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Abstract

Neutrophils are peripheral immune cells that represent the first recruited innate immune defense 

against infections and tissue injury. However, these cells can also induce overzealous responses 

and cause tissue damage. Although the role of neutrophils activating the immune system is well 

established, only recently their critical implications in neuro-immune interactions are becoming 

more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation 
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between the nervous and immune systems. First, the role of neutrophils as a diffuse source of 

acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters 

in neutrophil’s functions. Second, neutrophils contribute for the activation and sensitization of 

sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation 

promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil 

activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system 

suggests these immune cells as innovative targets in the treatment of central infectious, 

neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists 

and neuroscientists are required to define the role of the neurons-neutrophils communication in the 

pathophysiology of infectious, inflammatory, and neurological disorders.
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1. Introduction

1.1. Neutrophils: an overview

Neutrophils are short-lived polymorphonuclear leukocytes that are continuously generated 

from myeloid precursors in the bone marrow. Neutrophils are activated by bacterial and 

tissue damaged products, such as cytokines, damage-associated molecular patterns 

(DAMPs), and growth factors. These factors increase the neutrophil lifespan and ensure their 

migration and infiltration into the inflammatory focus through a concentration gradient of 

chemotactic stimulus [1]. Neutrophils are a critical component of the innate immune system 

essential to fight microorganisms and clear cellular debris in both septic and aseptic 

processes. Neutrophils can kill pathogens through different mechanisms: phagocytosis, 

degranulation of proteinases, and the release of reactive oxygen/nitrogen species (ROS and 

RNS), and neutrophil extracellular traps (NETs). ROS are products of the “cellular 

respiratory burst”, which is initiated by reducing oxygen to superoxide anions through the 

NADPH oxidase NOX2, an enzyme assembled in the phagosome membrane. From the 

formation of superoxide, hydrogen peroxide (H2O2) is produced and released into the 

phagosome space [213]. Neutrophils also release myeloperoxidase (MPO) into the 

phagosome by degranulated lysosomes. As a consequence, chloride ions are oxidized by 

H2O2 to generate hypochlorous acid (HOCl), a strong cell membrane oxidant [214]. The 

nitric oxide (NO) is produced by inducible NO synthase isoform (iNOS). iNOS produces 

high levels of NO in response to inflammatory mediators and/or to pathogen-associated 

molecular patterns (PAMPs). iNOS is regulated at transcriptional level and its activity is 

calcium-independent [2]. In addition to inflammation-induced iNOS expression, this enzyme 

has a constitutive expression in both murine and human resting neutrophils [3]. The iNOS-

derived NO is a microbicidal and host cell-cytotoxic mediator by itself, but it can react with 

superoxide resulting in peroxynitrite, which is a stronger cytotoxic factor [4].

NETs were first described as a stick web of DNA conjugated with antimicrobial enzymes, 

such as elastase and MPO, that capture and kill bacteria in the extracellular milieu [5]. This 
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process is not specific for bacteria and many other pathogens including fungi, parasites, and 

viruses, can also activate neutrophils to produce NETs. Depending of the stimulus, NETosis 

can occur through different pathways. For example, incubation of neutrophils with 

phorbol-12-myristate-13-acetate (PMA) dissociates azyrophilic granules containing elastase 

and MPO via the oxidative burst. These enzymes are then translocated into the nucleus, 

where they activate the protein-arginine deiminase 4 (PAD4), which is responsible for the 

deamination of arginine into citrulline. This process results in chromatin decondensation, 

followed by cell membrane lyse, and NETs release. This pathway is known as a ‘suicidal 
NETosis’, because it induces cell death [6]. By contrast, ‘vital NETosis’ does not induce cell 

suicide. Vital NETosis occurs in response to bacteria and fungi, and results in the release of 

NETs via vesicles, allowing neutrophils to still perform phagocytosis and chemotaxis [7,8]. 

Although NETs release may help to control infection, it can also cause organ damage. In 

animal models of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid 

arthritis, and psoriasis, NETs are spontaneously induced causing tissue damage [9]. As 

described later in this review, NETs production has also implications in CNS disorders 

including multiple sclerosis (MS) [10,11], Alzheimer’ disease [12] and stroke [13,14].

Neutrophils deficiency to kill microorganisms can cause immunosuppression and increases 

the risk of opportunistic infections. For example, individuals with chronic granulomatous 

disease, a hereditary condition impairing NADPH oxidase, are more susceptible to microbial 

infection and sepsis [15]. However, neutrophils’ mediators are unspecific as they affect both 

microbial and host cells, leading to tissue and organ damage as found in auto-immune, 

infectious, and traumatic disorders [16]. Therefore, neutrophils are key players of the 

immune response being either a friend or foe for the host according to the inflammatory 

context.

1.2. Neuro-immune interaction: neutrophils in a neuro-immune context

Emerging evidences show a complex and bidirectional communication between the nervous 

and the immune systems [17–21]. The nervous system encompasses both central (brain and 

spinal cord) and the peripheral (autonomic and enteric) systems. The autonomic nervous 

system controls organ functions through the balance between the sympathetic and 

parasympathetic systems. In the sympathetic network, preganglionic neurons originated 

along the thoracolumbar segments of the spinal cord synapse with ganglionic neurons in the 

pre- or paravertebral ganglia. These ganglionic neurons release norepinephrine on peripheral 

tissues and activate local adrenergic receptors. In the parasympathetic network, 

preganglionic neurons originated in the brainstem nuclei and along the sacral spinal cord 

synapse with ganglionic neurons located near the target organ. These ganglionic neurons 

release acetylcholine that subsequently activates local cholinergic receptors. The vagus nerve 

is the principal nerve of the parasympathetic system and plays a pivotal role connecting the 

brain with the most important organs including the heart, lungs, liver, and the adrenal glands. 

The adrenal medulla acts as a sympathetic ganglion releasing catecholamines directly into 

the bloodstream and inducing a systemic effect rather than modulating specific organs. 

