field on only one track (“single-track cells”), remapping 

could not be followed across environments. However, the identity of single-track cells (place 

cells or reward-associated cells) could be inferred by incorporating an additional 

assumption: that among place cells with a spatial field on at least one track, a random cross-

section would also have a field on the other track. This assumption postulated that, for 

example, all place cells with a field on track A were equally likely to have a field on track B, 

regardless of their track A field location. This assumption, based on findings of 

independence across environments (Leutgeb et al., 2005), implied that single-track and dual-

track place cells would exhibit the same COM density. Since the preceding analaysis 

established that dual-track place cells were uniformly distributed, it followed that single-

track place cells were also uniform, and thus among single-track cells the excess density was 

composed exclusively of reward-associated cells (Figure S2D).

This analysis demonstrated that cell identity was perfectly (100.0%) preserved across the 

two environments. While the population of place cells remapped to random locations, 

consistent with the global remapping observed in previous studies, reward-associated cells 

did not deviate from the reward location. Moreover, reward-associated cells fully accounted 

for the excess density of fields near reward. This sharp division of cell identities revealed an 

unexpected degree of consistency in the hippocampal encoding of reward, and was 

particularly surprising in CA1, where cell classes that persist across contexts have not been 

described before.

In this sense, reward-associated cells seemed to form a dedicated channel for encoding the 

reward location. Yet their encoding was also context-specific: some cells exhibited a field 

near reward on both tracks, while others formed fields on only one track, and, presumably, 

some reward-associated cells not active on either track would have developed fields on a 

third track. Thus the identities of reward-associated cells were invariant to context, but, just 

as among place cells, each context elicited spatial fields among a different subset (Figure 

2g). This property might allow reward-associated cells to serve two roles simultaneously: 

providing a simple readout of reward location when considering the summed signal of all 

cells, yet also encoding the current context based on which neurons are active.

2.3. Correlation of Reward-Predictive Cells with Reward Anticipation

The previous results have shown that many reward-associated cells reliably indicated the 

reward location, even across different contexts, but it has not been addressed whether mice 

themselves could predict reward (e.g. anticipatory licking). If so, it would be important to 

identify whether activity was linked to the behavioral prediction, or if instead reward-

associated cells encoded reward location independently of behavior. To make this 

comparison most effectively, some of the following analyses considered only reward-

predictive cells (those active before reward in both contexts).

In mice that had experienced many traversals of condition Aend, two kinds of anticipation 

behaviors were apparent: slowing down prior to reward delivery, and licking the reward tube 

(Figure 3a). Slowing was typically initiated prior to licking (Figure S3A-C), making it the 

earliest reliable indicator of reward anticipation. In addition, slowing was observed more 
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frequently than licking (not shown), and therefore slowing was used to indicate the onset of 

reward anticipation.

Slowing behavior developed gradually throughout training, and with sufficient experience 

was observed on nearly every trial, as illustrated here for one mouse (Figure 3c). 

Importantly, in condition AendAmid, which involved shifting reward delivery, the slowing 

location rapidly adapted to the current reward location, typically within the first 2-3 

traversals (Figure 3d). This demonstrated that the mouse understood the reward alternation 

paradigm, and further showed that slowly walking was a robust phenomenon that could be 

used to track reward anticipation at single-trial resolution.

For quantitative analyses, slowing onset required a precise definition. Consistent with 

previous experiments showing a discrete onset of anticipation behaviors (Mello et al., 2015), 

movement speeds here were significantly bimodal (Figure 3b, p < 1e-5, Hartigan’s Dip 

Test). On each trial, the onset of reward anticipation was defined as speed dropping below a 

mouse-specific threshold for the last time prior to reward delivery.

The timing of reward anticipation seemed to be precisely aligned to the activity of many 

reward-predictive cells, but generally not place cells. This difference between reward-

predictive cells and place cells was demontrated in three quantitative population analyses 

described below, and is illustrated for two simultaneously-recorded cells in Figure 3e-f. On a 

few representative single traversals (panel e), and across all traversals (panel f), the activity 

of the reward-predictive cell occurred at approximately the same distance after the onset of 

slowing. In contrast, a simultaneously-recorded place cell exhibited no such correlation 

(panel g). These visual impressions were confirmed to be significant using a statistical 

metric, the percentile correlation, in which the observed value was compared to a shuffle 

distribution (panel h, see Methods).

To show these examples were representative of all recorded neurons during condition 

AendAmid, the percentile correlation of each cell was compared to how the cell remapped 

(panel i). Cells that were slowing-correlated, defined as a percentile correlation of 5 or less, 

were primarily those that maintained fields near the reward (dashed purple outline). 

Although some cells that exhibited spatial fields in the same location across contexts (dashed 

blue outline) were also slowing-correlated, they did not occur at a rate exceeding chance.

This result was confirmed in a separate, non-parametric analysis that did not explicitly 

measure cell density. For cells that were slowing-correlated during Aend blocks, fluorescence 

activity was plotted as a function of position by averaging across cells and traversals (Figure 

3j, top panel). As expected, most activity of slowing-correlated cells was located just prior to 

the reward (solid arrowhead), while in the general population it was distributed relatively 

uniformly (gray trace). During the interleaved Amid blocks (bottom panel), the activity peak 

of slowing-correlated cells shifted to the current reward location (solid arrowhead), showing 

that many slowing-correlated cells were also reward-predictive cells. However, at the 

location where the peak had been observed previously there was no increase above baseline 

(hollow arrowhead), showing that few if any place cells were slowing-correlated. A similar 
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pattern was observed for cells that were slowing-correlated during Amid (Figure S3D-F), and 

also when considering CA1 and subiculum separately (not shown).

The result was also confirmed using a separate metric for slowing, the slowing correlation 

index (SCI, see Methods). Whereas the percentile correlation score showed a relationship 

between speed and activity, the SCI more specifically assessed whether transients tended to 

occur at a fixed offset relative to slowing. Using this metric, more reward-predictive cells 

than place cells were shown to be significantly aligned with slowing (Figure S4).

These analyses demonstrated that, during condition AendAmid, correlation with slowing was 

not a general feature of the hippocampal ensemble. Instead, it was found primarily among 

reward-predictive cells, and in some cases among a smaller fraction of place cells.

Interestingly, the correlation with slowing was less prevalent during condition AB. Though 

some slowing-correlated cells seemed to be present, they composed a much smaller fraction 

of the total population (5.4% of cells with sufficient activity were slowing-correlated on 

track A during condition AB vs 11.2% during Aend blocks of condition AendAmid). The 

discrepancy showed that reward-predictive cells were not generally aligned to all instances 

of reward anticipation, but instead their recruitment depended on particular features of the 

task. In this case, the important difference might have been increased cognitive demand: 

during condition AendAmid, anticipating the reward required accurate recall of recent events, 

whereas during condition AB anticipation could have relied entirely on the immediate visual 

cues.

Given that many reward-predictive cells were active during slow movement, a behavioral 

state that can be associated with decreased place cell activity (McNaughton et al., 1983), it 

was possible that during reward anticipation the entire population switched from encoding 

place to encoding reward, in which case place cells and reward-predictive cells would reflect 

disjoint states of hippocampal activity. A previous study found, for example, that attending 

to different features caused CA1 to switch between mutually-exclusive maps of the same 

environment on the time scale of ~ 1 second (Kelemen & Fenton, 2010). If the same were 

true of place cells and reward-predictive cells, their activity would be negatively correlated. 

In fact, their activity was slightly positively correlated (Figure 4), with the two populations 

often being active simultaneously, at least on time scales that be can resolved by imaging 

calcium transients. Thus reward-predictive cells and place cells seemed to be part of the 

same map, performing complementary, rather than mutually exclusive, functions.

