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Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disorder mediated by T cells, with a multifactorial etiology.
Hashimoto’s thyroiditis (HT) is a common autoimmune disease characterized by hypothyroidism. Although many clinical
studies conducted over the past several decades have reported the cooccurrence of OLP and HT, the underlying mechanism
remains unclear. This review summarizes potential mechanisms that might be involved in the cooccurrence of OLP and HT. We
find that OLP and HT share a common or overlapping pathogenesis in terms of immune, heredity, environmental, and
hormonal factors, which might cause cooccurrence. Furthermore, considering the latency of HT, a routine screen for thyroid
diseases, particularly HT, is suggested for confirmed OLP patients.

1. Introduction

Oral lichen planus (OLP) is a relatively common chronic
inflammatory disease of the oral mucosa affecting 0.5–2%
of the population; middle-aged and elderly female popula-
tions are more commonly affected [1]. Although OLP etio-
pathology remains unknown, it is believed that immune
dysregulation [2], psychological factors [3], and genetics
[4] play crucial roles. Hashimoto’s thyroiditis (HT) is
characterized by the aggregation of autoantibodies in the
thyroid and different degrees of thyroid follicle destruc-
tion, eventually leading to hypothyroidism [5]. The preva-
lence of HT is 2% in the general population, which
continues to rise; females are significantly more likely to
have HT [6]. Current studies indicate that there is a corre-
lation between the occurrence of HT and OLP. This article
reviews the potential mechanisms involved in the cooccur-
rence of these diseases.

2. Clinical Studies of the Cooccurrence of OLP
and HT

The correlation between OLP and thyroid disease was first
reported in 1994 [7]. Robledo-Sierra et al. [8] found that
OLP lesions in patients with concomitant thyroid disease
presented differently over time, indicating a specific OLP
subgroup. Based on previously published reports [9], hypo-
thyroidism and Hashimoto’s thyroiditis are the thyroid dis-
eases most commonly associated with OLP. Amato-Cuartas
et al. [10] found that the prevalence of hypothyroidism in
Colombian patients with OLP was 35.7%, compared with
3.95% in the entire study population. A number of studies
have also examined the relationship between OLP and HT.
Lo et al. [11] found that the prevalence of HT among OLP
patients was 14.3%, whereas the prevalence of HT in the gen-
eral population was 2% [6]; the authors suspected that HT
plays a causal or predisposing role in OLP. A case-control
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study in China also suggested that there is a close relationship
between OLP and HT [12]. In another study, Li et al. [9]
combined data from four articles published between 2010
and 2016 and conducted a meta-analysis. They concluded
that there was a significant association between OLP and
HT, suggesting that these two diseases share a common
pathogenesis.

3. Potential Mechanisms Underlying the
Cooccurrence of OLP and HT

3.1. Immune Factors. The histopathological features of OLP
and HT indicate that the cell-mediated immune response
plays an important role in their pathogenesis [13, 14]. The
typical histological features of OLP include subepithelial
band-like infiltration of lymphocytes (mostly T lympho-
cytes), liquefaction degeneration of basal epithelial cells,
and hyperparakeratosis. These features may be related to
basal keratinocyte damage caused by CD4+ T cell activation
by antigen-presenting cells or CD8+ T cell activation by basal
keratinocytes [15]. HT is characterized by lymphocyte infil-
tration and thyroid fibrosis. Collectively, both OLP and HT
involve inflammatory infiltration, predominantly containing
T cells. Therefore, the occurrence of both diseases involves
immune-related pathological processes. This suggests a
potential immune mechanism underlying the cooccurrence
of these two diseases.

3.1.1. Thyroid-Specific Antibodies. In HT, cell- and antibody-
mediated humoral immune responses against thyroid gland
self-antigens cause thyrocyte destruction, subsequently
resulting in hypothyroidism. Human thyroid autoantibodies
include thyrotropin receptor antibody (TRAb), thyroglobu-
lin antibody (TGAb), thyroid peroxidase antibody (TPOAb),
and anti-sodium iodide symporter (NIS) antibodies. TGAb
and TPOAb are present in nearly all HT patients. TPOAb
are the best serological marker for diagnosing HT, occurring
in approximately 95% of HT patients, while TGAb are less
sensitive and less specific [16].

