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Abstract

Background: Tudor domain-containing proteins (TDRDs) play a critical role in piRNA biogenesis and germ cell
development. piRNAs, small regulatory RNAs, act by silencing of transposons during germline development and it
has recently been shown in animal model studies that defects in TDRD genes can lead to sterility in males.

Methods: Here we evaluate gene and protein expression levels of four key TDRDs (TDRD1, TDRD5, TDRD9 and
TDRD12) in testicular biopsy samples obtained from men with obstructive azoospermia (OA, n = 29), as controls,
and various types of non-obstructive azoospermia containing hypospermatogenesis (HP, 28), maturation arrest (MA,
n = 30), and Sertoli cell-only syndrome (SCOS, n = 32) as cases. One-way ANOVA test followed by Dunnett’s multiple
comparison post-test was used to determine inter-group differences in TDRD gene expression among cases and
controls.

Results: The results showed very low expression of TDRD genes in SCOS specimens. Also, the expression of TDRD1
and TDRD9 genes were lower in MA samples compared to OA samples. The expression of TDRD5 significantly
reduced in SCOS, MA and HP specimens than the OA specimens. Indeed, TDRD12 exhibited a very low expression
in HP specimens in comparison to OA specimens. All these results were confirmed by Western blot technique.

Conclusion: TDRDs could be very important in male infertility, which should be express in certain stages of
spermatogenesis.
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Background
Infertility remains a significant global burden [1]. Esti-
mates suggest that 10–15% of couples worldwide experi-
ence infertility [2], with male infertility being the
underlying cause in 20–50% of cases [3]. For the major-
ity of cases however the etiology remains unknown, and
is termed idiopathic infertility [4]. Azoospermia, absence
of spermatozoa in the semen, is one of the most com-
mon reasons for infertility in men, with a prevalence of
1% in the general population, and over 15% in infertile
men [5, 6]. Forty percent of cases are due to male genital

system blockage (obstructive azoospermia) and in the
remaining cases due to low sperm production (non-ob-
structive azoospermia - NOA) [7, 8].
PIWI-interacting RNA (piRNA) proteins have recently

been shown to play an essential role in male fertility and
spermatogenesis in humans [9]. The piRNA pathway-
associated genes are highly expressed in germline cells
[10]. piRNAs act by suppressing transposons and prevent-
ing their mobilization through both post-transcriptional
and transcriptional mechanisms, such as degradation,
chromatin remodeling, and DNA methylation [11–14].
P-element–induced wimpy testis (PIWI) proteins specif-

ically recognize piRNAs to mediate transposon silencing.
The Tudor domain of Tudor domain-containing proteins
(TDRDs) have been shown to directly bind to PIWI to
help regulate this process via their dimethylated arginine
(sDMA) or lysine residues [15], potentially acting as a me-
diator or cofactor for protein-protein interactions in the
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piRNA pathway [16]. Twelve TDRDs have been identified
in human and animal model studies, and defects in each
of these can interfere with spermatogenesis [16–18].
Given the current knowledge that piRNAs and PIWI

genes are involved in spermatogenesis, and the potential
role of TDRDs in this process, we sought to evaluate
TDRD gene expression in testicular tissue of patients
with azoospermia.

Methods
Study participants
One hundred and nineteen NOA and OA men admitted
to the Abortion Research Centre, Yazd Reproductive
Sciences Institute, were entered into this study. All sub-
jects were undergoing bilateral testicular tissue micro-
dissection (mTESE) operations to attain spermatozoa for
intracytoplasmic sperm injection (ICSI). The study was
approved by the local Ethics Committee and written in-
formed consent was obtained from all subjects. Pre-
operative tests included karyotyping and Y chromosome
microdeletion analysis, and the levels of serum follicle
stimulating hormone (FSH), luteinizing hormone (LH)
and testosterone. Patients were not receiving hormone
therapy and all had primary infertility. No history of
TESE and cryptorchidism were reported for any of the
participants. Patients with cystic fibrosis, chromosomal
abnormalities and Y chromosome microdeletion were
omitted from the study. Subjects with normal spermato-
genesis were included as the control group. The best
control samples were men with proven fertility, and the
problem was that they never referred to infertility cen-
ters for mTESE surgery, so we used samples with normal
spermatogenesis as the control group.

Tissue acquisition and histological evaluation
Following TESE, testicular samples were split into three;
one was fixed in Bouin’s solution for histological exam-
ination and two other sections instantly frozen in liquid
nitrogen for RNA extraction and Western blot assay.
Histological examination was carried out with
hematoxylin and eosin (H&E) and interpreted by a
trained pathologist to classify the samples with normal
spermatogenesis (OA, n = 29), lack of germ cells (SCOS,

n = 32), declined number of spermatozoa (HP, n = 28),
and incomplete maturation of germ cells (MA, n = 30).
No significant differences in age, LH, FSH, and testoster-
one serum concentrations were found between the OA,
HP, MA, and SCOS groups (Table 1).