Several studies demonstrated the regulation of the immune system by autonomic nervous 

networks. Most of these neuro-immune interactions has been described in monocytes/
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macrophages and lymphocytes [22–24]. However, the role of neutrophils in the neuro-

immune panorama in (patho)-physiological conditions is poorly understood.

Previous neuro-immune studies reported neutrophil recruitment as a response to pathological 

conditions, as determined by blood cytokine levels as inflammatory markers. We have used 

neutrophil recruitment as a biological signal of local/acute inflammation. We investigated 

neuromodulation of inflammation in experimental arthritis [25–28], using neutrophil 

migration as the main hallmark for local inflammation. Despite the key role of neutrophils in 

tissue damage, few studies investigated their role in the neural circuits, probably because of 

their short lifespan [29,30]. The half-life of neutrophils is approximately 10−19 h in mice 

and humans, and treatment with adrenergic or cholinergic drugs cannot be performed for 

long periods of time after their isolation from the blood. Moreover, mature neutrophils are 

found almost exclusively in the bloodstream and in inflamed tissue, but not in secondary 

lymphoid organs such as the lymph nodes or the spleen. The presence of mature neutrophils 

in the blood represents the first line of defense and, their quick migration into the injured site 

is essential to fight infections [31]. In contrast to neutrophils, direct interactions between the 

nervous and the immune systems are mediated through neuro-immune synapses between 

peripheral nerves and lymphocytes/macrophages. Lymphocytes are distributed in primary 

(thymus and bone marrow) and secondary (spleen and lymph nodes) lymphoid organs, 

which are innervated by post-ganglionic sympathetic nerves that interact with resident 

lymphocytes through synapsis-like structures [24,32,33]. In the thymus and spleen, these 

sympathetic innervations are responsible for the maturation of T and B lymphocytes [34,35], 

respectively. On the other hand, macrophages are present in many nonlymphoid organs, 

where they are regulated through direct sympathetic innervations as described in the liver, 

and intestine [22,36]. The barrier tissues are the major sites where immune cells traffic and 

reside; in particular, the intestinal mucosa alone harbors more lymphocytes than all the 

lymphoid organs combined. Therefore, the interference of such neural inputs in tissue-

resident lymphoid populations cannot be excluded. Moreover, lymphoid structures rich in 

lymphocytes, such as thymus, are innervated by parasympathetic vagal fibers [37]. 

Moreover, considering the importance of chronic low-grade inflammation as a key factor in 

the development of cardiovascular diseases and metabolic syndrome [38–41], it is also 

essential to mention the implications of neuro-immune interface for many pathological 

states, such as obesity and insulin resistance, and their related diseases including 

hypertension, atherosclerosis, diabetes, and stroke [42–47].

From a clinical perspective, the study of neuro-immune interactions is allowing the design of 

new therapeutic strategies for infectious and inflammatory disorders. For example, electrical 

stimulation of the vagus nerve activates the splenic nerve to release norepinephrine, which in 

turn activates splenic lymphocytes to produce acetylcholine. Acetylcholine activates the 

alpha7 subunit of nicotinic acetylcholine receptors (α7nAChR) on macrophages and inhibits 

the production of inflammatory factors [17,24]. This neural circuits (“inflammatory reflex”) 

inspired the design of bioelectronic devices for the treatment of autoimmune conditions such 

as rheumatoid arthritis and Crohn’ disease [48–50]. Furthermore, the vagal signals to the 

spleen decrease the activation of circulating neutrophils by modulating the expression of 

CD11b [51]. These results evidence that vagal stimulation can be exploited to modulate 

neutrophil recruitment in infectious and inflammatory disorders.
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In this review, the first section has focused on how neutrophils contribute to the neuronal 

regulation of the immune system in response to the catecholaminergic/ cholinergic 

neurotransmitters produced by specific neuronal networks. In return, neutrophils can also 

produce both neurotransmitters, to feedback the neuronal network, and cytokines to 

modulate the immune system. These atypical neural mechanisms are behind those classical 

anti- and pro-inflammatory mediators already described as chemokines and cytokines (Fig. 

1A). The second section will discuss the bidirectional crosstalk between neutrophils and 

sensory neurons and their contribution to pain, and neurogenic inflammation. Pain, one of 

the cardinal points of inflammation, has relevant clinical importance that, together with 

fever, shows some neuroimmune peculiarities (Fig. 1B). Finally, the third section of this 

article discusses the role of neutrophils in neurologic and neurodegenerative disorders 

affecting the central nervous system (CNS) (Fig. 1C).

2. Neutrophils as an immunological and diffuse source of 

neurotransmitters

Recent studies show that immune cells are an important non-neuronal source of 

neurotransmitters that allow the bidirectional crosstalk between the nervous and the immune 

system. When activated, neutrophils produce acetylcholine and catecholamines that can 

feedback the original neuronal network and also to transfer the neuronal signal to other 

immune cells, including neutrophils themselves. In neurons, tyrosine hydroxylase (TH) 

initiates the synthesis of catecholamines converting the amino acid L-tyrosine to L-DOPA, 

the precursor for dopamine synthesis. Next, the vesicular monoamine transporter (VMAT) 

translocates this neurotransmitter into vesicles, where dopamine is hydroxylated in the β 
position by dopamine-β-hydroxylase to generate norepinephrine, which is converted into 

epinephrine by the phenylethanolamine N-methyltransferase. Likewise, neutrophils also 

have all the enzymatic machinery necessary for the synthesis, metabolism, storage, and 

uptake of catecholamines [52,53]. It has been detected and quantified the amounts of 

dopamine, norepinephrine, epinephrine, and their metabolites, such as DL-3,4-

dihydroxyphenylglycol (DHPG; a norepinephrine metabolite) and metanephrine (MET; 

epinephrine metabolite), in human neutrophils isolated from peripheral blood by high 

performance liquid chromatography (HPLC) [53]. These levels are similar to those reported 

in rat neutrophils by using enzyme-linked immunosorbent assay (ELISA) [52]. Furthermore, 

rat neutrophils also produce mRNA for both TH and dopamine-β-hydroxylase [52]. In fact, 

the intracellular levels of dopamine, norepinephrine, and DHPG are reduced in neutrophils 