In the past decades, many studies have reported a sig-
nificant link between thyroid diseases, especially autoim-
mune thyroid diseases (AITD) and autoimmune skin
disease [17]. In AITD patients, the skin is targeted by auto-
antibodies against thyroid-specific antigens [18] and the
prevalence of skin diseases among thyroid disease patients
is very high [19]. TPOAb and TGAb can induce epithelial
cell damage [20]. Keratinocytes, which express thyroid-
stimulating hormone receptor (TSHR) and TG, can be rec-
ognized and targeted by TRAb and TGAb in HT patients
[21]. Keratinocytes do not express TPO; however, given
that TPOAb are of greater pathogenetic importance than
TGAb in HT, many researchers have hypothesized that cir-
culating TPOAb may cross-react with unknown proteins
on keratinocyte membranes [11]. Once bound to the targets
on the keratinocyte surface, thyroid autoantibodies may
trigger CD95- (Fas/Apo-1) mediated apoptosis [22]. Apo-
ptotic bodies may then be internalized and processed by
surrounding keratinocytes or antigen-presenting cells, lead-
ing to T cell activation. Basal keratinocytes are then tar-

geted by cytotoxic T cells, eventually leading to the
occurrence of OLP. Although the precise mechanisms for
autoantibody induction and production in the sera of
OLP patients are unknown, AITD may lead to the produc-
tion of antigens in the damaged thyroid tissue, which then
activate antigen-specific B cells to produce antibodies
locally and in the blood circulation of OLP patients. The
severity of OLP lesions is directly linked to TPOAb levels
[23]. In addition, circulating thyroid antibodies in HT
patients contribute to the triggering of oral mucosa-specific
autoimmune responses, leading to OLP [11]. As oral mucosal
keratinocytes can express TSHR and TG, which can be
recognized by TRAb and TGAb, we hypothesize that HT
patients may have secondary OLP damage. In conclusion,
the coexistence of OLP and HT is related to TG expres-
sion in oral keratinocytes.

3.1.2. CD8+ T Cells. CD8+ T cells are an important branch of
the adaptive immune system; they contribute to the clearance
of intracellular pathogens and provide long-term protection
[24]. These functions are mostly fulfilled by the best-
characterized CD8+ T cell subpopulation, the cytotoxic T
lymphocytes, owing to their capacity to kill infected cells
and secrete cytokines such as interferon- (IFN-) γ and tumor
necrosis factor- (TNF-) α [25].

Both antigen-specific and nonspecific mechanisms may
be involved in OLP pathogenesis. A key element of patho-
genesis is that T lymphocyte-mediated cytotoxicity leads to
keratinocyte apoptosis. Most T cells adjacent to damaged
basal keratinocytes are CD8+ T cells. CD8+ cytotoxic T
cells can be directly activated by antigens binding to major
histocompatibility complex- (MHC-) 1 on keratinocytes
and subsequently release chemokines that attract additional
lymphocytes and other immune cells into the developing
OLP lesion [26]. HT pathogenesis involves perforin and
granzyme release by CD8+ cytotoxic T cells, resulting in
thyroid cell damage and eventually leading to hypothyroid-
ism [27]. Additionally, approximately 2–3% of infiltrating
CD8+ cells can recognize TPO/TG and function in thyroid
tissue destruction, thus leading to clinical disease [28].

3.1.3. CD4+ T Cells. CD4+ T helper (Th) cells can differenti-
ate into several distinct subsets, including Th1, Th2, Treg,
Th17, Th22, and Tfh, which produce specific cytokines
[29]. Th1 cells mainly produce IFN-γ, TNF-α, and interleu-
kin- (IL-) 2, which mediate cellular immune responses. Th2
cells predominantly produce cytokines, such as IL-4, IL-5,
IL-10, and IL-13, which mediate humoral immune responses.
The IFN-γ/IL-4 ratio is a simple and direct indicator of the
Th1/Th2 balance. Previous studies have shown that both
IFN-γ and IL-4 levels are increased in the serum and lesion
tissues of OLP patients compared with healthy controls and
that the IFN-γ/IL-4 ratio is also significantly increased,
indicating that OLP is Th1-biased [30]. Other studies have
shown that the TPOAb titer is correlated with increased
Th1 cytokine production in HT patients [31]. HT patients
have higher IFN-γ and lower IL-4 serum levels, further
indicating the Th1 bias in HT [32]. Collectively, these
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results demonstrate that both OLP and HT are predomi-
nantly Th1-type cytokine diseases.