2.4. Sequential activation of reward-predictive cells

To better understand the correlation between anticipation behavior and reward-predictive 

cell activity, their relative timing was examined at the population level. This analysis 

revealed a sequence of activations that was highly consistent across contexts, as illustrated 

for one session in Figure 5a-b. Comparing blocks of Aend to Amid, reward-predictive cells 

were active in almost exactly the same order, with a highly significant correlation in their 

peak activity times (p < 0.0001). Moreover, their timing across different contexts was nearly 

identical, with the peak fluorescence shifting by a median of only 0.4 seconds. This was a 

remarkably brief offset in light of several factors: the potential for behavioral variability, the 
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temporal uncertainty of calcium imaging methods, and the fact that the sequence spanned 

more than 6 seconds. The long duration of the sequence also ruled out the possibility that 

reward-predictive cells were triggered by sharp wave ripples, since the ripple-triggered 

events detectable with calcium imaging span less than 0.5 seconds (Malvache et al., 2016).

Activations in approximately the same order were also found for the full populations of 

reward-predictive cells in both conditions (Figure 5c), and also when considering CA1 and 

subiculum separately (not shown). Such similar sequential activation, regardless of location 

or environment, showed that even individual reward-predictive cells seemed to be highly 

specialized.

2.5. Reward-predictive cell sequences did not encode reward anticipation behaviors

The previous results have shown that reward-associated cells formed a distinct and 

specialized population that was consistently active near reward, and that the timing of many 

reward-predictive cells was tightly correlated with reward anticipation. It was unclear, 

however, whether reward-predictive cells were in fact triggered by anticipation behaviors, or 

if instead their activity could be dissociated from behavior. It seemed unlikely that reward-

predictive cells would encode the motor actions of slowing down and licking, given that 

many were not correlated with slowing, and that different cognitive demands resulted in 

different fractions of the population exhibiting correlation. Nevertheless, this possibility was 

tested in four control analyses.

First, the relative timing of activity and behavior was compared. If reward-predictive cell 

sequences were triggered by slowing per se, they would always start after speed began to 

decrease. Contrary to this prediction, in several preparations the earliest reward-predictive 

cells became active prior to any detectable reduction in speed (Figure 5d).

To show that reward-predictive cells did not encode events preceding a decrease in speed, 

such as changing gait or premotor planning, reward approach was compared to other 

instances in which mice slowed down. While running between reward locations during 

condition AendAmid, mice occasionally slowed, stopped, then resumed running. These brief 

rest events were initiated at locations throughout the track and were almost never 

accompanied by licking (Figure S5B-D), suggesting they were unrelated to reward 

anticipation. At the onset of rest events, reward-predictive cell activity was indistinguishable 

from the baseline activity during running (0.9 ± 0.4 %ΔF/F, mean ± std. err. vs 1.12 ± 0.03, 

p = 0.57, student’s t-test), and far below the average activity observed when mice slowed 

prior to reward (7.1 ± 0.8). In the first 1 second after slowing, activity during rest events 

remained indistinguishable from baseline (1.3 ± 0.03, p = 0.65), while during pre-reward 

walking bouts it increased even further (10.4 ± 0.7). These comparisons demonstrated that 

reward-predictive cells did not encode events associated with slowing down, since their 

activity remained at baseline levels when slowing was unrelated to reward anticipation.

It was also shown that reward-predictive cell activity did not encode the current lick rate. 

Comparing the three-second intervals just before and after reward delivery, the lick rate 

increased more than four-fold (1.01 ± 0.01 Hz pre vs 4.73 ± 0.01 post), while the 
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fluorescence of reward-predictive cells fell by nearly half (11.5 ± 0.1 %ΔF/F pre vs 5.99 

± 0.08 post).

Finally, it was shown that reward-predictive cells were not responding to the full 

constellation of anticipation behaviors, i.e. slowing down, walking at a low speed for several 

seconds, and simultaneously licking. This possibility was tested using a natural control: 

“error” trials.

During condition AendAmid, mice frequently slowed, walked, and licked prior to reward. But 

sometimes they exhibited these behaviors at other locations, especially before the rewarded 

location of the non-current context (e.g. walking before 166cm when the reward was 

delivered at 366cm, Figure S5E-F). These “incorrect” walking bouts were defined as those 

overlapping the non-current reward location (see Methods), and they were accompanied by 

significantly more licking than walking bouts that did not overlap a rewarded location (2.12 

vs 0.85 licks/bout, p < 1e-10, student’s t-test), showing that mice had an expectation of 

reward. If reward-predictive cells encoded the stereotyped behaviors of reward anticipation, 

their activity should not depend on where anticipation took place. In particular, they should 

be equally active during walking bouts before the current or non-current reward location.

Figure 6a shows two example walking bouts from the same session, one before the current 

reward location, and one spanning the non-current reward location. In both cases, the mouse 

suddenly slowed down, then walked for several seconds while licking at a rate of 

approximately 1 Hz. Despite the similarity of anticipation behaviors, reward-predictive cells 

were much more active when approaching the current reward site than the non-current 

reward site.

These examples are representative of the entire session (Figure 6b). Average movement 

speeds were virtually identical in the two categories, yet reward-predictive cell activity was 

more than two times greater when walking before the current reward. An even greater 

difference in activity was observed when considering the full population of reward-

predictive cells recorded from mice in both conditions (Figure 6c). Several control analyses 

verified that differential activity could not be ascribed to a difference in the average lick rate, 

the overall level of hippocampal activity, or selection bias introduced when classifying 

reward-predictive cells (Figures S6 and S7).

This comparison demonstrated that reward-predictive cells did not encode the behavioral 

events that typically preceded reward. Instead of producing a stereotyped response to all 

instances of reward anticipation, their activity was strongly modulated by the particular 

circumstances in which anticipation took place. This suggested that they encoded a cognitive 

variable that reflected the internal state, one that apparently differed when the mouse was 

walking at the current or non-current reward location.

Because the previous analyses averaged across trials and excluded the first three traversals of 

each block, a separate analysis was performed to identify how rapidly reward-predictive 

cells remapped after the context switched (Figure 6d). During condition AendAmid, activity 

shifted after one or two exposures to the new reward location, whereas during condition AB 

the change was immediate. These time courses were similar to the speed at which reward 
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anticipation shifted to the new location, revealing one more respect in which reward-

predictive cell activity was aligned to changes in behavior.

3. Discussion

We have described a novel population of neurons in two major hippocampal output 

structures, CA1 and the subiculum. Reward-associated cells exhibited activity fields that did 

not deviate from the reward location, and these cells entirely accounted for the excess 

density of fields near reward. Their pattern of remapping cleanly distinguished them from 

simultaneously-recorded place cells, both when reward was shifted within one environment 

and most place fields remained stable, as well as across environments when place cells 

remapped to random locations. During these manipulations, the population of reward-

associated cells never mixed with place cells (0.0% cross over), suggesting that they formed 

a dedicated channel for encoding reward. The timing of many reward-predictive cells was 

correlated with the onset of reward anticipation, yet their activity could be dissociated from 

anticipation behavior, indicating they encoded a cognitive variable related to the expectation 

of reward. These findings demonstrate an unexpected degree of stability in the hippocampal 

encoding, and are consistent with reward-associated cells playing an important role in goal-

directed navigation. More broadly, they reveal an important new target for studying reward 

memory in the hippocampus.

Reward-associated cells appear to be the experimental confirmation of a cell class 

hypothesized more than two decades ago (Burgess & O’Keefe, 1996). Burgess and O’Keefe 

proposed that dedicated “goal cells” might serve as an anchor point for devising goal-

directed trajectories. Interestingly, another component of their predicted algorithm, cells 

providing a context-specific encoding of distance and angle to the goal, have recently been 

described in bats (Sarel et al., 2017). Other models of navigation have also been developed 

in which reward-associated cells could serve a critical function. For example, animals might 

explore possible routes in advance of movement (Pfeiffer & Foster, 2013; Johnson & 

Redish, 2007), in which case activating reward-associated cells would indicate a successful 

route. Other observations have suggested the computation proceeds in reverse, from the goal 

to the current location (Ambrose et al., 2016), meaning reward-associated cells could 

provide a seed for this chain of activations. In the framework of reinforcement learning, 

reward-predictive cells are consistent with models in which the role of the hippocampus is to 

support prediction of expected reward, such as the successor representation theory (Dayan, 

2008; Stachenfeld et al., 2017). While diverse in their algorithms, these models illustrate the 

importance of reward-associated fields being carried by the same cells: consistency enables 

other circuits to reliably identify reward location, regardless of environment or context.