treated with α-metil-ρ-tyrosine, a classical inhibitor of TH [53]. Likewise, treatment of 

human neutrophils with reserpine, an VMAT inhibitor, reduces the intracellular 

concentrations of norepinephrine and dopamine [53]. Together, these results indicate that 

human, rat, and murine neutrophils produce catecholamines through a mechanism similar to 

that reported in neurons. After depolarization, catecholamines are released by the vesicles 

into the extracellular milieu to exert their effects until they are reuptake or processed into 

inactive metabolites. Incubation of human neutrophils with desipramine (inhibits 

monoamine reuptake) markedly decreases their intracellular levels of norepinephrine [53].
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Neutrophils can also produce acetylcholine. Peripheral human granulocytes are a non-neural 

source to produce and storage acetylcholine, but they do not synthetize significant amounts 

of acetylcholine as compared with lymphocytes [54]. Norepinephrine can stimulate splenic 

modulatory T lymphocytes expressing choline acetyltransferase to produce acetylcholine, 

which inhibits the production of inflammatory cytokines from splenic resident macrophages 

and prevent systemic inflammation in experimental sepsis [24]. Future studies are needed to 

determine the condition by which neutrophil-derived acetylcholine can induce (i) pro-

inflammatory effects, as described for catecholamines [52], or (ii) an anti-inflammatory 

mechanism, as described for T lymphocytes in the spleen [24].

2.1. Catecholamines and their effects in neutrophils

Catecholamines have a critical role mediating the crosstalk between the nervous and the 

immune systems. Epinephrine and norepinephrine bind to either α (α1A, α1B, α1D, and 

α2A, α2B, α2C) or β (β1, β2, and β3) adrenoceptors (ARs), two families of adrenoceptors 

with distinct structural and pharmacological properties [55]. ARs are coupled to G proteins 

as their principal second messengers. α1ARs activate Gq/11, a subfamily of heterotrimeric G 

proteins that activates the phospholipase C (PLC)-calcium-diacyl glycerol (DAG)- protein 

kinase C (PKC) pathway in vascular (α1A, α1B, α1DARs) [56] and non-vascular systems 

(α1AARs). α2ARs activates Gi proteins to decrease the outflow of catecholamines (α2A and 

α2CARs) and modulate cognitive and behavioral disorders (α2A, α2B and α2CARs). βARs 

are coupled to Gs proteins, which activate the adenylyl cyclase and increase the intracellular 

cAMP levels. Thus, βARs can activate protein kinase A (PKA) to increase cardiac 

contractility (mainly β1ARs) and relax bronchial smooth muscles (mainly β2ARs) [57]. Due 

to the vast array of biological functions regulated by the adrenoceptors, it is easy to 

understand the importance of these receptors as potential therapeutic targets in multiple 

pathologies.

Recent studies showed that neutrophils express both αARs and βARs including α1A, α2C, 

α1D, β1, β2, and β3ARs but not α2BARs mRNA [52,58–63]. The expression of αARs in 

neutrophils has been confirmed in multiple studies related to diverse physiological 

conditions [52,61]. For instance, α1 and α2ARs exert opposite effects in neutrophils as they 

increase and decrease CD11b expression, respectively [62]. On the other hand, 

catecholamines can be produced by neutrophils increasing the extension of tissue damage 

through a autocrine mechanism via α2ARs activation [52].

βARs are predominantly anti-inflammatory. in vitro studies showed that βARs modulate 

neutrophil oxidative burst, chemotaxis, NET formation, and the expression of adhesion 

molecules, leukotriene B4 (LTB4), and chemokines/cytokines [62–65]. The intracellular 

βAR signaling, especially those associated with cAMP and PKA activation, modulate most 

to the neutrophil functions [66,67]. For example, isoproterenol, a β-adrenergic agonist, 

inhibits neutrophil oxidative burst induced by N-Formyl-methionyl-leucyl-phenylalanine 

(fMLP), a chemotactic peptide, or calcium ionophores by increasing intracellular calcium 

and cAMP levels [65]. However, a recent study also showed that βARs inhibit superoxide 

production in human neutrophils via a cAMP-independent mechanism [68]. Finally, 
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adrenergic agents selectively inhibit the oxidative burst of human neutrophils without 

affecting elastase release [64].

Treatment of neutrophils with adrenergic agonists can attenuate cellular responses by 

inducing the desensitization and internalization of the adrenoceptors [69]. From a clinical 

perspective, neutrophils from patients treated with adrenergic agonists or presenting elevated 

levels of endogenous catecholamines are less capable to migrate or generate microbicidal 

agents. Furthermore, incubation of neutrophils with norepinephrine reduces cell chemotaxis 

by impairing the cytoskeleton remodeling [70]. Neutrophil phagocytosis and chemotaxis is 

also impaired in animals that underwent experimental stroke [70], a wellknown condition 

that induces a sustained sympathetic activation [71]. Thus, the use of β-blockers could 

prevent the immunosuppression and subsequent infection that usually follows stroke 

conditions [47], as isoproterenol reduced the expression of βARs in neutrophils [72].

Several sympathetic dysfunctions are mediated by end-target βARs and therefore 

neutrophils could be a useful model to study autonomic alterations. For example, reduction 

in βARs expression and receptor responsiveness in peripheral neutrophils have been 

reported in neonates and elderly, respectively. These results indicate that adrenergic 

signaling can change during development, depending on the physiological homeostasis or 

sympathetic dysfunctions [73,74]. Other studies also reported that β2ARs are reduced in 

neutrophils from diabetic children and hypertensive subjects, but increased in patients with 

post-traumatic stress disorder [60,75,76]. The potential role of β2ARs in other conditions 

such as psoriasis and atopic dermatitis appears to be controversial. Although there are some 

indications suggesting an irregularity in the function or expression of neutrophil β2ARs in 

psoriasis [77], posterior studies reported no change in the density and affinity of these 

receptor in neutrophils isolated of patients with psoriasis [78] or atopic dermatitis [59]. 