RNA extraction and cDNA synthesis
Frozen testis tissue was homogenized, and total RNA ex-
tracted using the RNeasy Plus Universal Mini Kit (Qia-
gen, Hilden, Germany) based on the manufacturer’s
protocol and then stored at − 80 °C. In-solution DNase
digestion was accomplished to eliminate DNA contam-
ination. The concentration and purification of RNA was
specified using Nanodrop2000 spectrophotometer
(Thermo Scientific, Wilmington, USA) and confirmed
by agarose gel electrophoresis. Template cDNA was syn-
thesized from 1 μg of whole extracted RNA with Revert
Aid First Strand cDNA Synthesis Kit (Thermo Scientific,
Vilnius, Lithuania) using oligo dT and random hexamer
primers simultaneously for each reaction in an Eppen-
dorf Mastercycler Gradient (Hamburg, Germany).

Quantitative RT-PCR
Initial denaturation for RT-PCR started at 95 °C for 8
min, followed by 40 cycles of denaturation at 95 °C for
10 s, annealing at 60 °C for 30 s, extension at 72 °C for
30 s (Table 1). The melting curve was formed by increas-
ing the temperature from 72 to 95 °C to omit genomic
DNA or amplification of primer dimers. qPCR was in
triplicates on 48-well plates Step-One-Plus RT-PCR Sys-
tem (Applied Biosystems) by 1.0 μl of produced cDNA,
10 μl of the SYBR Green master mix (Applied Biosys-
tems ABI/PE, Foster City, CA), and 7.0 μl of DNase/
RNase-free water, 1 μl of designing primers (Table 2) for
the gene expression profile. The average CT was used
for further analysis, and all RT–PCR runs contained non
template (cDNA) controls in order to reject potential
contamination. Relative gene expression analysis was
performed according to the comparative CT method:
2-ΔΔCT for TDRD1, TDRD5, TDRD9 and TDRD12. The
2-ΔΔCT parameter displays the expression fold of TDRD
with respect to the housekeeping ACTB gene.

Table 1 The clinical features of patient groups

Patient groups Number of patients Genetic analysis Age of patients (years) LH (mIU/ml) FSH (mIU/ml) Testosterone
(ng/ml)

OA 29 46XY/ normal AZF 34.3 ± 2.3 8.34 ± 1.12 9.21 ± 1.27 4.41 ± 0.34

HP 28 46XY/ normal AZF 31.5 ± 2.4 7.92 ± 1.18 9.32 ± 1.13 4.35 ± 0.22

MA 30 46XY/ normal AZF 33. 4 ± 2.1 7.93 ± 1.35 9.42 ± 1.61 4.43 ± 0.33

SCOS 32 46XY/ normal AZF 30.4 ± 2.1 8.62 ± 1.61 9.73 ± 1.42 4.45 ± 0.34

P-value – – NS NS NS NS

Values are mean ± standard deviation
NS Non-significant, OA Obstructive azoospermia, HP Hypospermatogenesis, MA Meiotic arrest, SCOS Sertoli cell only syndrome

Babakhanzadeh et al. BMC Medical Genetics           (2020) 21:33 Page 2 of 7



Western blot
Western blot examination was accomplished as formerly
explained [19]. Briefly, equal amounts of proteins (35mg)
obtained from testis samples were separated with 12%
SDS-PAGE and electrotransferred onto nitrocellulose
paper. The membranes were blocked with (2–5%) non-fat
dry milk in 1x TBST (10mM/L Tris-HCl, pH 8.0; 150
mM/L NaCl, 0.1% Tween 20) for 1 h at 25–30 °C, and
then incubated with primary TDRD1(1:300; No.
ABIN2373082; Antibodies-online, Aachen, Germany),
TDRD5 (1:300; No. ABIN4358317; Antibodies-online, Aa-
chen, Germany), TDRD9 (1:300; No. ABIN2373082;
Antibodies-online, Aachen, Germany), TDRD12 (1:300;
No. ABIN6769800; Antibodies-online, Aachen, Germany),
ACTB (1:300; No. ABIN4284408; Antibodies-online, Aa-
chen, Germany) antibody at 4 °C overnight, then with sec-
ondary goat anti-human-IgG-(H-L) antibody conjugated
with horseradish peroxidase (HRP) (1:500; No. SA00001–
17; ProteinTech, Manchester, M3 3WF United Kingdom)
for 1 h at 25 °C. At the end, the immunoreactive signals
were determined via the ECL kit (Thermo Scientific).