Th17 cells are an independent subset of helper T cells
distinct from the development of Th1 and Th2 cells. Th17
cells can produce IL-17 and play a critical role in autoim-
mune diseases. IL-17 can induce keratinocytes, fibroblasts,
endothelial cells, and macrophages to secrete TNF-α and
IL-2 and subsequently promote inflammation [33]. Further-
more, the proportion of peripheral Th17 cells and IL-17
serum levels is significantly higher in OLP patients than con-
trols, indicating that Th17 cells are involved in OLP immu-
nopathogenesis [34]. Correspondingly, Th17 cells and serum
IL-17 levels are significantly higher in HT patients [35]. IL-
17 can promote inflammatory mediator secretion and T cell
proliferation, leading to thyroid tissue inflammation, thyroid
autoantibody production, and secondary tissue damage.

Th22 cells are a novel CD4+ T subset that mainly
secretes IL-22, which is associated with many autoimmune
diseases such as systemic lupus erythematosus and rheu-
matoid arthritis [36]. There is no direct evidence showing
an increase in Th22 cells in OLP lesions. However, IL-22
levels in OLP patients are significantly higher than in con-
trols [37]. IL-22 promotes keratinocyte proliferation and
epithelial hyperplasia; therefore, IL-22 may promote epi-
thelial hyperplasia in local OLP lesions [38]. Previous
studies have shown that IL-22 levels in the peripheral
blood of HT patients are significantly higher than in con-
trols, while Th22 cell levels were positively correlated with
the TPO antibody titer, suggesting that Th22 cells may be
involved in HT pathogenesis [39].

The regulatory T (Treg) cell subset produces cytokines,
including transforming growth factor- (TGF-) β and IL-
10, via direct or indirect cell contact, and subsequently
inhibits the immune response [40]. The main surface
markers of Treg cells are CD25 and Foxp3. In most auto-
immune diseases, such as type I diabetes mellitus, rheuma-
toid arthritis, and primary Sjogren’s syndrome, a decrease
in Treg cell levels or dysfunction can be detected [41, 42].
One study showed functional deficiency of Treg in HT
patients, suggesting that the role of Treg cells in HT is
consistent with their role in other autoimmune diseases
[43]. Accordingly, the proportion of CD4+CD25+Foxp3+
Treg cells in the peripheral blood is significantly higher
in OLP patients than in the controls and these cells mainly
infiltrate epithelial and superficial connective tissue, which
is adjacent to basal keratinocytes [44]. This suggests that
Foxp3+ Treg cells play a role in OLP pathogenesis, which
may be related to T cell resistance caused by decreased
sensitivity of effector CD8+ T cells to Treg during OLP
pathogenesis. To maintain immune homeostasis, Treg cells
exert their compensatory ability and subsequently enhance
immune suppression [45]. However, the Th17/Treg cell
ratio in the peripheral blood of both OLP [46] and HT
[47] patients is increased. As Th17/Treg axis disorders
(especially the reduction, or relative reduction, in Treg cell
levels and increase in Th17 cell activity) are involved in
the pathogenesis of many autoimmune diseases [48], we
hypothesize that imbalance of the Th17/Treg axis may
underlie the occurrence and cooccurrence of OLP and HT.

Follicular helper T (Tfh) cells are a newly identified T
helper cell subset, which can promote the generation of
antigen-specific B cells by producing IL-21 [49]; these cells
also express the chemokine receptor CXCR5 and inducible
costimulatory (ICOS) protein. Previous studies have shown
that the number of Tfh cells is increased in the peripheral
blood of HT patients, which correlates with thyroid-specific
antibody levels [50]. A more recent study found that the
peripheral blood of OLP patients has significantly increased
CXCR5+CD4+ Tfh-like cell and B cell levels, along with sig-
nificantly reduced serum IL-21 levels, suggesting that
increased circulating Tfh-like cells may participate in OLP
pathogenesis via the abnormal regulation of B cell prolifera-
tion and IL-21 production [51].