Though reward-associated cells were not characterized anatomically, it is possible that they 

project to a specific external target, such as nucleus accumbens. This would be consistent 

with recent observations in ventral CA1 that neurons projecting to nucleus accumbens are 

more likely to be active near reward than neurons with other projections (Ciocchi et al., 

2015). If reward-associated cell axons did reach the ventral striatum, their sequential 

activation could conceivably (Goldman, 2009) underlie the ramping spike rate that precedes 
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reward (Atallah et al., 2014), and might even contribute to reward prediction error signals of 

dopaminergic neurons (Schultz, 1998).

Reward-predictive cell sequences were often precisely aligned with, and sometimes even 

preceded, anticipation behaviors. This might have reflected reward-predictive cells making a 

direct contribution to reward anticipation, or they might have received an “efferent copy” of 

a prediction signal generated elsewhere. It is intriguing that more cells were correlated with 

behavior during anticipation that required recall of recent events (condition AendAmid), and 

less prevalent when anticipation could have based entirely on immediate cue association 

(condition AB). We speculate this difference might be related to previous findings that short 

term memory tasks often involve the hippocampus, (Lalonde, 2002; Sato et al., 2017), while 

cue association typically does not (Rodríguez et al., 2002), though future studies will be 

required to dissect how reward-predictive cell activation covaries with the behavioral effects 

of hippocampal lesion or inactivation.

Cognitive demands might also have impacted the timing of reward-predictive cells. During 

condition AB, reward cells become active 1-2 seconds earlier than during condition 

AendAmid (Figure 6c). If reward-predictive cells did reflect a signal contributing to 

anticipation behavior, this timing differential might have arisen from a difference in decision 

threshold, suggesting reward-predictive cells might have encoded the degree of certainty in 

reward proximity.

An important open question is why reward-predictive cells were more active when mice 

anticipated reward correctly than incorrectly. The amplitude of activity might have indicated 

the level of subjective confidence that reward was nearby, possibly implying a link to 

orbitofrontal cortex neurons that seem to encode value (Schoenbaum et al., 2011). 

Alternatively, the differing amplitudes might reflect the existence of multiple reward 

prediction systems (Daw et al., 2005), with the hippocampus contributing a prediction in 

some, but not all, instances of reward anticipation.

Spatial maps in CA1 can switch between mutually exclusive encodings of the same 

environment, depending on which environmental features are being attended (Kelemen & 

Fenton, 2010). In the present experiments, most place cells maintained fields in the same 

location after the reward was shifted (condition AendAmid). Nevertheless, some place cell 

fields did remap, and it is known that place cell ensembles can respond dynamically to 

shifting reward contingencies (Dupret et al., 2010). In future studies, it will be interesting to 

track how reward-associated cells might interact with the balance of remapping and stability 

in place cell populations (Sato et al., 2018).

Although reward-associated cells seemed to form a dedicated channel for reward-related 

information in the present experiments, it remains unknown how widely their responses 

might generalize to other tasks or reward types. One clue is provided by the observation that 

a diverse array of rewards and goals have elicited a localized increase in spatial field density 

(Hollup et al., 2001; Dupret et al., 2010; Dombeck et al., 2010), suggesting that reward-

associated cells also formed fields in those circumstances. If they did, it would be 

numerically impossible for each goal type to be encoded by a separate pool of cells, each 
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occupying 1-5% of CA1. This suggests that a single population of reward-associated cells 

would likely encode multiple goal types, possibly with different subsets being active in each 

case, just as different subsets formed fields on tracks A and B. Additional studies will be 

required to confirm these predictions, as well as test whether responses generalize to non-

navigational paradigms, such as immobilized behavior.

Given their unique physiology, it is striking that, to our knowledge, reward-associated cells 

have not been described previously, despite decades of research on hippocampal activity in 

the context of reward (Poucet & Hok, 2017). One possible explanation is that their sparsity 

(1-5% of recorded neurons) made them difficult to detect, especially prior to the advent of 

large-scale recording technologies.

It is also possible that reward-associated cells are only activated by specific mnemonic 

requirements. Previous studies employing a variety of navigation paradigms have examined 

the density of spatial fields near a goal or reward (Fyhn et al., 2002; Lansink et al., 2009; van 

der Meer et al., 2010; Dupret et al., 2010; Danielson et al., 2016; Zaremba et al., 2017), and 

in some cases, but not all, an excess density of spatial fields was observed near that location. 

If reward-associated cells did contribute to the excess density, comparing across various task 

structures suggests that two features are required to elicit their fields: no explicit cues for 

reward, and reward locations frequently shifting to different parts of the environment. While 

not definitive, these findings suggest that reward-associated cells are not a general feature of 

hippocampal encoding, but instead are only engaged during particular cognitive demands.

Perhaps the cells with the most similar properties to reward-associated cells are the “goal-

distance cells” recently reported in bats (Sarel et al., 2017). Goal-distance cells were active 

in a sequence that reliably aligned with goal approach, regardless of approach angle. It was 

unclear, however, whether their responses would generalize to different goals, since tuning 

among the overlapping population of goal-direction cells was largely goal-specific. Though 

they exhibit intriguing similarities, comparing the detailed properties of reward-associated 

cells and goal-distance cells is made difficult by the diverse experimental paradigms in 

which they were observed. Whereas free flight allowed bats to take a variety of approaches 

to the same visible goal, virtual navigation in mice produced stereotyped trajectories where 

reward expectation could be compared at several unmarked sites. Future studies could 

perhaps combine variants of these methods to better understand how goal-distance cells and 

reward-associated cells might be related.

Whatever conditions might elicit the activity of reward-associated cells, it is clear that they 

encode a variable of central importance for goal-directed navigation, and they endow 

hippocampal maps with a consistency that was not previously appreciated. In addition, they 

provide a novel target for studying the hippocampal contribution to reward memory. Further 

studies will be required to determine whether reward-associated cells relate to the encoding, 

storage, or recall of reward locations, and how they might interface with other brain areas to 

support navigation.
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STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David Tank (dwtank@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—All experiments were performed in compliance with the Guide for the Care and Use 

of Laboratory Animals (https://www.aaalac.org/resources/Guide_2011.pdf/). Specific 

protocols were approved by the Princeton University Institutional Animal Care and Use 

Committee.

Transgenic mice expressing GCaMP3 (Rickgauer et al., 2014) (C57BL/6J-Tg (Thy1-

GCaMP3) GP2.11Dkim/J, Jackson Labs strain 028277, RRID: IMSR_JAX:028277) were 

used to obtain chronic expression of calcium indicator. All mice were heterozygous males. 

Optical access to the hippocampus was obtained as described previously (Dombeck et al., 

2010). A small volume of cortex overlying the hippocampus was aspirated and a metal 

cannula with a coverglass attached to the bottom was implanted. A thin layer of Kwik-Sil 

(WPI) provided a stabilizing interface between the glass and the brain. The craniotomy was 

centered at the border of CA1 and subiculum in the left hemisphere (1.8 mm from the 

midline, 3 mm posterior to bregma) so that both regions could be imaged in a single 

window, though not simultaneously. Thus all imaging fields of view were located within 

approximately 1 mm of the CA1-subiculum border. During the same surgery, a metal head 

plate was affixed to the skull to provide an interface for head fixation.

Mice and their littermates were housed together until surgical implantation of the optical 

window. At the time of surgery, mice were aged 7 to 15 weeks. After surgery, mice were 

individually housed. Cages were transparent in a room on a reverse light cycle, with 

behavioral sessions occurring during the dark phase. Mice were randomly assigned to 

experimental groups. The number of mice in each experimental group is described in the 

next section.