Moreover, neutrophil count in peripheral blood is also modulated by circadian oscillations 

by down-regulating CXCL-12 in the bone marrow, which can allow neutrophil release. This 

down-regulation is mediated by sunlight stimulation of β3ARs [79].

Another catecholamine that showed a great anti-inflammatory potential is dopamine [80,81]. 

There are two families of dopaminergic receptors: D1-type (including D1 and D5 subtypes) 

and D2-type (D2, D3, and D4 subtypes) [82]. D3 and D5 receptors are commonly expressed 

in human neutrophils, whereas D2 and D4 expression showed significant variability [83]. 

Dopaminergic receptors seem to be functional and interfere in neutrophil activity (e.g. 

phagocytosis) as observed in sympathectomized mice [84]. The uptake, synthesis, storage, 

and release of dopamine in neutrophils support the hypothesis of dopaminergic regulation of 

human neutrophil functions [53]. Dopaminergic agonists decreases nitric oxide production 

[85], and dopamine decreases ROS production in stimulated neutrophils [86–88], but only 

high concentrations of dopamine impairs neutrophil phagocytosis of bacterial pathogens 

[88].

2.2. Cholinergic and nicotinic receptors in neutrophils

Acetylcholine (ACh) is a neurotransmitter found in central and peripheral synapses that 

binds to muscarinic (mAChRs) and nicotinic (nAChRs) cholinergic receptors [89]. nAChRs 

are cationic channels composed of five homologous subunits, which are encoded by a large 
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multi-gene family [18]. Although nicotine, a component of tobacco and the canonical 

nAChR agonist, displays potent anti-inflammatory effects when signaling through 

α7nAChRs in macrophages [90]. These receptors are considered a central component of the 

“inflammatory reflex” [90]. α7nAChRs are found in neurons and non-neuronal cells (e.g. 

microglia, astroglia, oligodendrocytes, endothelial and leukocytes) [89] and appear to be the 

main functional cholinergic receptors modulating the immune system. The expression of 

nAChRs in neutrophil’ surface has been studied by high affinity binding assays [91,92]. In 

humans, it has already been described that neutrophils isolated from blood also express 

α7nAChRs and α3β4 nAChRs [91]. More recently, the expression of mRNA for nAChR 

subunits, mostly α2–9 and β2–4, were detected in stimulated murine neutrophils [92]. The 

expression of these nAChRs strongly suggests the regulation of neutrophils by nicotinic 

agonists. Treatment of neutrophils with nicotine diminishes the expression of integrin 

adhesion molecules (CD11b and L-selectin) and endothelial intercellular adhesion molecule 

1 (ICAM-1) [93], and inhibits their microbicidal properties, such as phagocytosis and 

chemotaxis, without affecting superoxide production [94]. Treatment with nicotine enhances 

elastase degranulation and generation of eicosanoids, such as prostaglandin E2 and LTB4, in 

these cells [94], but other studies showed opposite effects [95–97]. For example, treatment 

with nicotine interferes with the ability of neutrophils to kill periodontal pathogens, without 

affecting bacteria uptake [95]. Nicotine can also halt the degranulation and the production 

ROS, including superoxide, in stimulated neutrophils [95–97]. By contrast, cholinergic 

antagonists decreases neutrophil phagocytic migration activity without affecting cell 

oxidative burst [54] and, although nicotine did not affect the oxidative burst, it reacts with 

neutrophil-derived HOCl to generate nicotinechloramine, a membrane pore-forming 

compound [98]. Noteworthy, all these studies were performed under viable nicotine 

concentrations that failed to induce cellular cytotoxicity in neutrophils [94,95,97]. The 

different results in these studies can be due to the incubation times and concentration of 

nicotine, source of neutrophil, medium composition, and specificity and particularities of the 

assays utilized. In summary, despite the controversy, most studies show that nicotine 

substantially impairs neutrophil functions that may contribute to the higher susceptibility to 

infections reported in tobacco smokers.

Recent studies showed that the cholinergic regulation of neutrophils is not exclusively 

mediated by extracellular receptors of the cell membrane. For example, nicotine still 

modulates neutrophil activity even in the presence of first generation hydrophilic muscarinic 

or nicotinic antagonists [96]. In fact, acetylcholine and acetylcholine-like structures have 

lipophilic characteristics, allowing their translocation into the cytoplasm where α7nAchRs 

are also found (e.g. mitochondria) [99–101]. Thus, extracellular ligands can also target 

intracellular nicotinic receptors exerting particular biological properties in neutrophils, 

where each specific subtype of nicotinic receptor could exert distinct and opposite functions.

The immune properties of nicotine on neutrophils have clinical implication for infectious 

disorders. For example, nicotine increases survival in endotoxemia and experimental sepsis 

by inhibiting the production and release of systemic inflammatory mediators, such as tumor 

necrosis factor (TNF) and high mobility group box protein 1 (HMGB-1) [102]. Other studies 

showed that nicotine also inhibits neutrophil infiltration into vital organs, reducing organ 

damage and failure [103,104]. On the other hand, multiple studies showed that decreasing 
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neutrophil recruitment to the infected area impairs bacterial clearance in experimental 

peritonitis induced by E. coli inoculation [105] and pneumonia [106]. In fact, α7nAchR-

deficient mice show accentuated neutrophil migration toward the infectious focus and 

improved bacterial clearance [107]. These contradictory effects appear to depend on 

exposure range to α7nAchR agonists at different time points after the infection. Activation 

of nicotinic receptors in early phases of the infection prevent neutrophil recruitment into the 

infectious site allowing the spread of microorganisms; whereas nicotinic activation at later 

time points, can inhibit massive neutrophil recruitment into vital organs preserving tissue 

integrity [20]. Other studies reported that the disparity between the pro- and anti-

inflammatory effects of nicotine is due to the differences in the period of exposition. The 

pre-treatment (before the arthritis induction; mimicking long-term exposition) exacerbated 

arthritis severity, whereas the post-treatment (therapeutic use) improved the inflammatory 

and clinical signs in arthritic rats [108]. Future studies will be needed to determine whether 

how the dosage and method of administration (bolus injection vs. continuous infusion) affect 

these results [109].