3.1.4. Chemokines. Chemokines are proinflammatory cyto-
kines, which are classified into C, CC, CXC, and CX3C sub-
families according to their N-terminal cysteine motifs.
Chemokines play a key role in the selective recruitment of
T cells via chemokine receptors [52]. CXCL10, an IFN-γ-
induced chemokine, participates in the pathogenesis of many
autoimmune diseases by binding to CXCR3 [53]. CXCL10 is
secreted by many cell types including endothelial cells, fibro-
blasts, keratinocytes, thyroid cells, and preadipocytes. A high
level of circulating CXCL10 is an efficient marker of the host
immune response, especially the Th1 immune response [54].
Previous studies have shown that CXCL10 expression in the
epithelial layer of OLP lesions is significantly higher than in
normal tissues [55]; furthermore, real-time quantitative
PCR analysis of lamina propria samples from OLP patients
demonstrated enhanced expression of CXCR3. CXCL10
expression is also increased in the serum and tissues of AITD
patients [56]. Several current ongoing studies are focused on
exploring innovative HT therapies by developing and evalu-
ating new molecules that can antagonize CXCR3 or block
CXCL10 [57]. Another chemokine, RANTES, a member of
the CC chemokine family, regulates the activation, expres-
sion, and secretion of T cells [58]. RANTES plays a crucial
role in the recruitment of lymphocytes, monocytes, natural
killer cells, eosinophils, basophils, and mast cells in OLP
[59]. RANTES serum levels are significantly higher in HT
patients than in controls [60], suggesting that RANTES
may be involved in HT pathogenesis.

In summary, keratinocyte expression of TSHR and TG,
which can be recognized and targeted by TRAb and TGAb in
HT patients, is the basis for the cooccurrence of OLP and HT
(Figure 1). In addition, the important role of TPOAb, CD8+
T cells, CD4+ T cells, and chemokines in the pathogenesis of
these two diseases suggests that other possible immune mech-
anisms are involved in the pathogenesis of these two diseases.

3.2. Environmental Factors. Environmental factors play an
important role in the pathogenesis of OLP and HT. However,
the relationship between smoking and OLP remains unclear.
Although some studies have indicated that smoking is
unrelated to OLP [61, 62], Neumann-Jensen et al. [63]
highlighted that OLP is less common among smokers than
nonsmokers. The relationship between smoking and HT is
also controversial. A population-based case-control study
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showed that smoking cessation is followed by a sharp but
transient rise in the incidence of HT [64]. A study involv-
ing individuals with genetic predisposition to HT showed
that fewer patients progressed to significant hypothyroid-
ism in the smoking group than in the nonsmoking group
[65]. A recent study has suggested that smoking confers a
protective effect for OLP and thyroid gland diseases, which
may affect the establishment of a possible link between OLP
and HT [66].

Infectious factors can also result in immune abnormali-
ties [67]. Hepatitis C virus [68, 69] and human herpesvirus
6 [70, 71] are associated with both OLP and HT, while other
studies have reported conflicting results regarding the associ-
ation of Epstein-Barr virus [72, 73] and Helicobacter pylori
[74, 75] with these diseases.

Vitamin D has a beneficial effect on the immune system,
and inadequate vitamin D intake is involved in many auto-
immune diseases [76]. Macrophages, dendritic cells, mono-
cytes, T lymphocytes, and B lymphocytes all express the
vitamin D-activating enzyme CYP27B1 and the vitamin D
receptor (VDR) [77–79]. Active vitamin D, 1,25(OH)2D,
derived from 25(OH)D, binds to VDR and regulates the pro-
liferation and differentiation of immune cells, leading to
reduced lymphocyte activity (especially in Th1-type lympho-
cytes), and reduces proinflammatory cytokine expression
[80]. Previous studies have shown a lack of VDR in OLP
lesions and reduced 1,25(OH)2D and 25(OH)D serum levels
compared to levels in the controls [81]. Current evidence
suggests that vitamin D deficiency is associated with thyroid
autoimmunity, which may play an important role in HT
immunopathogenesis [82]. Lack of vitamin D in patients
with OLP, HT, and OLP with HT may lead to enhanced
Th1 lymphocyte activity, which promoted inflammatory
cytokine expression, and finally disease onset.