METHOD DETAILS

Behavioral Training—After mice had recovered from surgery for at least 7 days, water 

intake was restricted to 1 to 2 mL of water per day and was adjusted within this range based 

on body weight, toleration of water restriction, and behavioral performance. After several 

days of water restriction, mice began training in the virtual environment, typically one 

session per day and 5-7 days per week.

The virtual reality enclosure was similar to that described previously (Dombeck et al., 2010; 

Domnisoru et al., 2013). Briefly, head-fixed mice ran on a styrofoam wheel (diameter 15.2 

cm) whose motion advanced their position on a virtual linear track, and an image of the 

virtual environment was projected onto a surrounding toroidal screen. The virtual 

environment was created and displayed using the VirMEn engine (Aronov and Tank, 2014). 

To mitigate the risk of stray light interfering with imaging of neural activity, only the blue 
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channel of the projector was used, and a blue filter was placed in front of the projector. 

Visual textures were chosen to be as close to isoluminant as possible for an unrelated study 

measuring pupil diameter.

Condition Aend: The virtual track was 4 m long, with a variety of wall textures and towers 

that served to provide a unique visual scene at each point on the track. Textures and tower 

locations were chosen to replicate as closely as possible a track used in a previous study 

(Domnisoru et al., 2013). When mice reached a point just before the end (366 cm), a small 

water reward (4 uL) was delivered via a metal tube that was always present near the mouth. 

The reward location in the virtual environment was unmarked, insofar as visual features at 

that location were no more salient than at other points on the track. After running to the end 

of the track, mice were teleported back to the beginning. To avoid visual discontinuity, a 

copy of the environment was visible after the end of the track.

After each reward was delivered, the small droplet of water remained at the end of the tube 

and was available for consumption indefinitely. When mice licked the reward tube, 

regardless of whether water was available, each lick was detected using an electrical circuit 

that measured the resistance between the mouse’s head plate and reward tube. The resistance 

was sampled at 10 kHz, and licks appeared as brief (10-20 ms) square pulses. Before 

identifying lick onset times, a Haar wavelet reconstruction was performed to reduce 

electrical noise. In a few cases, electrical noise was large enough to interfere with lick 

detection, and these datasets were excluded from analyses that involved licking.

After at least 5 sessions of training on condition Aend, mice were exposed to a new reward 

delivery paradigm, either condition AendAmid or condition AB.

Condition AendAmid: The reward location alternated block-wise between 366 cm and 166 cm 

(condition AendAmid, Figure 1D). Within each block, the reward was delivered at either 366 

cm (Aend) or 166 cm (Amid). Each session began with a block of context Aend. Block 

transitions occurred seamlessly at the teleport, with no explicit cue indicating that the reward 

location had changed. The reward locations were not explicitly marked, and there were no 

visual features common to the two reward locations that distinguished them from other parts 

of the track.

Condition AB: Within each block, mice either traversed track A (400 cm, reward at 366 cm) 

or track B (250 cm, reward at 229 cm). The two tracks had no common visual textures. 

Block changes took place during teleportation at the end of the track, creating a brief visual 

discontinuity. Each session began with a block of track A.

Block durations: When a new block began, two criteria were chosen to determine when to 

switch to the next block. One criterion was a time interval, typically chosen randomly 

between 5 and 15 min, and the other criterion was a number of traversals, typically chosen 

randomly in the range 10 to 20. When either the amount of time or the number of traversals 

had been reached, the context changed at the next teleport and a new block began. Across all 

sessions and mice, the average block duration was 8:4 ± 5:9 min (mean ± SD) and the 

average number of rewards was 18:7 ± 13:4.
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Imaging windows were implanted in a total of 24 mice. Of these, 3 mice were excluded 

because of poor imaging quality, 8 were excluded because of poor behavior in condition 

Aend (typically earning less than 1 reward per minute), 1 died unexpectedly, and 12 were 

used in the study. Separate cohorts of mice were used for condition AB (5 mice) and 

condition AendAmid (7 mice), though one mouse whose data were used for condition 

AendAmid had previously been exposed to 10 sessions of condition AB (data from the 

condition AB sessions was not used due to a problem with experimental records).

Optical Recording of Activity—While mice interacted with the virtual environment, 

two-photon laser scanning microscopy was used to identify changes in fluorescence of the 

calcium indicator GCaMP3 caused by neural activity. In most experiments (see exception 

below), the two-photon microscope was the same as described previously (Dombeck et al., 

2010). Typical fields of view measured 100 by 200 um, and were acquired at 11-15 Hz. 

Microscope control and image capture were performed using the ScanImage (Vidrio 

Technologies) software package.

In CA1, approximately half of pyramidal neurons were labeled, specifically those located in 

the dorsal half of the pyramidal layer. In subiculum, approximately three quarters of cells 

were labeled, with labeled cells distributed throughout all depths. Most fields of view in 

subiculum were located in the most dorsal 100 μm.

To examine the population activity of many simultaneously recorded cells during a single 

session, additional data were obtained from CA1 in one mouse with modified experimental 

parameters: individual blocks and sessions lasted longer, and a larger field of view was 

imaged (500 × 500 um) at a faster scan rate (30 Hz). To obtain a larger field of view, a 

modified version of the two-photon microscope was used, similar to a design described 

previously (Low et al., 2014). Compared to the microscope used in other experiments, the 

most significant change was the incorporation of resonant galvanometer scan mirrors.

This mouse (EM7) was trained on condition AendAmid, and data from only the longest 

session (number 12, 114 traversals) was used here. This session provided example data for 

several figure panels (Figures 3D-3H, 5A, 5B, 5D, 6A, and 6B).

However, data from this mouse was not used in the population analyses. The same field of 

view was imaged on each day of behavioral training, but no attempt was made to track 

single cells. When all recorded cells from this mouse were pooled over time, reward-

associated cells were observed, confirming suitability of the data as representative of the 

other mice described in this study. Nevertheless, if this pooled data had been included in the 

population analyses, it would have introduced many unidentified duplicate cells, potentially 

biasing the results, and not being compatible with some statistical tests.

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification of Cell Activity—All analyses were performed using custom software in 

MATLAB (Mathworks).
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Motion correction of recorded movies was performed using an algorithm described 

previously (Dombeck et al., 2010). Cell shapes and fluorescence transient waveforms were 

identified using a modified version of an existing algorithm (Mukamel et al., 2009). The 

principal modification was in using a different normalization procedure: instead of dividing 

each frame by the baseline, each frame was divided by the square root of the baseline to 

yield approximately the same resting noise level in all pixels. This normalization was used 

only to identify cell shapes, but not for extracting time courses (see below).

In each movie, the algorithm typically identified 30-150 active spatial components (each 

referred to as a “cell”). All cells were kept for subsequent analyses, with no attempt to 

distinguish somata from processes. Time courses were computed as follows. For each pixel 

in each frame, the “baseline” was computed by taking the 8th percentile of values in that 

pixel in a rolling window of 500 frames. In each pixel, an additive offset was applied to the 

entire baseline time course to ensure that the residual fluorescence had a mean of zero. In 

each frame, the activity amplitude of all cells was computed by performing a least-squares 

fit of the cell shapes to the base-line-subtracted frame, yielding the fractional change in 

fluorescence, or ΔF/F. For each cell, the time course was median-filtered (length 3) and 

thresholded by zeroing time points that were not part of a significant transient at a 2% false 

positive rate (Dombeck et al., 2010).

In some cases, the motion-corrected movie contained a small amount of residual 

displacement in the Z axis, typically about 1 micron. Though small, this displacement could 

produce apparent changes in the fluorescence of up to 50%. Because Z displacement was 

uniform over the entire image, its value could be readily measured at single-frame time 

resolution, yielding an estimated Z displacement time course. In the time course of each cell, 

the amplitude of the Z displacement time course was fitted and subtracted before the 

filtering and thresholding steps described above. This prevented artifactual changes in 

fluorescence from contaminating true transients.

In the dataset that employed resonant scan mirrors to obtain a wider field of view, the above 

methods could not be applied. The field of view was so large that motion offsets were not 

consistent throughout the image (e.g., the top of the image was displaced right while the 

bottom was displaced left), which necessitated a more complex motion correction procedure.