The chronic exposure to nicotine, as observed in smokers, exacerbates neutrophil activity as 

observed in patients with rheumatoid arthritis, and periodontal and lung diseases. Chronic 

stimulation of nAChRs in neutrophil increases IL-8 production by peroxynitrite generation, 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and 

inhibitor of kB (IκB) degradation [110]. Indeed, smokers have higher plasma levels of IL-8 

associated to blood neutropenia. Nicotine expands the neutrophil lifespan by inhibiting the 

diphospho-inositol pentakisphosphate (InsP7) and Akt pathway [111,112], contributing to 

cell accumulation and tissue damage in emphysema and bronchitis [113]. Chronic activation 

of α7nAchRs also increases NETs release via Akt and PAD4 activation [114]. Treatment 

with nicotine worsens the clinical score in murine collagen-induced arthritis, by increasing 

plasma levels of MPO-DNA complex, a known marker for NETs [109]. The authors also 

reported higher plasmatic levels of MPO-DNA complex in smoker subjects, and that 

nicotine acts as a potent inducer of NETosis via α7AChR activation. These results are 

consistent with the epidemiological studies showing that cigarette smoking predispose to 

rheumatoid arthritis development [114].

3. Bidirectional regulation of sensory neuron-neutrophil functions

The tissue injury caused by physical trauma or infection generates a local synthesis of 

mediators and DAMPs by neuronal and non-neuronal cells. In an initial stage, the generation 

of arachidonic acid metabolites enhances the production of prostanoids, a subclass of 

eicosanoids (e.g., prostaglandin E2), which increase vascular tissue permeability and activate 

afferent neurons (Fig. 1A–C). These events are associated with the appearance of critical 

cardinal signs of inflammation, including redness, heat, swelling, and pain. Physiologically, 

pain protects the inflamed tissue by sending a warning (nociceptive) signal to the brain 

[115,116]. The activation and/or sensitization of the peripheral endings of nsensory neurons 

(mostly nociceptors) by inflammatory mediators alerts the organism about an infection or a 

tissue injury, shunning it from further damage for proper healing [117]. Thereafter, 

leukocytes are attracted to the site of the injury (i) to fight against infection, to repair tissue 

damage, and (ii) to mediate a complex neuro-immune interaction with the sensory neurons 
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[118]. From a clinical perspective, dysregulation in the resolution of acute inflammation 

may result in persistent and exacerbated inflammatory disorders, as observed in rheumatoid 

arthritis and neuropathic pain [119,120].

Neutrophil migration is an early event in the cellular phase of inflammation and it is 

responsible for the elimination of infectious agents and cellular debris. Within a few hours 

after the tissue damage, neutrophils are the most predominant leukocytes that migrate to the 

injured site, fighting the infection, and orchestrating the wound healing. Furthermore, they 

are also an important source of chemical mediators that affect the sensitivity of primary 

afferents neurons, such as cytokines and chemokines [121,122] (Fig. 1D–E). Cytokine-

stimulated neutrophils induce, in turn, the release of additional mediators and trigger a 

complement alternative pathway amplifying nociception [123,124]. The pronociceptive 

action of neutrophils was first reported by our group showing that neutrophil recruitment 

toward the joints of dogs enhanced articular nociception promoted by the administration of 

lipopolysaccharides. Subsequent studies showed that intra-plantar administration of LTB4 

and the complement component 5a (C5a) in rat paw elicited mechanical hypernociception by 

a mechanism dependent on neutrophil migration [125,126]. Furthermore, the administration 

of an allosteric C5aR antagonist inhibited C5a-induced neutrophil migration reducing 

mechanical hyperalgesia in experimental models of inflammatory and neuropathic pain 

[127]. Our studies were confirmed by other investigators showing that neutrophils 

participate in the genesis of different pathological types of pain [128–132]. Regarding 

inflammatory pain models, treatment with fucoidin reduces neutrophil recruitment and 

mechanical allodynia during carrageenan-induced inflammation [133], and the depletion of 

neutrophils with vinblastine sulfate or anti-neutrophil antibody decreases mechanical 

hyperalgesia induced by paw incision in mice [134]. In humans, there is a strong relationship 

between the hyperalgesic effects of LTB4 and the kinetic of neutrophil migration [135,136]. 

Other studies have observed that a neutrophil infiltration into the joint of patients suffering 

from arthritis precedes the clinical signs of inflammation and, therefore, this cellular event 

could be considered a predictive signal of pain development [137,138]. Antibody-induced 

neutropenia inhibits edema formation, but not the mechanical and thermal thresholds on 

complete Freund’s adjuvant (CFA)- and zymosan-induced pain [139,140]. Although these 

studies used different methods to induce neutropenia, these data suggest that neutrophils 

may not be the only leukocytes modulating nociception in these inflammatory conditions, 

although future studies would be required to confirm this hypothesis.

Other studies suggest that neutrophils can also contribute to neuropathic pain. Neutrophils 

are almost absent in an intact nerve, but a significant infiltration of neutrophils and 

macrophages have been observed at the site of the nerve lesion in experimental models of 

neuropathy [141]. A substantial endoneurial neutrophil invasion was reported at the site of a 

partial transection of the sciatic nerve, and the depletion of circulating neutrophils reduced 

the development of thermal hyperalgesia [131]. Further studies indicated that genetic 

ablation of mediators or receptors mediating neutrophils adhesion and migration improves 

mechanical hyperalgesia in experimental neuropathic pain [142,143]. Another interesting 

study showed that chronic constriction injury of peripheral nerve induces neutrophil 

infiltration into the dorsal root ganglia (DRG), ipsilateral to the nerve lesion, and it 

correlates with an increase in MCP-1 expression [144]. Moreover, we also reported that 
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fucoidin or depletion of neutrophils with antibody anti-Ly6G inhibited the expression of 

TNF in DRGs and reduced the mechanical threshold after infection with Herpes Simplex 

Virus Type-1 in a murine model of acute herpetic neuralgia [145]. Finally, although the 

functional implications of neutrophils on neuronal axon and soma remain unknown, some 

studies suggest that neutrophil-derived elastase present in DRG and nerves is an important 

mediator for an induction of pain hypersensitivity in experimental models of neuropathy 

[146,147]. Taken together, these data support a direct role of neutrophils and its mediators in 

etiology and maintenance of neuropathic pain.