Many animal and human studies have shown that stress
can induce a variety of immunological changes that are asso-
ciated with several autoimmune diseases [83–85]. Recent
studies have shown that stress can affect the immune system
via direct or indirect neuromodulation and endocrine regu-
lation and subsequently affects the Th1/Th2 balance [86].
One American study has shown that OLP is closely linked
to a tense mental state [87]. More recent studies have also
shown that anxiety, depression, and psychological stress
are closely correlated with OLP incidence, indicating that
psychosocial stress is an important cause of OLP [88]. While
mental and psychological factors are both associated with
AITD development, few studies have investigated their
effects on HT, mostly because the pathogenesis and course
of HT are generally recessive [89]. However, the change in
immune response balance caused by psychosocial factors is
probably one of the mechanisms underlying OLP and HT
and their cooccurrence.

3.3. Hormones. The role of estrogen and progesterone (Pg) in
autoimmune disorders, such as multiple sclerosis, systemic
lupus erythematosus, and rheumatoid arthritis, has been
established [90, 91]. Epidemiological studies have revealed
significant gender differences in the incidence of OLP and
HT; the ratio of males to females is approximately 1 : 1.4 for
OLP [26] and 1 : 5 to 1 : 10 for HT [6]. The ratio of males to
females with OLP complicated by HT is approximately
1 : 12 in China. These gender differences suggest that sex ste-
roid hormones probably play a significant role in the patho-
genesis of OLP and HT. Although estrogen can enhance
humoral immunity, its effect on cellular immunity remains
controversial. Estrogen regulates all T cell subsets including
CD4+ T cells (Th1, Th2, Th17, and Treg) and CD8+ T cells.
Changes in estrogen levels can interfere with autoimmunity
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[92]. Although no direct relationship has been established to
date between estrogen and OLP, OLP is more common in
perimenopausal women [93], which may be related to hor-
monal fluctuations during menopause. Regarding HT, it
has been confirmed that estrogen is closely involved in AITD
and estrogen receptor expression is heightened in HT
patients [94]. These results suggest that estrogen is closely
associated with the pathogenesis of OLP and HT and that it
may influence their cooccurrence.

3.4. Hereditary Factors. Human leukocyte antigen (HLA) is
the main histocompatibility complex in humans; HLA poly-
morphism is a key genetic factor underlying many diseases
[95]. HLA-encoded molecules are expressed on the surface
of different cells and participate in antigen presentation,
restrict cell recognition, and induce immune responses; con-
sequently, nearly all autoimmune diseases are related to
HLA. Studies examining the association between HLA alleles
in HT and OLP have demonstrated a common genetic sus-
ceptibility for these two diseases [96]. The HLA-DRw9 allele
is closely related to autoimmune diseases, including HT [97];
this allele is highly prevalent in Chinese OLP patients [98].
Other studies have shown that HT is associated with HLA-
DR3 alleles in Caucasians [99] and that HLA-DR3 is closely
related to the erosive variant of OLP [100]. These studies sug-
gest that OLP and HT may have the same genetic back-
ground and that these genetic factors are directly involved
in the abovementioned immune responses.

4. Conclusions

This review summarizes and discusses the mechanisms
underlying the cooccurrence of these two diseases, which
might be related to a range of immune, environmental, endo-
crine, and genetic factors (Figure 2). These factors can even-
tually lead to the occurrence or cooccurrence of OLP and HT
via various mechanisms that ultimately affect the Th1/Th2

balance. In addition, we hypothesize that OLP might be sec-
ondary to HT in some cases of OLP and HT cooccurrence.
Although the specific processes and mechanisms involved
in this cooccurrence need to be further investigated, this
review poses a novel strategy: a routine screen for thyroid dis-
eases, particularly HT, is recommended upon the initial diag-
nosis of OLP. This procedure will facilitate early HT
diagnosis and treatment.
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