First, whole-frame correction was applied separately to each chunk of 1000 frames using the 

standard algorithm. To correct for residual motion within each frame, the corrected movie 

was divided into 5 spatial blocks, each of which spanned the entire horizontal extent of the 

image. Vertically, blocks were evenly sized and spaced, and adjacent blocks overlapped by 

50%. In each of the 5 blocks, motion was identified using the standard algorithm, and these 

offsets were stored for subsequent correction.

For cell finding, the imaged area was divided into 36 spatial blocks (6 by 6 grid), with all 

blocks the same size, and each overlapping neighboring blocks by 10 pixels. Within each 

block, the motion estimates described above were linearly interpolated to estimate motion 

within the block, and this offset was applied to correct each frame. After applying this 

correction offset, there was no apparent residual motion within the block. Within each block, 
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the shapes of active cells were identified using constrained nonnegative matrix factorization 

(Pnevmatikakis et al., 2016). Because adjacent blocks overlapped, some cells were identified 

more than once. Two identified cells were considered duplicates if their shapes exhibited a 

Pearson’s correlation exceeding 0.8, and the cell with a smaller spatial extent was removed. 

Time courses were median-filtered (length 10), and thresholded by zeroing time points 

below a certain threshold (4 times the robust standard deviation). All subsequent analysis 

steps were performed using the same procedures as other datasets.

Computing Place Fields—The spatially averaged activity was computed by dividing the 

track into 10 cm spatial bins, averaging the activity that occurred when the mouse was in 

each bin and speed exceeded 5 cm/sec, then smoothing over space by convolving with a 

Gaussian kernel (SD 20 cm), with the smoothing kernel wrapping at the edges of the track.

Whether a cell exhibited a spatially modulated field was defined by how much information 

its activity provided about linear track position (Skaggs et al., 1993). For each cell, the 

information I was computed as

I = ∑
i

oiai log2(ai ∕ ā)

where oi is the probability of occupancy in spatial bin i, ai is the smoothed mean activity 

level (ΔF/F) while occupying bin i, and ā is the overall mean activity level. This value was 

compared to 100 shuffles of the activity (each shuffle was generated by circularly shifting 

the time course by at least 500 frames, then dividing the time course into 6 chunks and 

permuting their order). If the observed information value exceeded the 95th percentile of 

shuffle information values, its field was considered spatially modulated.

The COM of each spatially modulated cell was computed by transforming the spatially 

averaged activity to polar coordinates, where θ was the track position and r was the average 

activity amplitude at that position. The two-dimensional center of mass of these points was 

computed, and their angle was transformed back to track position to yield the COM location. 

No special treatment was given to cells that might have multiple fields.

Because the end of the track was continuous with the beginning, its topology was a circle 

rather than a line segment. To accommodate statistical tests and fits designed for a linear 

topology, COM locations were re-centered on the region of interest. For Hartigan’s Dip Test, 

COM locations were centered at 266 cm. For fitting Gaussian distributions to the excess 

density (see below), COM locations were centered at the reward location.

Reward-associated cells were typically chosen by identifying with COMs located within 25 

cm of both rewards (before or after). Reward-predictive cells were defined as reward-

associated cells with a COM located prior to both rewards. Place cells were defined as cells 

with a spatial field that were not reward-associated. It should be noted that in most cases 

(e.g., Figures 3, 4, 5, and 6) a set of putative reward-associated cells selected based on COM 

location likely contained some place cells that coincidentally exhibited fields near the 

reward. Though the analysis of Figure 2 showed that reward-associated cells composed a 
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separate class, the identity of given cell active near reward was ambiguous, since it could not 

be determined whether it came from the population of place cells or reward-associated cells.

Computing Activity Correlation across Environments—To identify how similarly 

the entire recorded ensemble encoded position on track A and track B during condition AB, 

the population vector correlation was computed. For each cell, the spatially averaged and 

smoothed activity was computed as described above. Since track B was shorter than track A, 

only the first 250 cm of track A was used. The average activity values of every cell at every 

position were treated as a single vector, and the Pearson’s correlation was computed 

between the vector for track A and the vector for track B.

Fitting COM Density in Condition Aend and Condition AB—The density of COMs 

on each track was fit with a mixture distribution that combined a uniform distribution and a 

Gaussian distribution, i.e.

D(x) = αu
1
L + αgP(x ∣ μ, σ2)

where D(x) is the total COM density at track location x, αu is the fraction of cells that are 

uniformly distributed, L is the track length, αg = 1 – αu is the fraction of cells that compose 

the excess density near reward, and P(·∣μ, σ2) is the probability density function for a 

Gaussian distribution with mean μ and variance σ2. A maximum likelihood fit to the 

observed COMs was used to estimate the α coefficients as well as the parameters of the 

Gaussian.

The four Gaussian fit parameters (one pair for each track; {μA, σA
2 } and {μB, σB

2}) were then 

used to generate the joint probability densities that would be predicted by hypotheses H1 

and H2 for COM locations on the two tracks. Based on these, a mixture distribution was 

fitted to the observed COMs:

D(x, y) = αu
1

LALB
+ αH1DH1(x, y) + αH2DH2(x, y)

where D(x, y) is the probability of observing a cell with a COM on track A at location x and 

a COM on track B at location y, αu was the fraction of cells that remapped according to a 

uniform distribution, αH1 and αH2 were the respective fractions of cells that remapped 

according to H1 and H2, and LA and LB were the lengths of track A and B, respectively. 

Again a maximum likelihood fit was used to estimate the fraction of cells in each component 

of the mixture distribution, with the following constraint applied:

αu + αH1 + αH2 = 1 .

The H1 and H2 distributions were
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DH1(x, y) = 1
2

1
LB

P(x ∣ μA, σA
2 ) + 1

LA
P(y ∣ μB, σB

2)

and

DH2(x, y) = P(x, y ∣ μ, Σ)

with

μ =
μA
μB

, Σ =
σA

2 0

0 σB
2 .

The shape of the H1 and H2 distributions are shown in rough schematic form in Figure 2E. 

The confidence interval for the parameters of the fit was generated by 1,000 bootstrap 

resamplings of the observed COM locations.

Identification of Slowing, Walking Bouts, and Rest Events—Different behavioral 

states were defined based on movement speed, as detailed below. Graphical illustrations of 

these states are shown in Figure S5A.

Instantaneous movement speed was computed as follows. The time course of position was 

resampled to 30 Hz, and teleports were compensated to compute the total distance traveled. 

This trace was temporally smoothed using a Gaussian kernel (SD 2 samples), then the 

difference between adjacent time points was computed and smoothed in the same way to 

yield instantaneous movement speed.

Pre-reward walking bouts began at the moment speed dropped below a mouse-specific 

threshold for the last time prior to reward delivery. Thresholds were chosen manually by 

examining typical running speed from sessions late in training. This threshold distinguished 

“running” from “walking,” with the moment of transition defined as “slowing.” If speed did 

not fall below threshold at least 5 cm before reward, the mouse was not considered to have 

slowed prior to reward. This threshold was applied because brief (<5 cm) walking bouts 

occurred throughout the track at approximately uniform density (not shown), and they might 

have spuriously overlapped the reward zone even if the mouse was not aware of the current 

reward location.

Mice sometimes walked slowly at locations that were not immediately prior to the reward, 

and these unrewarded walking bouts were defined slightly differently. First, candidate bouts 

were identified as times during which speed was lower than half the threshold. The 

beginning of the bout was defined as the moment when speed fell below threshold, and they 

ended when speed rose above half the threshold for the last time prior to rising above the full 

threshold. If the mouse traversed at least 15 cm during this period, it was considered a 

walking bout. Walking bouts beginning less than 25 cm after reward were excluded to avoid 
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the periods when mice ramped up their speed prior to running to the next reward. Walking 

bouts that did or did not span the non-current reward location were categorized separately.

Rest events were defined similarly to walking bouts, with three additional or modified 

criteria: speed fell to 1 cm/sec or lower at some point during the bout, distance advanced less 

than 15 cm during the bout, and the bout did not span either reward site.