At the lesion site, neutrophils release inflammatory mediators, such as cytokines, that 

activate other cells, inducing edema, hyperalgesia, and migration of other leukocytes. 

However, the hypernociceptive potential of neutrophils is not directly associated with the 

release of nociceptive cytokines [148,149]. On the contrary, this effect depends on the 

potential of neutrophils to release direct-acting mediators through a coordinated cascade of 

factors. In fact, an inflammatory stimulus in the rodent paw induces an initial formation of 

bradykinin that triggers resident cells and neutrophils to release inflammatory factors, PGE2, 

and sympathetic amines that will have a direct action on neurons and nociception [130,150–

153]. We reported that in vitro neutrophils stimulated with IL-1β produced PGE2 through a 

mechanism that is inhibited by fucoidin [133]. These results evidence that infiltrated 

neutrophils contribute to mechanical hypernociception, at least by releasing direct-acting 

mediators, such as PGE2 and sympathetic amines. Neutrophils also modulate other 

peripheral mechanisms of inflammatory pain including the production of ROS, 

metalloproteases, and hydrogen protons [154–157]. Furthermore, neutrophils may generate 

endothelins, that synergize with other hyperalgesic mediators and increases the nociceptors 

excitability and, consequently, pain sensitivity [158]..

Finally, nociceptors activation promotes an axon reflex and generates action potentials that 

propagate antidromically, triggering a rapid and local release of neural mediators, such as 

substance P (SP), neuropeptides calcitonin gene related peptide (CGRP), vasoactive 

intestinal peptide (VIP), and gastrin releasing peptide (GRP). These neuronal mediators 

produce an independent inflammatory response similar to the innate immune system. This 

process is known as “neurogenic inflammation” [159–162] (Fig. 2C). Neuropeptides 

released by sensory neurons, such as GRP and VIP, induce neutrophil chemotaxis and can 

also act as anti-microbicidal components [163–165]. On the other hand, recent studies 

showed that CGRP released from sensory neurons during host-pathogen interactions reduces 

neutrophil recruitment as well as their microbicidal activities and thereby promoting 

immunosuppression [166,167]. Although most of the studies suggest an indirect contribution 

of neutrophils to hyperalgesia, the development and use of drugs to mudulate neutrophil 

migration to the focus of lesions should be considered as a potential strategy against 

inflammatory persistent pain.

4. Neutrophil in the central nervous system

Early studies suggested that the CNS is an “immune privileged site” due to the impenetrable 

blood-brain barrier (BBB), and the lack of antigen-presenting cells and lymphatic 

vasculature [168]. Nonetheless, this concept has been changed over the past few years [169], 
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and recent studies show the presence of lymphatic vessels in the brain, and alterations of the 

BBB during CNS disorders allows a bidirectional communication between peripheral 

leukocytes and CNS [170,171]. Neutrophils are immune cells with a short lifespan that can 

contribute to the brain damage during the acute stage of cerebral injury. Under physiological 

conditions, neutrophils are hardly found in brain parenchyma due the BBB [172]. However, 

a small number of neutrophils are present in the meninges, pia membrane, and the 

cerebrospinal fluid. During CNS disorders, including during central infections, immune and 

non-immune resident cells of the cerebral tissue generate chemoattractant mediators that 

induce neutrophil infiltration into the cerebral tissue [168] (Fig. 3A–C). In fact, avoiding 

neutrophil infiltration into the CNS after brain injuries diminishes neuronal damage [173]. 

On the other hand, inhibition of neutrophils in patients may increase the risk of opportunistic 

infections [174]. Therefore, future studies will require determining the role of neutrophils in 

specific neurological disorders. This could lead to the design of specific therapies against the 

detrimental effects of the neutrophils, without affecting their beneficial protective roles. In 

this review, we discussed the participation of CNS-infiltrating neutrophils addressing the 

main aspects of inflammatory mediators and cellular types involved as well as the damaged 

structures in autoimmune (e.g. multiple sclerosis), neurodegenerative (e.g. Alzheimer’ 
disease) and infectious (e.g. sepsis, fungal and parasite infections) diseases and ischemic 

stroke.

Currently, little is known about the involvement of neutrophils in the pathogenesis of 

multiple sclerosis (MS). Neutrophils are recruited to the CNS through the release of 

chemokines, such as CXCL1 and CXCL5, which are produced different cells, including the 

astrocytes - via Th17-derived IL-17 - and mast cells from the meninges [175,176]. IL-17−/− 

mice show reduced neutrophil infiltration into the brain, but not in the spinal cord. In this 

case, astrocytes express CXCL2 and CXCL5 mediated by IFN-γ. Curiously, IFN-γ did not 

induce chemokine production by astrocytes in vitro, suggesting that it might act indirectly. 

Clinical studies reported that MS patients have increased levels of neutrophils and systemic 

NETs [10,11], and the plasma levels of CXCL1, CXCL5, and elastase correlated with 

clinical disability [177]. Interestingly, neutrophil recruitment into the CNS differ between 

IL-17 (to the brain) or interferon (IFN)-γ (to the spinal cord) production in experimental 

autoimmune encephalomyelitis (EAE), a multiple sclerosis model [178]. When in the CNS, 

neutrophils increase the permeability of the BBB and disrupt myelination [179]. Thus, 

neutrophil infiltration into the CNS leads to demyelination and axonal loss (Fig. 3D).

Neutrophil infiltration into the CNS also appears to contribute to the development of 

neurodegenerative disorders, such as Alzheimer’ disease. Neutrophil infiltration occurs in 

the regions with amyloid-β deposits by a LFA-1 integrin mechanism, and further brain 

injury appears following NETs and IL-17 release [12]. Different studies demonstrated that 

Alzheimer’s patients present high number of neutrophils in the peripheral blood [180]. TNF 

levels modulation using isoindolin-1,3 dithione increased the presence of “healthy” 

neutrophils in the CNS, and improved the clinical score of 3xTgAD mice [181]. Of note, an 

increasing number of investigators propose that targeting α7AChR in neutrophils may 

modulate neuro-inflammatory and cognitive dysfunctions in Alzheimer’s disease [182]. 