Statistical analysis
The results are verified as the mean ± SEM. Statistical ana-
lysis was done using one way anova test followed by Dun-
nett’s multiple comparison post-test. P-values less than
0.05 were deemed to be statistically significant. Statistical
analysis was implemented via GraphPad Prism 6 software.

Results
Histological analysis of adult testis sections with
hematoxylin and eosin (H&E) staining showed clear differ-
ences between samples (Figs. 1 and 2). Testicular TDRD
gene expression was analyzed using qPCR and significant
differences in expression observed between cases and con-
trols. The expression of TDRD1, TDRD5, TDRD9 and
TDRD12 genes were significantly lower in SCOS than con-
trols (P < 0.001, Dunn’s post-test). The expression of

TDRD1 and TDRD9 was significantly lower in MA samples
than controls (P < 0.001, Dunn’s post-test) (Figs. 3 and 4).
The expression of TDRD5 was significantly lower in all
cases compared to controls (P < 0.001, Dunn’s post-test)
(Fig. 5). The results showed that the expression of TDRD12
was also significantly lower in HP samples compared with
controls (P < 0.001, Dunn’s post-test) (Fig. 6). The western
blotting test showed the following results: TDRD1, TDRD5,
TDRD9, and TDRD12 proteins were not expressed in
SCOS samples. TDRD1 and TDRD9 proteins showed low
expression in MA samples. The expression level of TDRD5
protein in MA and HP specimens was very low. TDRD12
protein was not expressed in HP samples (Fig. 7).

Discussion
Spermatogenesis is a complex process, involving many cell
type- and stage-specific transcription factors [20, 21].
Transposons have a major impact on the architecture and
function of genomes, and thus their suppression is particu-
larly important in early stage germ cells where epigenetic
control is relaxed to permit genome-wide reprogramming.
The large class of TDRDs play a pivotal role in the

Table 2 qPCR primers used in this study

Gene Primers (5′→ 3′) Product size (bp) TM (°C)

TDRD1 F: TCCTCTTCGGTCCACAACTT 197 59

R: CCTCCACATCCTTTGTTTCAA 60

TDRD5 F: AAGTTCCCAGAGGGTTTGTTT 194 58

R: AGAGGCTTCTTATCCGCAT 59

TDRD9 F: GCCAGGTCTGGGTGAAATAA 171 58

R:TCTGCAATATTGGTGGACAGA 58

TDRD12 F: TCGTTTATGCAGCTTCCCTA 172 57

R: CCACCTGGGTAGTTGCTTT 58

ACTB F: AGCACAGAGCCTCGCCTT 172 60

R: AGGGCATACCCCTCGTAGAT 60

bP Base pairs, F Forward, R Reverse, TM Melting temperature

Fig. 1 a Testicular sections of samples with OA (obstructive
azoospermia). b Testicular segments of specimens by SCOS (Sertoli
cell-only syndrome). SP = spermatocyte; MS =mature spermatid;
SC = Sertoli cell; SG = spermatogonia; Scale bar = 20 μm
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protection of germ cells against transposons [22, 23]; how-
ever, up to now their role in human spermatogenesis has
not been well studied. The present study investigated the
gene expression and protein levels of TDRD1, TDRD5,
TDRD9 and TDRD12 genes in testicular tissue of NOA pa-
tients in comparison with OA patients.
Recent studies in mice models have demonstrated that

Tdrd5 gene plays an important role in silencing of
LINE-1, a transposon member of the long interspersed
nuclear elements (LINE), which is involved in assembly
of polar granules in germ cells, chromatoid bodies, and
spermatogenesis [24, 25]. Previous projects showed that
TDRD1 in prospermatogonia, arrange a complex with
Mili (mouse homologue of PIWIL2), also TDRD9 is a
vital partner of Miwi2 (mouse homologue of PIWIL4).
The studies proved that the TDRD1 and TDRD9 are in-
volved in biogenesis of primary and secondary piRNAs,
transposon repression and accuracy of meiosis phase
[15, 26–29]. TDRD12 has a crucial role in the final stage

of meiosis phase, secondary piRNAs biogenesis and
transposon silencing.
The lack of expression of TDRD genes found in SCOS

was a common observation in this study, suggesting that
the transcription of these genes could be limited to germ
cells. Due to the lack of germ cells in SCOS, it seems likely
that the expression levels of TDRD genes in the SCOS
samples would not be detected. However, we did detect
very low levels of expression of these genes in some indi-
viduals, which could show the existence of small foci of
spermatogenesis in these specimens or mixed patterns in
NOA subtypes. Western blot analysis results confirmed
the findings from qPCR, and demonstrated lack of TDRD
expression in SCOS samples. Because the expression of