For comparing the activity during rest events or walking bouts to running, periods of running 

were defined as the interval between 2 and 5 s prior to a walking bout, and only at time 

points during which speed was at least 20% over threshold.

Percentile Correlation—For each cell, the degree of correlation between activity and 

speed was quantified with a shuffle test. Values of the spatially binned speed and activity (as 

depicted in Figures 3F and 3G) were treated as vectors, and the Pearson’s correlation 

between them was computed. Equivalent values were also computed for a shuffle 

distribution, in which activity was randomly assigned to different traversals. If activity 

tended to occur only after the mouse slowed, the observed correlation would be lower than 

the shuffle distribution.

Importantly, the percentile correlation was not treated as a p value. Applying a statistical test 

of significance to the entire population would require a correction factor for multiple 

comparisons, a more stringent test that might exclude many cells. Instead, the percentile 

correlation was treated as a general score, with the null expectation that, for example, 5% of 

cells would exhibit a value of 5th percentile or less.

The polarity (positive or negative) of the observed correlation was not considered, since it 

was not necessarily informative about whether the activity of a cell was related to slowing. 

The correlation could be negative even for a cell that was not related to slowing, and it could 

be positive for a cell that was precisely aligned to slowing.

Density of Slowing-Correlated Cells—The aim of this test was to determine whether 

slowing-correlated cells occurred more frequently than chance among the populations of 

place cells and reward-associated cells. Only cells with a spatial field during both contexts in 

condition AendAmid were included, and each cell was assigned to a spatial bin based on it 

how remapped (50 cm bin width, bin edges offset by 16 cm to align with reward location). 

The following analysis was performed separately for cells that were slowing-correlated 

during Aend (Figure 3I) and during Amid (Figure S3E).

To estimate the density of slowing-correlated cells in each bin, the numerator was the 

number of slowing-correlated cells, and the denominator was the number of cells with 

sufficient activity (a transient onset within 100 cm before reward on at least ten trials). 

Under the null hypothesis, the density of slowing-correlated cells would be 0.05 in each bin. 

Because in some bins the numerator and denominator were very small (e.g., 1=3), the 

maximum likelihood estimate of density (e.g., 0.33) would not reflect the high level of 

uncertainty. Therefore the estimated density was taken as the lower bound of the 95% 

confidence interval for a binomially distributed variable (e.g., 0.0084). The densities of each 

bin were then smoothed with a Gaussian kernel (SD 0.8 bins), with the convolution 
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wrapping at the edges of the track. Regions in which this spatially smoothed lower bound 

estimate exceeded 0.05 were assumed to contain a greater fraction of slowing-correlated 

cells than predicted by the null hypothesis.

Nonparametric Analysis of Remapping among Slowing-Correlated Cells—This 

analysis had the same aim as computing the density of slowing-correlate cells, but it was 

nonparametric in the sense that it did not use the COM location, nor did it explicitly 

calculate the density. All cells were included that exhibited a spatially modulated field 

during the context under consideration (Aend or Amid). For each cell, activity on each 

traversal was spatially binned (10 cm bin width), averaged across traversals, and the average 

was normalized to have a sum of 1. To ensure this reflected the steady-state activity within 

each block, the first three traversals after block transitions were excluded. The averages of 

all slowing-correlated cells were combined by taking the mean across cells in each spatial 

bin. To estimate the baseline fluorescence level for comparison, the same procedure was 

applied to all cells with a spatial field that were not slowing-correlated.

Slowing Correlation Index—The SCI was used to distinguish, on a sliding scale, 

whether a cell’s activity was better aligned to distance from reward or distance from slowing 

onset (an example computation is illustrated in Figure S4A). It was applied to Aend and Amid 

separately, and only for cells with a COM located within 50 cm before reward which were 

active within 100 cm before reward on at least 10 trials. For each cell, transients that 

occurred within 100 cm of reward were identified and their locations were noted. To create a 

smoothed version of activity, each transient was replaced with a Gaussian curve (fixed 

height, SD 10 cm) centered on its peak location, the Gaussian curves were summed, and 

activity on each trial was spatially binned (5 cm bin width). The binned activity on each trial 

was considered as a vector, and Pearson’s correlation was computed for each pair of trials. 

The mean of all pairwise correlations was used to summarize the degree to which activity 

was aligned across trials, with a higher mean correlation indicating better alignment.

To identify whether activity was better aligned to distance from reward or distance from 

slowing onset, the activity was skewed in a trial-specific fashion. For a skew value α in the 

interval [0,1], activity on each trial was shifted forward by α times the distance the mouse 

slowed before reward. Thus a skew value of 0 was the observed activity, with the reward 

location perfectly aligned across trials, and for a skew value of 1 the onsets of slowing were 

perfectly aligned across trials. If, for example, activity always occurred 10 cm after slowing 

onset, a skew value of 1 would cause activity to be perfectly aligned on all trials, yielding a 

high mean correlation. This procedure was applied for 101 evenly spaced skew values in 

[0,1], and the mean correlation was computed for each skew. The skew value that yielded the 

largest correlation was the SCI for that cell.

Under the null hypothesis, activity was aligned to distance from reward but not related to 

slowing onset. To identify whether activity was better aligned with slowing than expected by 

chance, the observed SCI was compared to a shuffle distribution (n = 500). For each shuffle, 

activity was randomly permuted among trials with at least one transient, thus breaking up 

any relationship between slowing onset and activity. The distribution of shuffle SCI values 

was compared to the observed SCI, and a p value was assigned based on how many shuffle 
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values were exceeded by the observed value. For example, if the observed SCI was 0.8, and 

498 of 500 shuffle SCI values were strictly less than 0.8, the p value was 2/500 = 0.004. No 

attempt was made to correct for multiple comparisons. Instead, like the percentile correlation 

score, the p value was treated as a metric which, under the null hypothesis, would be less 

than 0.05 for 5% of cells, and would be the same for both place cells and reward-predictive 

cells.

The distribution of SCI values, and their associated p values, was compared for place cells 

and reward-predictive cells during condition Aend-Amid. To determine whether a 

significantly greater fraction of reward-predictive cells than place cells exhibited a p value 

less than 0.05, Fisher’s exact test was applied. The categories were place cells versus 

reward-predictive cells, and p < 0.05 versus p ⩾ 0.05.

Analysis of Simultaneous Activity—The purpose of this analysis was to determine 

whether place cell and reward-predictive cell activity was significantly correlated, either 

positively or negatively. Only condition AendAmid was considered, since it provided the 

highest confidence that a given cell was reward-predictive rather than being a place cell that 

coincidentally remapped to the reward location. For each context (Aend or Amid), the full 

population of reward-predictive cells was compared to reward-adjacent place cells, defined 

as place cells with a COM located within 50 cm just before reward. After activity was 

resampled to 10 Hz relative to slowing onset as described above (“Combining speed and 

activity across trials”), activity traces for each walking bout were averaged across all reward-

predictive cells and reward-adjacent place cells.

In Figure 4A, representative pre-reward walking bouts were chosen as follows. For each 

bout, the fraction of place cell activity was computed by dividing the sum of average place 

fluorescence by the sum of average reward-predictive cell fluorescence. Representative bouts 

were chosen by taking evenly spaced percentiles of this index within each session: 5, 15, 25, 

…, and 95th percentile.

The overall null hypothesis was that place cell and reward-predictive cell activity was 

independent. This was tested with three specific null hypotheses of increasing strictness. 

Under the first null hypothesis, the activity of reward-predictive cells and place cells was 

independent at each time point. This hypothesis was tested by comparing single time points 

of average place cell and average reward-predictive cell activity. The Pearson’s correlation 

was computed and the standard p value was used (Figures 4C and 4D).