Multiple studies showed that activation of α7- and α9nAChR reduces the levels of CXCL12 
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and CCL2 in the CNS, and improves the clinical outcomes by preventing neutrophil 

infiltration [182,183] (Fig. 3E).

During infections by microorganism that invade the CNS, neutrophils can perform protective 

or deleterious roles depending on the nature of the pathogen and host defense. Infection 

susceptibility is increased in immunosuppressed individuals, as usually observed in 

neutropenia or infected HIV patients. For example, fungal CNS infection by Candida 
albicans promotes a protective recruitment of CXCR2-expressing neutrophils through 

microglia-induced IL-1β and CXCL1 [184,185]. Toxoplasma gondii can lead to cerebral 

toxoplasmosis, and the infiltration of neutrophil promotes host defense contributing to IFN-

γ production and parasite control during the early stages of infection [186]. On the other 

hand, during sepsis, a systemic infectious condition, multiple vital organs are damaged by 

neutrophil infiltration, including the brain. Sepsis can also induce cognitive dysfunction and 

neurological disorders that appears to be associated with neutrophil filtration. Neutrophil 

adheres to the cerebrovascular endothelium via β2-integrins [187]. Recent studies showed 

that natural killer (NK) cells have an essential role in neutrophil recruitment into the brain 

during sepsis via chemokine production and microglial interaction [188]. Recent studies 

found neutrophils in the CNS, even fourteen days after the septic challenge, that are 

associated wih high levels of TNF and CXCL1 along with behavioral alterations [189].

In animal models of ischemic stroke, injury induces damaged cells to release DAMPs, which 

activate resident cells to produce chemokines, such as CXCL2 and CXCL8, resulting in 

neutrophil recruitment into the CNS. Neutrophils activation starts in the peripheral blood by 

systemic HMGB1, and then they infiltrate into the CNS due to an increased expression of 

very late antigen-4 (VLA-4), allowing their migration and adhesion to the brain blood 

vessels [173,190]. In the brain, neutrophils are activated releasing NETs, and also interacting 

with microglia, which results in tissue damage and the disruption of the BBB [13,14] (Fig. 

3D). Of note, patients who suffered hemorrhagic stroke showed low levels of oxidative 

respiratory in the isolated neutrophils, which inversely correlated with the plasma levels of 

norepinephrine [191]. This suppression could explain the higher susceptibility to infections 

in post-stroke patients. The susceptibility to nosocomial infections due to reduced neutrophil 

infiltration after stroke was improved by α7nAChR pharmacologic blockage or genetic 

deletion [192]. Hypoperfusion enhances the interaction of neutrophils with the vasculature 

and promotes their adhesion by inducing the expression of selectins in the surface of the 

endothelial cells [193]. Neutrophils first accumulated within hours in the leptomeninges and 

perivascular spaces before they infiltrate into the parenchyma [194]. Neutropenic animals 

display reduced blood flow in the injured hemisphere after traumatic brain injury [195]. 

Hypoperfusion and neutrophils adherence promote ischemia and even early coagulopathy 

[196]. Likewise, neutrophils also contribute to vascular dysfunction during and after the 

injury in a hypoxia-ischemia model [197]. The interaction between activated neutrophils and 

endothelium is normally associated with secondary injury after traumatic brain injury [171].

Other neurological disorders are also associated by neutrophil infiltration into the CNS, 

including viral infection [198], febrile seizure [199], and Entero‐Behçet’s disease [200]. 

However, the molecular mechanisms mediating the role of neutrophils in the pathogenesis of 
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CNS disorders are not well-known, and future research is needed to determine the specific 

contribution of neutrophils to distinct neurological disorders.

5. Conclusion and perspectives

Although neutrophils are classical innate immune cells, they are a significant non-neural 

source of neurotransmitters (e.g. catecholamines and acetylcholine) exerting both paracrine 

and autocrine, self-regulatory modulation in inflammatory conditions. From a clinical 

perspective, neutrophils can interact with the central and peripheral nervous systems being 

responsible for the genesis of central inflammatory/neurodegenerative conditions and pain, 

respectively. Thus, inhibition of neutrophils could be a promising strategy against 

inflammatory and neurogenic pain or brain damage. The main findings in the current 

literature that demonstrate the role of neutrophils in a neuro-immune context are shown in 

the Table 1.

Neutrophil represents a heterogeneous population of cells with different characteristics. 

They can be subdivided into at least two distinct subpopulations [201,202] named N1 and 

N2 neutrophils and represent their immune-stimulating or suppressive potential, 

respectively. These two subpopulations of neutrophils have significant clinical implications 

in multiple infectious and inflammatory disorders, including autoimmunity and cancer. 

Unfortunately, there are no specific molecular markers yet to purify and study these 

subpopulations. Also, the specific brain micro-environmental cues that regulate their 

activities remain to be elucidated. Further understanding of these cues will allow the use of 

neutrophils as specific CNS targets to control inflammation in neurological and 

neurodegenerative disorders.

Importantly, it is not clear for how long the neutrophils survive in the brain. Recent studies 

indicate that their lifespan may significantly vary in distinct disease conditions [203,204]. 

Neutrophil survival time in the brain can depend on specific factors, such as adenosine, ATP, 

glutamate, and hypoxia [205–207]. Neutrophils can also modulate other CNS cells such as 

astrocytes and induce a complex cellular process modulating neuro-inflammation in 

neurological and neurodegenerative disorders [208]. Future studies are also needed to 

determine whether neutrophil recruitment into the brain is similar to that in peripheral 

tissues. Recent studies suggest that the rolling and migration of neutrophils in the brain 

venue are coordinated by different mechanisms. However, the specific molecules involved in 

the adhesion and transmigration of neutrophils in these vessels are still not known and 

require future explorations [1].