Fig. 2 a Testicular segments of specimens with MA (maturation
arrest). b Testicular segments of specimens with HP
(hypospermatogenesis). SP = spermatocyte; MS =mature spermatid;
SC = Sertoli cell; SG = spermatogonia; Scale bar = 20 μm

Fig. 3 Comparison of the expression levels of TDRD1 between HP,
MA, SCOS, and OA(control) patients. *** p < 0.001

Fig. 4 Comparison of the expression levels of TDRD9 between HP,
MA, SCOS, and OA(control) patients. *** p < 0.001
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the TDRDs genes was found to be very limited in the
qPCR technique in SCOS specimens, but not in the West-
ern blot technique, this difference could be attributed to
the inherent nature of the Western blot technique, which
does not reveal very low protein expression.
We also found that TDRD1 expression was significantly

downregulated in the MA group versus controls. In Mili
knockout mouse models, infertility of male mice has been
shown to be due to stopping spermatogenesis at zygotene-
pachytene stages. It has been revealed that hypermethylation
of TDRD1 may lead to spermatogenic dysfunction [30].
Xiao-Bin Zhu et al. [31] identified the SNP rs77559927 in
TDRD1 was related to a diminished risk of spermatogenic
malfunction [29]. Western blot analysis results confirmed

that the protein encoded by the TDRD1 gene had low ex-
pression in MA samples. The results of this experiment
could confirm the role of TDRD1 in the early stages of mei-
osis process, likely to suppress transposons, which is essen-
tial for the progression of human spermatogenesis.
Another finding of this study was that the expression

of TDRD5 was significantly reduced in almost all cases
(SCOS, MA and HP) compared to controls. Mitinori Sai-
tou et al. reported that loss of Tdrd5 leads to absence of
spermatozoa, transposon depression and infertility [25].
Tdrd5−/− mutations were arrested round spermatid and
disorganized of chromatoid bodies [24]. The results of
Western blot analysis also showed that the TDRD5 pro-
tein had a very low expression in almost all samples.
These results revealed that TDRD5 is not restricted to
prospermatogonia, unlike TDRD1, TDRD5 has more ac-
tivity [25]. TDRD5 could have the same function in
humans and mouse models, which plays a central role in
the whole process of spermatogenesis.
The TDRD9, in collaboration with the HIWI2 (human

homologue of PIWIL4), has a substantial effect on the
synthesis of the piRNAs. In Tdrd9−/− mutants, the whole
quantity of piRNAs were entirely reduced in testis [27].
Faruk Hadziselimovic et al. showed that cryptorchid
boys with defected expression of TDRD9 have a high
risk of infertility due to transposon desilencing [32].
Two separate studies in the population of Iran and
China reported a significant relationship between HIWI2
gene rs508485 polymorphism and increased risk of
spermatogenesis defects [33, 34]. Arafat et al. reported
the relationship between the deletion frameshift muta-
tion in TDRD9 and NOA [35]. In present study, expres-
sion of TDRD9 like TDRD1 showed a significantly
decreased in the MA samples compared with OA sam-
ples. Western blot analysis results proved that the pro-
tein encoded by the TDRD9 gene had low expression in

Fig. 6 Comparison of the expression levels of TDRD12 between HP,
MA, SCOS, and OA(control) patients. *** p < 0.001

Fig. 7 Western blotting test results for protein expression of TDRDs
genes in HP, MA, SCOS, and OA samples compared to control group

Fig. 5 Comparison of the expression levels of TDRD5 between HP,
MA, SCOS, and OA(control) patients. *** p < 0.001
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MA samples. It seems TDRD9 and TDRD1 have ap-
proximately the same role in human and other animals
and they are very important for the meiosis process.
The TDRD12 is indirectly related to the TDRD1 and

MILI, because it has a different location than they [36].
Jung-Jae Ko and colleagues revealed that TDRD12 is
predominantly localized at the acrosome of the sperm-
atid, which is completely different with other members
of the TDRDs family [37]. In this study, TDRD12 exhib-
ited a very low expression in HP specimens in compari-
son to OA specimens. In addition, Western blot analysis
results proved that the protein encoded by the TDRD12
gene was not expressed in HP specimens. TDRD12 is
contributing to a process that leads to compaction of the
sperm nucleus, histone-to-protamine exchange, which is
essential for the differentiation of round spermatid into
spermatozoa [36]. TDRD12 could be part of the master
regulators in the terminal processes of spermatogenesis,
and might act without piRNAs. piRNAs are inactivated
in the round spermatid stage [38].

Conclusion
To our knowledge, this study is the first to evaluate the
expression of TDRD1, TDRD5, TDRD9 and TDRD12
genes in NOA and OA samples by qPCR and Western
blot technique. Given the potential role for TDRDs in
male infertility, our results suggest there is a need for
further investigation to improve knowledge about the
etiology of male infertility.
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