Under the second null hypothesis, the activity of reward-predictive cells and place cells was 

independent, but their time courses bore some relationship to slowing onset that might 

explain the time point-by-time point correlation. For example, they might have both 

decreased at the onset of slowing. This was tested by randomly reassigning average place 

cell activity to different walking bouts, then computing the Pearson’s correlation on single 

time points. The correlations from the shuffle distribution were compared to the observed 

correlation (Figure 4E, top).
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The third null hypothesis introduced an additional assumption: that average activity traces 

within the same session were more similar than traces from different sessions, perhaps 

because of some session-specific modulation. Again, average place cell activity was 

randomly reassigned to different walking bouts, but now only within the same session. 

Correlations from the shuffle distribution were compared to the observed correlation (Figure 

4E, bottom).

One additional potential explanation for the residual correlation was considered. Because 

activity was read out using calcium indicator fluorescence, it was likely that actual spiking 

activity ceased before the fluorescence level decreased to baseline. To remove this artifact, a 

simple “deconvolution” was performed on each cell prior to averaging. For each transient 

(i.e., continuous period of above-baseline fluorescence), only the initial rise in fluorescence 

was kept. Put another way, as soon as fluorescence began to decrease, all subsequent time 

points were set to zero. Remaining non-zero values were set to 1, effectively binarizing the 

time course. This analysis likely removed some periods of spiking, and was thus a 

conservative test of independence, insofar as it could only remove, but not add, activity that 

would be correlated between place and reward-predictive cells. After binarizing activity in 

each cell, the same procedure was performed as when testing the third null hypothesis 

(Figure 4F, bottom).

Time of Activity Relative to Slowing—Activity was binned on each trial (200 ms 

width) relative to slowing time, averaged across trials, and smoothed by convolving with a 

Gaussian kernel (SD 0.1 s). The point when this trace assumed its maximum was taken as 

the time of peak activity for each cell. For Figure 5C, cells were only included if they were 

active in the 10 s prior to slowing on at least 5 traversals of each context.

Combining Speed and Activity across Trials—Image acquisition rates varied across 

datasets (typically near 12 Hz), and within each dataset the estimate of instantaneous speed 

(described above) was subsampled to match the frame rate to be sure speed was precisely 

aligned to activity. To combine across datasets, speed and activity time courses were 

resampled to 10 Hz (MATLAB “resample” command).

For Figure 6C, a subset of bouts was chosen to ensure the average speed profiles were as 

similar as possible for bouts before the current and non-current reward. For condition 

AendAmid, a bout before the non-current reward was excluded if normalized speed fell below 

0.3 in the time interval [−2 −0.5] seconds relative to slowing, or if it rose above 0.8 in [3 4]. 

For condition AB, a bout before the non-current reward was excluded if normalized speed 

fell below 0.6 in the time interval [−2 −1] seconds relative to slowing, or if it fell below 0.2 

in [0 1] or below 0.01 in [2 3]; and bouts before the current reward were excluded if 

normalized speed fell below 0.5 in [−2 −1] or rose above 2 in [−2 −1]. These parameters 

were chosen manually to maximize similarity of speed profiles, thus providing a controlled 

comparison of activity levels.

Control for Selection Bias When Classifying Reward-Predictive Cells—Reward-

predictive cells were defined based on exhibiting an average activity location prior to the 

current reward, a definition that might bias the population to exclude cells that were active 
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prior to the non-current reward. To overcome this bias, a collection of putative reward cells 

was selected based on being slowing-correlated (see above), a definition that would not tend 

to include or exclude cells that were active on other parts of the track. Nevertheless, slowing-

correlated cells were biased to include cells that were frequently active near the current 

reward site. Therefore, for the analysis of Figure S6, the activity of these cells was only 

compared on the other part of the track. For example, if putative reward-predictive cells were 

selected for being slowing-correlated when mice approached the reward at 366 cm, only 

their activity preceding 166 cm was used: their activity when approaching the current reward 

was measured during Amid, and their activity when approaching the non-current reward was 

measured during Aend. This ensured that the activity being compared was independent of the 

activity used for cell selection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A distinct population of hippocampal neurons are consistently active near reward.
(A) Typical fields of view in CA1 and subiculum of neurons expressing GCaMP3. Image 

widths are 200 um.

(B) Schematic of the virtual linear track and reward delivery location.

(C) COM locations of all cells with a spatial field during condition Aend (9,761 cells, 11 

mice). Black line shows observed density, gray patches show density of a fitted mixture 

distribution consisting of a uniform distribution (light gray) and a Gaussian distribution 

(dark gray, mean 355 cm, s.d. 25 cm).

(D) Schematic of condition in which reward delivery shifted between two locations.

(E) Activity of six simultaneously-recorded CA1 neurons during the first three blocks of one 

session of condition AendAmid. Each column shows the spatially-averaged activity of one 

Gauthier and Tank Page 30

Neuron. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell in the first (top), second (middle), and third (bottom) blocks. Activity on each traversal 

was spatially binned (width 10 cm), filtered (Gaussian kernel, radius 10 cm) and averaged 

(70th percentile) across all traversals, excepting the first three traversals of each block. Black 

arrowheads indicate COM location computed by pooling trials from all blocks of a single 

context (Aend or Amid, see Methods). Red lines indicate reward location in each block.

(F) Top: track diagram. Bottom: COM locations during Amid of cells with a spatially-

modulated field located within 25 cm of reward during Aend (square bracket beneath track 

diagram, 1,171 cells, 6 mice). Red lines indicate reward location, colored bands indicate 

clusters of reward-associated cells (purple) or cells whose field remained in the same 

location (blue). Similar results were obtained when considering CA1 and subiculum 

separately (Figure S1C).

(G) The COM locations of all cells with spatial fields during both Aend and Amid (3,842 

cells, 6 mice). Red lines indicate reward location. Arrows indicate regions defining reward-

associated cells (purple) and place cells with stable field locations (blue). Colored markers 

indicate the COM locations of the examples in panel E. Similar results were obtained when 

considering CA1 and subiculum separately (Figure S1D).
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Figure 2: Reward-associated cell identity persists across contexts.
(A) Schematic of condition in which mice were teleported between two different virtual 

linear tracks.

(B) Activity of six simultaneously-recorded CA1 neurons during the first three blocks of one 

session of condition AB. Same conventions and spatial-averaging procedure as in Figure 1e, 

except that all traversals were included.

(C) COM locations on track B for two populations of cells. Upper histogram: cells with a 

spatial field on track A located between 25 cm after track start to 25 cm before reward (wide 

square bracket). Lower histogram: cells with a spatial field on track A located in the 25 cm 

preceding reward (narrow square bracket).
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(D) COM locations of all cells with a spatial field on both track A and track B (2,168 cells, 5 

mice), red lines indicate reward locations. Gray line indicates proportionally equivalent 

locations on the two tracks. Colored markers indicate COM locations of panel b examples.

(E) Schematic of COM density under two hypotheses for how spatial fields remapped (see 

text).

(F) Observed density of COMs on track A and track B (same data as in d), spatially-binned 

(width 12.5 cm) and smoothed (2D Gaussian kernel, radius 20 cm). Due to circularity of the 

track, increased density is present in all four corners.

(G) Schematic summarizing the observed remapping. Among both place cells and reward-

associated cells, cell identities were fixed, though spatial fields were formed by a different 

subset of cells in each environment. Place cells (blue) covered the track uniformly, while 

reward-associated fields (purple) were only located near reward.
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Figure 3: Reward-predictive cell activity is correlated with anticipation of reward.
(A) Representative example of reward approach behaviors.

(B) Movement speeds during one session with slowing threshold (dashed line).

(C) Spatially-binned speed for single trials (gray lines) and averaged across trials (black 

lines). Red lines indicate reward.

(D) Left: spatially-binned speed for the first three blocks of one session of condition 

AendAmid, first block is top panel, same conventions as in b. The first three traversals of each 

block are omitted. Right: Running speed on the first fifty traversals.

(E) Reward approach behavior on six trials from the session depicted in (C) comparing 

speed (gray), slowing onset (black), and activity of one reward-predictive cell in CA1 

(purple).

(F) Speed (gray) and activity (purple) on all traversals in which slowing onset (black lines) 

occurred within 60 cm before the reward location (red line) for same cell as in (E). Each 

pixel shows average in a 2 cm spatial bin. Black tick marks show example trials plotted in 

(E).
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(G) Activity of a simultaneously-recorded place cell, same conventions as in (E), except 

activity is shown in blue.