It is also unknown whether neutrophils that enter the brain could return to the bloodstream, 

and consequently to peripheral tissues. Interestingly, brain cells and neurotransmitters can 

affect neutrophil migration and prolong their survival time [209,210]. Peripheral neutrophils 

can be reprogrammed into a phenotype with specific enhanced function [201]. Recent 

studies have described a phenomenon called ‘reverse migration’ (when neutrophils migrate 

from the organ that they infiltrated back to the blood vessels) [211]. It is unknown whether 

this phenomenon also happens in the CNS. Interestingly, lung tumor induces osteoblastic 

cells in bone marrow to release primed neutrophils, which promote tumor development 
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[212]. Future studies will explore whether pathological brain tissue may prime neutrophils 

and change their function in peripheral organs.

Finally, experimental and clinical studies will be needed to determine the clinical 

implications of neutrophils in chronic neurological and neurodegenerative disorders. Further 

studies are needed to describe whether neutrophil infiltration is a process involving specific 

regions or a global event in the brain as observed in EAE model [178]. These studies could 

enable the development of new therapies to target the recruitment of neutrophil in 

neurodegenerative or infectious diseases. This approach could avoid the systemic 

immunosuppression induced by a general depletion of neutrophils. Moreover, the 

modulatory role of neurotransmitters on neutrophils is still largely controversial and may be 

explored. Therefore, multidisciplinary studies involving immunologists and neuroscientists 

will be required to define the role of the neurons/neutrophils communication in the 

pathophysiology of infectious, inflammatory, and neurological disorders.
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Abbreviations

ACh acetylcholine

ARs adrenoceptors

βARs beta-adrenoceptors

BBB blood-brain barrier

C5a complement component 5a

CFA complete Freund’s adjuvant

CGD chronic granulomatous disease

CGRP calcitonin gene-related peptide

CNS central nervous system

DAMPs damage-associated molecular patterns

DHPG DL-3,4-dihydroxyphenylglycol

DRG dorsal root ganglia

ELISA enzyme-linked immunosorbent assay

fMLP N-formyl-methionyl-leucyl-phenylalanine

GRP gastrin releasing peptide
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H+ hydrogen protons

H2O2 hydrogen peroxide

HMGB-1 high mobility group box protein 1

HOCl hypochlorous acid

HPLC high performance liquid chromatography

ICAM-1 intercellular adhesion molecule 1

IFN interferon

IL interleukin

iNOS inducible NO synthase

InsP7 diphospho-inositol pentakisphosphate

IκB inhibitor of kB

LTB4 leukotriene B4

mAChRs muscarinic receptors

MET methanephrine hydrochloride

MPO myeloperoxidase

MS multiple sclerosis

nAChRs nicotinic receptors

NETs neutrophil extracellular traps

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NK natural killer

NO nitric oxide

PAMPs pathogen-associated molecular patterns

PGE2 prostaglandin E2

PMA phorbol-12-myristate-13-acetate

RNS reactive nitrogen species

ROS reactive oxygen species

SP substance P

TH tyrosine hydroxylase

TNF-α tumor necrosis factor α

Kanashiro et al. Page 16

Pharmacol Res. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VIP vasoactive intestinal peptide

VLA-4 very late antigen-4

VMAT vesicular monoamine transporter

α7nAChR alpha7 subunit of nicotinic acetylcholine receptors
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Fig. 1. The neuro-immune interactions of neutrophils.
(A) Neutrophils contribute to the neuronal regulation of the immune system. 

Neurotransmitters produced by either neuronal pathways (such as norepinephrine produced 

by the splenic nerve) or immune cells (acetylcholine produced by T lymphocytes) modulate 

neutrophil activity and the production of secondary messengers that, in turn, regulate both 

neurons and immune cells (including neutrophils by autocrine mechanism). (B) Neutrophils 

also modulate neuronal sensory signals by producing neurotransmitters to regulate the 

activation, sensitization, and maintenance of sensory neurons as observed in pain. Sensory 

neurons can also modulate neutrophils inhibiting their microbicidal functions by releasing 

neuropeptides. (C) Neutrophils can also cross the blood-brain-barrier (BBB) and release 

cytotoxic and inflammatory factors that induce neuronal damage in the central nervous 

system and contribute to neurological and neurodegenerative disorders.
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Fig. 2. Bidirectional regulation of sensory neuron-neutrophil functions.
Infection or tissue damage induces the production of inflammatory factors such as 

arachidonic acid metabolites and prostanoids that (A) increase tissue permeability to 

circulating neutrophils, and (B) can induce nociception and pain by activating sensory 

neuronal pathways. (C) The activation of nociceptive terminals triggers an axonal reflex that 

generates neurogenic substance P (SP) and calcitonin gene-related peptide (CGRP) 

increasing tissue permeability and inhibiting neutrophil microbicidal functions (neurogenic 

inflammation). (D) Neutrophils migrate into tissue to produce cytokines and chemokines 

that attract other leukocytes such as mast cells and circulating neutrophils. (E) Infiltrated 

neutrophils are activated and can produce multiple factors such as prostaglandin E2 (PGE2), 

sympathetic amines, reactive oxygen species (ROS), hydrogen protons (H+), and 

metalloproteases that modulate nociceptors and inflammatory pain.
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Fig. 3. Role of neutrophils in the central nervous system.
A) During the presence of neurodegenerative (e.g. Alzheimer), inflammatory (e.g. stroke) or 

infectious (e.g. sepsis, viral infection) conditions in the central nervous system (CNS). (B) 

Resident cells, such as astrocytes and NK cells, release different chemotactic substances, 

mainly chemokines. (C) These chemical mediators allow neutrophils to cross the blood-

brain barrier (BBB) and produce high quantities of harmful mediators to neurons, such as 

reactive oxygen and nitrogen species (ROS and RNS), neutrophil extracellular traps (NETs) 

and cytokines. (D) In addition, these mediators induce microglial activation, ruptures on 

BBB, and demyelination and axonal loss. (E) The pharmacological activation of nicotinic 

receptors by acetylcholine or nicotinic agonists decreases neutrophil infiltration to the CNS 

by reducing the levels of chemokines.
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