(H) Statistical test to evaluate correlation between activity and speed for the cells depicted in 

(F) and (G).

(I) Left: COM locations of cells with spatial fields in both Aend and Amid (gray points, same 

data as Figure 1g). Highlighted cells (maroon circles, 116 cells) were slowing-correlated 

during Aend (see definition in text). Right: Lower bound of estimated density of slowing-

correlated cells, binned by COM location and spatially smoothed (see Methods). Dashed 

lines indicate approximate boundaries of reward-predictive cells (purple) and stable place 

cells (blue).

(J) Upper: average activity of 198 slowing-correlated cells (6 mice, maroon trace) during 

Aend blocks, and all spatially-modulated cells recorded simultaneously (7,343 cells, gray 

trace). Red line indicates Aend reward location. Lower: activity of same cells during the 

interleaved Amid blocks. Red lines indicate reward location for Amid (solid) and Aend 

(dashed). Bands indicate standard error of the mean. For arrowheads, see text.
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Figure 4: Place cells and reward-predictive cells were active simultaneously.
(A) For each of 6 sessions (columns) from 4 mice, 10 representative pre-reward walking 

bouts (rows) are shown. For each bout, colored traces show activity averaged across all 

reward-predictive cells (purple) or reward-adjacent place cells (blue). Bouts are sorted 

according to the fraction of total activity that arose from place cells (most to least). Activity 

was averaged in 0.3 second bins, and is shown beginning one second prior to the onset of 

slowing (black vertical line) until reward delivery (red vertical line), or at most 5 seconds. 

On many bouts, reward cells and place cells were active simultaneously.

(B) Example illustrating how the activity of each bout is summarized in the population 

analysis of panel (C). For a single bout (left panel, same conventions as in (A)), activity is 
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plotted as a scatter (right panel) comparing place cells (horizontal) to reward-predictive cells 

(vertical).

(C) Two-dimensional histogram summarizing activity from all pre-reward walking bouts in 

one session. Place and reward-predictive cells were frequently active simultaneously, and 

their activity was significantly correlated.

(D) Two-dimensional histogram summarizing activity from all pre-reward walking bouts 

during condition AendAmid, same conventions as in (C). To enhance readability, tails of the 

distribution (0.3% of time points) are not shown. The activity of place cells and reward-

predictive cells was significantly correlated, indicating a tendency for the two populations to 

be active stimultaneously.

(E) Control to ensure that the positive correlation was not due to place cells and reward-

predictive cells having a similar time course. When activity was shuffled across all sessions 

(upper panel), the distribution of correlations (black histogram) was lower than the observed 

value (black vertical line). This was also true when activity was shuffled only within each 

session (lower panel).

(F) Control to ensure that the correlation was not due to the residual fluorescence time 

course following cessation of activity. For each cell, the original time course was binarized 

by zeroing all time points following the initial rise in each transient, and setting the 

amplitude of all non-zero points to 1 (upper panel, see Methods). After using these binarized 

time courses to perform the same analysis as in the bottom of panel (E), there was still a 

significant correlation between the activity of reward-predictive cells and place cells (lower 

panel). These results show that reward-adjacent place cells and reward-predictive cells were 

not anti-correlated, and in fact the two populations tended to be active simultaneously more 

often than expected by chance.
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Figure 5: Reward-predictive cells formed a consistent sequence that began prior to reward 
anticipation behavior.
(A) Mean activity of 22 simultaneously-recorded reward-predictive cells from CA1 shown in 

the same order for Aend (left) and Amid (right). Small black lines indicate time of peak 

activity. Cells were selected for having COM locations within 50 cm before reward and 

being active on at least 20 trials in the 100 cm before reward. Time courses were filtered 

with a Gaussian kernel (s.d. 0.1 sec).

(B) Time of peak activity relative to slowing for the same cells as in (A). Bars indicate width 

at half max of unfiltered trace.

(C) Time of peak activity relative to slowing for all reward-associated cells recorded during 

condition AendAmid (218 cells, 6 mice) and condition AB (243 cells, 5 mice). Bars indicate 

width at half max of unfiltered trace.
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(D) Five reward-predictive cells active early in their respective sequences. In each case, 

fluorescence increased 1-2 seconds before speed decreased. Cells were recorded in four 

mice, each column a cell. Cells in column 2 and 3 were recorded simultaneously. The cell in 

column 4 was from subiculum, and others were from CA1. Top: speed and activity on single 

traversals, same conventions as in Figure 3f. Activity on each trial was normalized to have a 

maximum of 1. Red lines indicate the time of reward delivery when it occurred early enough 

to be within plot bounds. Bottom: average across trials of activity (80th percentile) and 

speed (mean).
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Figure 6: Reward-predictive cell activity can not be explained by reward anticipation behavior.
(A-B) Activity is shown for the same 22 simultaneously-recorded reward-predictive cells 

depicted in Figure 5a.

(A) Instantaneous movement speed (top), activity of each reward-predictive cell plotted in 

the same order as in Figure 5a (middle), and population mean activity (bottom) during two 

walking bouts, preceding the current (left) or non-current reward location (right). Black lines 

indicate onset of walking, red lines indicate reward, and gray lines indicate the end of the 

unrewarded walking bout.

(B) Top: Movement speed averaged over all walking bouts from this session, excluding the 

first three traversals of each block, grouped by whether they preceded current (pink) or non-

current (blue-green) reward. Bottom: Simultaneous activity of reward-predictive cells. 

Single trial traces were averaged in half-second chunks before combining across trials, 

bands show standard error of the mean across trials.

(C) Average speed relative to slowing threshold (top panels) and average activity of reward-

predictive cells (bottom). Only includes sessions in which reward-predictive cells were 

recorded. A subset of bouts was manually chosen (see Methods) to maximize the similarity 

of average speed; for all bouts, see Figure S6. Condition AendAmid only includes data from 

day 7 of training or later to ensure mice were familiar with the reward delivery paradigm.
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(D) Comparison of how quickly slowing behavior and reward-predictive cell activity adapt 

to a new context. Condition AB only includes data from track A. Top: fraction of traversals 

in which mice exhibited a pre-reward walking bout (pink) or an unrewarded walking 

spanning the non-current reward location (blue-green). Error bars indicate 95% confidence 

interval. Bottom: mean fluorescence of reward-predictive cells in the first 5 seconds after 

slowing onset, error bars show standard error of the mean.
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Table 1:

Recorded cell counts for each mouse used in population analyses (EM1-6 for condition AendAmid, AB1-5 for 

condition AB) and one mouse used for providing examples of many simultaneously-recorded cells (EM7), and 

the fraction of recorded cells with a spatially-modulated field. Note that the recording and cell finding 

techniques were likely biased towards detecting more active neurons, potentially increasing the fraction of 

cells with a spatial field compared to estimates from other techniques.

mouse

condition Aend condition AendAmid condition AB

N spatial
field (%) N

spatial field (%)
N

spatial field (%)

Aend Amid both A B both

EM1 925 59 2,702 20 20 23

EM2 1,981 64 1,031 20 13 21

EM3 4,137 53 2,353 20 14 35

EM4 742 17 3,274 15 12 6

EM5 149 70 6,670 16 16 17

EM6 328 59 3,588 20 18 24

total 8,262 54 19,618 18 16 20

AB1 4,519 72 1,645 25 22 27

AB2 1,431 72 2,666 21 20 31

AB3 369 72 1,234 25 21 26

AB4 82 39 226 31 12 26

AB5 1,024 73 1,448 27 21 35

total 7,214 72 7,425 24 20 30

EM7 2,524 12 15 23
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mice, C57BL/6J-Tg (Thy1-GCaMP3) GP2.11Dkim/J The Jackson Laboratory RRID: IMSR JAX:028277

Software and Algorithms

ScanImage Vidrio Technologies N/A

Custom MATLAB code for analysis MathWorks N/A
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